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Main Messages

human well-being.

THE CHALLENGE

1. The climate is changing now, warming at the highest rate in polar and high-

altitude regions. 

Traditional brick kilns in South Asia are a major source of black carbon. Improved kiln design in this region is 

signi"cantly reducing emissions.
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2. 

that have substantial regional and global climate impacts. 

livelihoods of millions of people. 

3. 

snow and ice around the world, including in the Arctic, the Himalayas and 

other glaciated and snow-covered regions. 

4. 

adverse impacts on human health leading to premature deaths worldwide. 

5. 

6. 

ozone precursors could immediately begin to protect climate, public health, 

7. 
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8. 

9. Both near-term and long-term strategies are essential to protect climate. 

10.

regions. 

11. 

The most 

RESPONSES

Much wider and more 

Assessment.

13. 

Accounting 
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14. 

development concerns. Improved cooperation within and between regions 

would enhance widespread implementation and address transboundary 

climate and air quality issues. 

15. 

measures.

Figure 1. Global benefits from full implementation of the identified measures in 2030 compared to the reference 

scenario. The climate change benefit is estimated for a given year (2050) and human health and crop benefits are 

for  2030 and beyond.
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3

BC and O
3
 affect climate and public health 

of these pollutants1. 

3
 and its 

3
 and 

4

2

emissions of BC and O
3

mitigation action is taken. 

The Integrated Assessment of Black Carbon and 

Tropospheric Ozone 
______________________________________________
1  The Anchorage Declaration of 24 April 2009, adopted by the Indigenous People’s Global Summit on Climate Change; the Tromsø Declaration of 29 April 

2009, adopted by the Sixth Ministerial Meeting of the Arctic Council and the 8th Session of the Permanent Forum on Indigenous Issues under the United 

Nations Economic and Social Council (May 2009) called on UNEP to conduct a fast track assessment of short-term drivers of climate change, specifically 

BC, with a view to initiating the negotiation of an international agreement to reduce emissions of BC. A need to take rapid action to address significant 

climate forcing agents other than CO
2
, such as BC, was reflected in the 2009 declaration of the G8 leaders (Responsible Leadership for a Sustainable 

Future, L’Aquila, Italy, 2009).
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Black carbon (BC) exists as particles in the atmosphere and is a major component of soot. BC is not 

a greenhouse gas. Instead it warms the atmosphere by intercepting sunlight and absorbing it. BC 

and other particles are emitted from many common sources, such as cars and trucks, residential 

stoves, forest fires and some industrial facilities. BC particles have a strong warming effect in the 

atmosphere, darken snow when it is deposited, and influence cloud formation. Other particles may 

have a cooling effect in the atmosphere and all particles influence clouds. In addition to having an 

impact on climate, anthropogenic particles are also known to have a negative impact 

on human health. 

Black carbon results from the incomplete combustion of fossil fuels, wood and other biomass. 

Complete combustion would turn all carbon in the fuel into carbon dioxide (CO
2
). In practice, 

combustion is never complete and CO
2
, carbon monoxide (CO), volatile organic compounds 

(VOCs), organic carbon (OC) particles and BC particles are all formed. There is a close relationship 

between emissions of BC (a warming agent) and OC (a cooling agent). They are always co-emitted, 

but in different proportions for different sources. Similarly, mitigation measures will have varying 

effects on the BC/OC mix.

The black in BC refers to the fact that these particles absorb visible light. This absorption leads to 

a disturbance of the planetary radiation balance and eventually to warming. The contribution to 

warming of 1 gramme of BC seen over a period of 100 years has been estimated to be anything 

from 100 to 2 000 times higher than that of 1 gramme of CO
2
. An important aspect of BC particles 

is that their lifetime in the atmosphere is short, days to weeks, and so emission reductions have an 

immediate benefit for climate and health.

High emitting vehicles are a signi"cant source of black 

carbon and other pollutants in many countries.

Haze with high particulate matter concentrations 

containing BC and OC, such as this over the Bay of 

Bengal, is widespread in many regions.
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Ozone (O
3
) is a reactive gas that exists in two layers of the atmosphere: the stratosphere (the upper 

layer) and the troposphere (ground level to ~10–15 km). In the stratosphere, O
3
 is considered 

to be beneficial as it protects life on Earth from the sun’s harmful ultraviolet (UV) radiation. In 

contrast, at ground level, it is an air pollutant harmful to human health and ecosystems, and it is 

a major component of urban smog. In the troposphere, O
3
 is also a significant greenhouse gas. 

