Life cycle greenhouse gas emissions of Marcellus shale gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Environ. Res. Lett. 6 034014
(http://iopscience.iop.org/1748-9326/6/3/034014)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 209.133.65.222
The article was downloaded on 06/11/2012 at 20:28

Please note that terms and conditions apply.
Life cycle greenhouse gas emissions of Marcellus shale gas

Mohan Jiang1, W Michael Griffin2,3, Chris Hendrickson1, Paulina Jaramillo3, Jeanne VanBriesen1 and Aranya Venkatesh1

1 Civil and Environmental Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
2 Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
3 Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

E-mail: cth@andrew.cmu.edu

Received 13 January 2011
Accepted for publication 14 July 2011
Published 5 August 2011
Online at stacks.iop.org/ERL/6/034014

Abstract
This study estimates the life cycle greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compares its emissions with national average US natural gas emissions produced in the year 2008, prior to any significant Marcellus shale development. We estimate that the development and completion of a typical Marcellus shale well results in roughly 5500 t of carbon dioxide equivalent emissions or about 1.8 g CO2e/MJ of gas produced, assuming conservative estimates of the production lifetime of a typical well. This represents an 11% increase in GHG emissions relative to average domestic gas (excluding combustion) and a 3% increase relative to the life cycle emissions when combustion is included. The life cycle GHG emissions of Marcellus shale natural gas are estimated to be 63–75 g CO2e/MJ of gas produced with an average of 68 g CO2e/MJ of gas produced. Marcellus shale natural gas GHG emissions are comparable to those of imported liquefied natural gas. Natural gas from the Marcellus shale has generally lower life cycle GHG emissions than coal for production of electricity in the absence of any effective carbon capture and storage processes, by 20–50% depending upon plant efficiencies and natural gas emissions variability. There is significant uncertainty in our Marcellus shale GHG emission estimates due to eventual production volumes and variability in flaring, construction and transportation.

Keywords: life cycle assessment, greenhouse gases, Marcellus shale, natural gas

1. Introduction
Marcellus shale is a rapidly developing new source of US domestic natural gas. The Appalachian Basin Marcellus shale extends from southern New York through the western portion of Pennsylvania and into the eastern half of Ohio and northern West Virginia (Kargbo et al 2010). The estimated basin area is between 140 000 and 250 000 km² (Kargbo et al 2010), and has a depth ranging from 1200 to 2600 m (US DOE 2009). The shale seam’s net thickness ranges from 15 to 60 m (US DOE 2009) and is generally thicker from west to east (Hill et al 2004). Figure 1 shows the location of the Marcellus and other shale gas formations in the continental United States.

Shale gas has become an important component of the current US natural gas production mix. In 2009, shale gas was 16% of the 21 trillion cubic feet (Tcf) or 600 million cubic meters (Mm³) total dry gas produced (US EIA 2011a, 2011b). In 2035, the EIA expects the share to increase to 47% (12 Tcf or 340 Mm³) of total gas production. The prospect of rapid shale gas development has resulted in interest in expanding...
natural gas use including increased natural gas fired electricity generation, use as an alternative transportation fuel, and even exporting as liquefied natural gas. To date most shale gas activity has been in the Barnett shale in Texas. However, the immense potential of the Marcellus shale has stimulated increased attention. The shale play has an estimated gas-in-place of 1500 Tcf or 42 000 Mm3, of which 262–500 Tcf or 7400–14 000 Mm3 are thought to be recoverable (Hill et al 2004, US DOE 2009).

Advancements in horizontal drilling and hydraulic fracturing, demonstrated successfully in the Barnett shale and first applied in the Marcellus shale in 2004, have enabled the recovery of economical levels of Marcellus shale gas. After vertical drilling reaches the depth of the shale, the shale formation is penetrated horizontally with lateral lengths extending thousands of feet to ensure maximum contact with the gas-bearing seam. Hydraulic fracturing is then used to increase permeability that in turn increases the gas flow.

In estimating GHG emissions, we include GHG emissions of carbon dioxide, methane and nitrous oxide. We converted the GHG emissions to carbon dioxide equivalents according to the global warming potential (GWP) factors reported by IPCC. We use the 100-year GWP factor, in which methane has a global warming potential (GWP) 25 times higher than carbon dioxide (IPCC 2007).

2. Marcellus shale gas analysis boundaries and functional unit

The boundary of our analysis and the major process steps included in our estimates are shown in figure 2. Final life cycle emission estimates are reported in grams of carbon dioxide equivalent emissions per megajoule of natural gas (g CO$_2$e/MJ) produced. Each of the individual processes in the natural gas life cycle has an associated upstream supply chain and is included in this study to provide a full assessment of GHG emissions associated with Marcellus shale gas. The sources of GHG emissions considered in the LCA include: emissions from the production and transportation of material involved in the well development activities (such as trucking water); emissions from fuel consumption for powering the drilling and fracturing equipment; methane leaks and fuel combustion emissions associated with gas production, processing, transmission, distribution, and natural gas combustion.

The life cycle of Marcellus shale natural gas begins with a ‘preproduction phase’ that includes the well site investigation, preparation of the well pad including grading and construction of the well pad and access roads, drilling, hydraulic fracturing, and well completion (Soeder and Kappel 2009). After this preproduction phase is completed, the well becomes operational and starts producing natural gas. This natural gas can require additional processing to remove water, CO$_2$ and/or...
natural gas liquids before it enters the natural gas transmission and distribution system, which delivers it to final end users. For this work we assume that the GHG emissions for production, transmission, distribution and combustion of Marcellus shale natural gas are similar to average domestic gas sources as estimated by Jaramillo et al (2007) and further developed and updated by Venkatesh et al (2011).

Finally, natural gas has many current and potential uses including electricity generation, chemical feedstock, and as a transportation fuel. Modeling these uses allows comparisons of different primary energy sources. Here we model its use for power generation since it is the largest single use of natural gas in the US (US EIA 2011a, 2011b).

As previously mentioned, this study integrates GHG emissions from the life cycle of water associated with Marcellus shale gas production. Large amounts of water are consumed in the drilling and hydraulic fracturing processes (preproduction phase). Hydraulic fracturing uses fluid pressure to fracture the surrounding shale. The fracturing fluid consists of water mixed with a number of additives necessary to successfully fracture the shale seam. The source of the water varies and can be surface or ground water, purchased from a local public water supplier, or reused fracturing water. In this study we assume 45% of the water is reused on site and the original sources are surface water (50%) and purchased from a local water treatment plant (50%). Regardless of the water source used to produce the hydraulic fracturing fluid, trucks transport the water for impoundment at the well pad. In addition, flowback water (hydraulic fracturing fluid that returns to the surface) and produced water must be trucked to the final disposal site. This water is assumed to be disposed of via deep well injection. A detailed description of the method and data sources used to estimate the GHG emissions associated with all these stages is presented in section 3.

Marcellus shale gas production is in its infancy. Thus, industry practice is evolving and even single well longevity is unknown. Assumptions related to production rates and ultimate recovery have considerable uncertainty. Below, we include a sensitivity analysis for a wide range of inputs parameters.

This study does not consider any GHG emissions outside of the Marcellus shale gas preproduction and production processes. Natural processes or development actions such as hydraulic fracturing might lead to emissions of the shale gas external to a well, particularly in the case of poorly installed well casings (Osborn et al 2011). Any such external leaks are not included in this study.

3. Methods for calculating life cycle greenhouse gas emissions

Our study used a hybrid combination of process activity emission estimates and economic input–output life cycle assessment estimates to estimate the preproduction GHG emission estimates (Hendrickson et al 2006, CMU GDI 2010). Emissions from production, processing and transport were adapted from the literature. We include emissions estimates based on different data sources and reasonable
Table 1. Greenhouse gas estimation approaches and data sources.

<table>
<thead>
<tr>
<th>Process</th>
<th>Estimation approaches</th>
<th>Data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of Well Pad:</td>
<td>Estimated area cleared multiplied by vegetative carbon storage to obtain carbon loss due to land use change</td>
<td>NY DEC (2009), Tilman et al (2006)</td>
</tr>
<tr>
<td>Well pad construction</td>
<td>Detailed cost estimate and EIO-LCA model</td>
<td>RSMeans (2005), CMU GDI (2010)</td>
</tr>
<tr>
<td>Drilling energy consumption</td>
<td>(1) Cost estimate and EIO-LCA and (2) emission factors multiplied by quantity.</td>
<td>Shaker (2005), PRé Consultants (2007), CMU GDI (2010)</td>
</tr>
<tr>
<td>Hydraulic fracturing:</td>
<td>Pumping energy multiplied by emission factor</td>
<td>URS Corporation (2010), CMU GDI (2010)</td>
</tr>
<tr>
<td>Water consumption</td>
<td>Trucking emissions</td>
<td>NY DEC (2009), PA DEP (2010)</td>
</tr>
<tr>
<td>Well completion:</td>
<td>If flaring, gas flow emission factor multiplied by flaring time</td>
<td>NY DEC (2009), PA DEP (2010)</td>
</tr>
<tr>
<td>Deep well injection</td>
<td>Assumed comparable to national average</td>
<td>Venkatesh et al (2011)</td>
</tr>
<tr>
<td>Production, processing, transmission and storage, and combustion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ranges of process parameters. Table 1 summarizes estimation approaches used in this study, while calculation details appear in the supplementary information (available at stacks.iop.org/ERL/6/034014/mmedia).

In section 3.1, we report point estimates of GHG emissions for a base case. In section 5, we report range estimates and consider the sensitivity of point estimates to particular assumptions. Table 2 summarizes important parameter assumptions and possible ranges. Uniform or triangular distributions are assigned to these parameters based on whether we had two (uniform) or three (triangular) data points. When more data was available, parameters of probability distributions that best fit the data were estimated. A Monte Carlo analysis was performed using these distributions, to estimate the emissions from the various activities considered in our life cycle model.

3.1. Emissions from Marcellus shale gas preproduction

Horizontal wells are drilled on a multi-well pad to achieve higher cost-effectiveness. It is reported that a Marcellus well pad might have as few as one well per pad and as many as 16, but more typically 6–8 (ICF International 2009, NY DEC 2009, Currie and Stelle 2010). As a base case scenario, we chose to analyze the typical pad with six wells, each producing 2.7 Bcf (3.0 × 10^9 MJ), representing an average of 0.3 MMcf per day of gas for 25 years. Other production estimates are higher. EQT (2011), for example, provides a production estimate of 7.3 Bcf (8.1 × 10^9 MJ) and Range Resources at 4.4 Bcf (4.9 × 10^9 MJ) (Ventura 2009). Within the LCA framework the impacts are distributed across the total volume of gas produced during the lifetime of the well. Thus, the choice of using the low end ultimate recovery as the base case should be considered conservative. With Marcellus shale gas production currently in its infancy, the average production characteristics have significant uncertainty, so we perform an
extensive sensitivity analysis over a range of flow rates and well lifetimes, as discussed below.

The EIO-LCA (CMU GDI 2010) model was used to estimate GHG emissions from the construction of the access road and the multi-well pad. These costs were estimated using the utility price cost estimation method (RSMeans 2005). The size of an average Marcellus well pad is reported as being between 2 and 6 acres and typically between 4 and 5 acres (16 000 and 20 000 m²) during drilling and fracturing phase (NY DEC 2009, Columbia University 2009). The costs of constructing this pad are estimated to be $3.0–$3.3 million per well pad in 2002 dollars (see the supplementary information available at stacks.iop.org/ERL/6/034014/mmedia for detail).

Using these costs as input, GHG emissions associated with well pad construction are estimated with EIO-LCA (CMU GDI 2010) model.

Greenhouse gas emissions associated with drilling operations were calculated by two methods; (1) using the drilling energy intensity (table 1) and the life cycle diesel engine emissions factor of 635 g CO₂ per hp–hr output (Sheehan et al 2000), and (2) using drilling cost data and the EIO-LCA model (CMU GDI 2010). The EIA estimated the average drilling cost for natural gas wells in 2002 to be $176 per foot (including the cost for drilling and equipping the wells and for surface producing facilities) (US EIA 2008). Emissions associated with the production of the drilling mud components were based on data from the SimaPro life cycle tool and the EIO-LCA economic model (PRÉ Consultants 2007, CMU GDI 2010).

Hydraulic fracturing associated GHG emissions result from the operation of the diesel compressor used to move and compress the fracturing fluid to high pressure, the emissions associated with the production of the hydraulic fracturing fluid, and from fugitive methane emissions as flowback water is captured. The last category of emissions is discussed separately below. Energy and emissions associated with the hydraulic fracturing process were modeled by using vendor specific diesel data along with the emission factor described above. The emissions of hydraulic fracturing fluid production are estimated with EIO-LCA model, based on the price of additives and fracturing fluid composition (see supplementary information available at stacks.iop.org/ERL/6/034014/mmedia for detail).

There may be significant GHG emissions as a result of flaring and venting activities that occur during well casing and gathering equipment installation. The natural gas associated with the hydraulic fracturing flowback water is flared and vented. Flaring is used for testing the well gas flow prior to the construction of the gas gathering system which transport the gas to the sales line. Well completion emissions depend on the flaring/venting time, gas flow rate during well completion, the ratio of flaring to venting, and flaring efficiency. Uncertainty/variability analysis was conducted to investigate the effect of flaring/venting time, gas flow rate during fracturing water flowback, and flaring per cent on the well completion emissions. For those well completions with the collection facilities in place, gas is flared for between 12 and 24 h, due to necessary flowback operations. In wells where the appropriate gas gathering system as a tie to the gas sales line is not available for the gas during fracturing water flowback, the flaring or venting can occur for between 4 and 15 days as shown in table 2 (NY DEC 2009). In our model, we assumed the gas release rate during well completion equals the initial 30 day gas production rate for the base case and considered a scenario with both venting and flaring (see supplementary information available at stacks.iop.org/ERL/6/034014/mmedia for details).

3.2. Emissions from Marcellus shale gas production to combustion

GHG emissions for production, processing, transmission, distribution and combustion of Marcellus shale natural gas are assumed to be similar to the US average domestic gas system that have been estimated previously (Jaramillo et al 2007). Jaramillo et al (2007) estimates were updated to include the uncertainty and variability in life cycle estimates and recalculated with recent and/or more detailed information by Venkatesh et al (2011). The GHG emissions from these life cycle stages consist of vented methane (gas release during operation), fugitive methane (unintentional leaks) and CO₂ emissions from the processing plants and from fuel consumption. Methane leakage rates throughout the natural gas system (excluding the preproduction processes previously discussed) are a major concern and our analysis has an implied fugitive emissions rate of 2%, consistent with the EPA natural gas industry study (US EPA 1996, 2010).

Venkatesh et al (2011) estimated the mean emission factors used in this study: 9.7 g CO₂e/MJ of natural gas in production; 4.3 g CO₂e MJ for processing; 1.4 g CO₂e/MJ for transmission and storage; 0.8 g CO₂e/MJ for distribution; and 50 g CO₂e/MJ for combustion.

3.3. Emissions associated with the life cycle of water used for drilling and hydraulic fracturing

Water resource management is a critical component of the production of Marcellus shale natural gas. Chesapeake Energy (2010) indicates that 100 000 gallons of water are used for drilling mud preparation. Two to six million gallons of water per well are required for the hydraulic fracturing process (Staab and Masur 2009). About 85% of the drilling mud is reused (URS Corporation 2010). The flowback and recycling rates are used to estimate the total volume of water required. About 60–65% of this hydrofracturing fluid is recovered (URS Corporation 2010). For the flowback water, a recycle rate from 30 to 60% can be achieved (Agbaji et al 2009). The rest of the flowback water is temporarily stored in the impoundment and transported off site for disposal. Base case assumptions for these parameters are shown in table 2.

Emissions associated with drilling water use and hydraulic fracturing water use result from water taken from surface water resources or a local public water system; truck transport to the well pad, and then from the pad to disposal via deep well injection. It is assumed that no GHG emissions are related
Figure 3. GHG emissions from different stages of Marcellus shale gas preproduction.

with producing water if it comes from surface water resources. For the water purchased from a local public water system, the emission factor for water treatment is used, which is estimated to be 3.4 g CO$_2$e/gallon of water generated according to Stokes and Horvath (2006). The energy intensity for transportation of liquids via truck is assumed to be 1028 Btu/ton mile for both forward and back-haul trips, as given in the GREET model (Wang and Santini 2009). In this study we assume that separate round trips are needed to transport the freshwater to the pad and to remove wastewater to the disposal site. This is to say that trucks bring in the freshwater from the source and return to the source empty; trucks also collect the wastewater from the well site and return to the well site empty. The life cycle emission factor (wells to wheels) for diesel as a transportation fuel is 93 g CO$_2$e/MJ (Wang and Santini 2009).

To estimate transport emissions associated with water taken from surface streams and water purchased from the local public water system, we used spatial analysis (ArcGIS) to estimate the distance from the surface water source to the well pad using well operational data and geographical information from Pennsylvania Department of Environmental Protection (2010). We depicted the overall distribution pattern of Marcellus wells under drilling and production in PA and NY in June 2010 by GIS. The distance from the well site to the surface water source is assumed to be 5 miles or 8 km in the base case of the model and the same transportation distance is also assumed for the water purchased from local public water system. We assumed an equal probability for sourcing water between surface water and the local public water system.

The trucking distance between well site and deep well injection facility was also estimated by GIS (PA DEP 2010). The average value of 80 miles or 130 km as determined by GIS was used in the base case.

4. Results for the base case

A total of 5500 t CO$_2$e is emitted during ‘preproduction’ per well. This is equivalent to 1.8 g CO$_2$e/MJ of natural gas produced over the lifetime of the well. Figure 3 depicts the GHG emissions by preproduction stage and by source. As can be seen, the completion stage has the largest GHG emissions, which result from flaring and/or venting. The error bars represent the limits of the 90% confidence interval of the emissions from each stage based on the uncertainty analysis.

A recent EPA report addressing emissions from the natural gas industry reported that 177 t of CH$_4$ is released during the completion of an unconventional gas well (US EPA 2010). This estimate is consistent with the analysis here and falls within the range estimated by our study, 26–1000 t of CH$_4$ released per completion and a mean value of 400 t of CH$_4$ released per completion. In our model, this methane released during the well completion is either flared with a combustion efficiency of 98% or vented without recovery.

Adding the preproduction emissions estimate to the downstream emission estimated by Venkatesh et al (2011) results in an overall GHG emissions factor of 68 g CO$_2$e/MJ of gas produced (figure 4). The life cycle emissions are dominated by combustion that accounts for 74% of the total emissions.

Figure 4. GHG emissions through the life cycle of Marcellus shale gas. (Preproduction through distribution emissions are on left scale; combustion and total life cycle emissions are on right scale. No carbon capture is included after combustion.)
Table 3. Uncertainty analysis on Marcellus gas preproduction.

<table>
<thead>
<tr>
<th>Life cycle stage</th>
<th>Mean (g CO₂e/MJ)</th>
<th>Standard deviation (g CO₂e/MJ)</th>
<th>COV</th>
<th>90% CI-L (%)</th>
<th>90% CI-U (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well pad preparation</td>
<td>0.13</td>
<td>0.1</td>
<td>0.72</td>
<td>58</td>
<td>131</td>
</tr>
<tr>
<td>Drilling</td>
<td>0.21</td>
<td>0.1</td>
<td>0.50</td>
<td>51</td>
<td>95</td>
</tr>
<tr>
<td>Hydraulic fracturing</td>
<td>0.35</td>
<td>0.1</td>
<td>0.24</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>Completion</td>
<td>1.15</td>
<td>1.8</td>
<td>1.53</td>
<td>96</td>
<td>287</td>
</tr>
<tr>
<td>Total</td>
<td>1.84</td>
<td>1.8</td>
<td>0.96</td>
<td>67</td>
<td>179</td>
</tr>
</tbody>
</table>

Table 4. Sensitivity of emissions from wells with different production rates and lifetimes. (Source: author calculations.)

<table>
<thead>
<tr>
<th>Average gas flow (MMscf/day)</th>
<th>Lifetime (years)</th>
<th>Emissions from preproduction (g CO₂e/MJ)</th>
<th>Preproduction % contribution to life cycle emissions of Marcellus shale gas (%)</th>
<th>Total life cycle emissions (g CO₂e/MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>25</td>
<td>0.1</td>
<td>0.1</td>
<td>65.3</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.1</td>
<td>0.2</td>
<td>65.3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>0.3</td>
<td>0.4</td>
<td>65.3</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>0.2</td>
<td>0.3</td>
<td>65.4</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0.5</td>
<td>0.7</td>
<td>65.7</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0.9</td>
<td>1.4</td>
<td>66.1</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>0.6</td>
<td>0.8</td>
<td>65.8</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1.4</td>
<td>2.1</td>
<td>66.6</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2.8</td>
<td>4.1</td>
<td>68.0</td>
</tr>
<tr>
<td>0.3</td>
<td>25</td>
<td>1.8</td>
<td>2.7</td>
<td>67.0</td>
</tr>
<tr>
<td>0.3</td>
<td>10</td>
<td>5</td>
<td>6.6</td>
<td>69.8</td>
</tr>
<tr>
<td>0.3</td>
<td>5</td>
<td>9.2</td>
<td>12.4</td>
<td>74.4</td>
</tr>
</tbody>
</table>

5. Sensitivity and uncertainty

Our results are subject to considerable uncertainty, particularly for the production rates and well lifetime. Table 3 summarizes the uncertainty analysis on the emission estimates for preproduction based on the distribution of parameters used.

Table 4 addresses model sensitivity to different estimates of ultimate gas recovery from wells, investigating the impact of different production rates and lifetimes. At high production rates and long well lifetimes the preproduction GHG emissions are normalized over higher volumes of natural gas than when using low flow rates and short well lifetimes. Comparing the case of 10 MMscf/day with a 25-year well lifetime to 0.3 MMscf/day with a 5-year well lifetime, table 4 shows that the emissions go from 0.1 to 9.2 g CO₂e/MJ. The overall life cycle emissions change from 65 to 74 g CO₂e/MJ. However, the preproduction emissions are less than 15% of the total life cycle emissions in all cases.

6. Comparison with coal for power generation

Marcellus shale gas emissions can be compared to alternative energy sources and processes when using a common metric such as electricity generated. Currently coal power plants are used to generate base load. Natural gas power plants, especially inefficient ones, are used to provide regulation services to balance supply and demand at times when base load power plants are insufficient or there is high-frequency variability in load or from renewable resources. Natural gas combined cycle (NGCC) plants could be used to generate base load thus competing directly with coal to provide this service. For this reason our comparison includes the emissions associated with using Marcellus shale gas in a NGCC power plant (efficiency of 50%) and the emissions from using coal in pulverized coal (PC) plants (efficiency of 39%) and integrated gasification combined cycle (IGCC) plants (efficiency of 38%). The results of these comparisons can be seen in figure 5. For this comparison point values are used for the life cycle GHG emissions of coal-based electricity. The error bars found in figure 5 represent the low and high emissions values for Marcellus shale gas, based on the assumptions of well production rate and well lifetime. The high-emission scenario assumes a 5-year well with 0.3 MMscf/day production rate.
while the low-emission scenario, assumes a 25-year well with 10 MMscf/day production rate. Also shown in figure 5 are the life cycle emissions of electricity generated in power plants with carbon capture and sequestration (CCS) capabilities (efficiency of 43% for NGCC with CCS; efficiency of 30% for PC with CCS; efficiency of 33% for ICGG with CCS).

In general, natural gas provides lower greenhouse emission for all cases studied whether the gas is derived from Marcellus shale or the average 2008 domestic natural gas system. When advanced technologies are used with CSS then the emissions are similar and coal provides slightly less emissions. This implies that the upstream emissions for natural gas life cycle are higher than the upstream emissions from coal, once efficiencies of power generation are taken into account (Jaramillo et al 2007).

The comparison of natural gas and coal for electricity allows us to investigate the impact of three additional model uncertainty components including the choice of leakage rate, GWP values, and re-fracking of a Marcellus gas well. This study assumes a 2% production phase leakage rate based on the volume of gas produced (US EPA 2010, Venkatesh et al 2011). Assuming the average efficiency of 43% for natural gas fired electricity generation and 32% for coal fired plants the fugitive emissions rate would need to be 14% (resulting in a life cycle emission factor for Marcellus gas of 125 g CO2e/MJ before the overall life cycle emissions including those of electricity generation would be greater than coal. This is an exorbitantly high leakage rate and to put it into perspective, using 2009 dry natural gas production estimates and the average wellhead price, we calculate that the economic losses would total around $11 billion. If we convert our data to the 20-year GWP the break-even point is reduced to 7% because of the higher impacts attributed to methane. Finally, we modeled a single hydraulic fracturing event occurring during well preproduction (figure 3). Above we calculated that the break-even emission factor that would make coal and natural electricity generation the same is 125 g CO2e/MJ of natural gas. With the current emissions estimate for Marcellus gas of 68 g CO2e/MJ, and a hydraulic fracturing event (and its associated flaring and venting emissions) contributing 1.5 g CO2e/MJ to this estimate, more than 25 fracturing events would need to occur in a single well before the decision between coal and natural gas would change.

7. Comparison with liquefied natural gas as a future source

In 2005 EIA suggested that domestic natural gas production and Canadian imports would decline as natural gas consumption increased. EIA predicted that liquefied natural gas (LNG) imports would grow to offset the deficits in North American production (US EIA 2011a, 2011b). As a result of the development of unconventional natural gas reserves, EIA has changed their projections. The Annual Energy Outlook 2011 reference case (US EIA 2011a, 2011b) predicts that increases in shale gas production, including Marcellus, will more than offset the decline in conventional natural gas and decreasing imports from Canada and will allow for increases in natural gas consumption. Since shale gas is projected to be the largest component of the unconventional sources of future natural gas production, it seem appropriate to compare its emissions to those of the gas that would be used if shale gas were not produced. Venkatesh et al (2011) estimated the life cycle GHG from LNG imported to the US to have a mean of 70 g CO2e/MJ. These results are based on emissions due to production and liquefaction in the countries of origin, shipping the gas to the US by ocean tanker, regasification in the US and its transmission, distribution and subsequent combustion. On average, the emissions of Marcellus shale gas were about 3% lower than LNG. As with the overall Marcellus gas results, there is considerable uncertainty to the comparisons. However, we conclude that as these unconventional sources of natural gas supplant LNG imports, overall emissions will not rise.

8. Conclusion

The GHG emission estimates shown here for Marcellus gas are similar to current domestic gas. Other shale gas plays could generate different results considering regional environmental variability and reservoir heterogeneity. Green completion and capturing the gas for market that would otherwise be flared or vented, could reduce the emissions associated with completion and thus would significantly reduce the largest source of emissions specific to Marcellus gas preproduction. These preproduction emissions, however, are not substantial contributors to the life cycle estimates, which are dominated by the combustion emissions of the gas. For comparison purposes, Marcellus shale gas adds only 3% more emissions to the average conventional gas, which is likely within the uncertainty bounds of the study. Marcellus shale gas has lower GHG emissions relative to coal when used to generate electricity.

Acknowledgments

We gratefully acknowledged the financial support from the Sierra Club. We also thank two anonymous reviewers and our colleagues Francis McMichael and Austin Mitchell for helpful comments. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Sierra Club.

References

PA DEP (Pennsylvania Department of Environmental Protection) 2010 Oil and Gas Reporting (http://marcellusreporting.state.pa.us/OGREReports/Modules Welcome/Welcome.aspx, accessed November 2010)

RSMeans 2005 Heavy Construction Cost Data (Kingston, MA: RSMeans Company)

Stokes J and Horvath A 2006 Life cycle energy assessment of alternative water supply systems Int. J. Life Cycle Assess. 11 335–43

Tilman D, Hill J and Lehman C 2006 Carbon-negative biofuels from low-input high-diversity grassland biomass Science 314 1598–600

Ventura J 2009 Shale play comparison Presented at the Developing Unconventional Gas Conference (DUG East) (Pittsburgh, PA, 19–20 October 2009)