The threefold increase of the O
3
 concentration in the northern hemisphere during the past 100 

years has made it the third most important contributor to the human enhancement of the global 

greenhouse effect, after CO
2
 and CH

4
. 

In the troposphere, O
3
 is formed by the action of sunlight on O

3
 precursors that have natural 

and anthropogenic sources. These precursors are CH
4
, nitrogen oxides (NO

X
), VOCs and CO. It is 

important to understand that reductions in both CH
4
 and CO emissions have the potential to 

substantially reduce O
3
 concentrations and reduce global warming. In contrast, reducing VOCs 

would clearly be beneficial but has a small impact on the global scale, while reducing NO
X  

has 

multiple additional effects that result in its net impact on climate being minimal.

Some of the largest emission reductions are obtained using diesel particle "lters on high emitting vehicles. The exhibits 

above are actual particulate matter (PM) collection samples from an engine testing laboratory (International Council of 

Clean Transportation (ICCT)).

Retro tted with

Diesel Oxidation Catalyst (DOC)

(Level 1)

Old technlogy

Little black carbon removal

Little ultra ne PM removal

Does not remove lube oil ash

No retro t system

Uncontrolled Diesel Exhaust

(Level 1)

Old technlogy

Little black carbon removal

Little ultra ne PM removal

Does not remove lube oil ash

Retro tted with

Partial Filter

(Level 2)

Little black carbon removal

Little ultra ne PM removal

Does not remove lube oil ash

Retro tted with

Diesel Particulate Filter (DPF)

(Level 3)

New Technology

Used on all new trucks since 2007

>85% black carbon removal

>85% ultra ne removal

>85% lube oil ash removal
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Achieving large emission 
reductions 

4 3
 

measures 

taking into account the fact that BC and 

O
3

2

emissions of SO
2

The selection gives a useful indication of the 

3
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Table 1. Measures that improve climate change mitigation and air quality and have a large 

emission reduction potential

Measure1 Sector

CH
4
 measures

Extended pre-mine degasification and recovery and oxidation of CH
4
 from 

ventilation air from coal mines

Extraction and 

transport of fossil fuel

Extended recovery and utilization, rather than venting, of associated gas 

and improved control of unintended fugitive emissions from the production 

of oil and natural gas

Reduced gas leakage from long-distance transmission pipelines

Separation and treatment of biodegradable municipal waste through 

recycling, composting and anaerobic digestion as well as landfill gas 

collection with combustion/utilization Waste management

Upgrading primary wastewater treatment to secondary/tertiary treatment 

with gas recovery and overflow control

Control of CH
4
 emissions from livestock, mainly through farm-scale 

anaerobic digestion of manure from cattle and pigs Agriculture

Intermittent aeration of continuously flooded rice paddies

BC measures (a"ecting BC and other co-emitted compounds)

Diesel particle filters for road and off-road vehicles
Transport

Elimination of high-emitting vehicles in road and off-road transport 

Replacing coal by coal briquettes in cooking and heating stoves

Residential

Pellet stoves and boilers, using fuel made from recycled wood waste or 

sawdust, to replace current wood-burning technologies in the residential 

sector in industrialized countries

Introduction of clean-burning biomass stoves for cooking and heating in 

developing countries2, 3 

Substitution of clean-burning cookstoves using modern fuels for traditional 

biomass cookstoves in developing countries2, 3 

Replacing traditional brick kilns with vertical shaft kilns and Hoffman kilns 

IndustryReplacing traditional coke ovens with modern recovery ovens, including the 

improvement of end-of-pipe abatement measures in developing countries

Ban of open field burning of agricultural waste2 Agriculture

The full implementation of the selected 

1  There are measures other than those identified in the table that could be implemented. For example, electric cars would 

have a similar impact to diesel particulate filters but these have not yet been widely introduced; forest fire controls could 

also be important but are not included due to the difficulty in establishing the proportion of fires that are anthropogenic.
2  Motivated in part by its effect on health and regional climate, including areas of ice and snow.
3  For cookstoves, given their importance for BC emissions, two alternative measures are included.
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 and CO. 
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Reducing near-term global 
warming

 

of BC and CH
4

is achieved by the CH
4

4

estimates. 

CO
2 2

SO
2 2

 in some 

2

Table 2. Policy packages used in the Assessment

Scenario Description1

Reference Based on energy and fuel projections of the International Energy Agency 

(IEA) World Energy Outlook 2009 and incorporating all presently agreed 

policies affecting emissions 

CH
4

 measures Reference scenario plus the CH
4
 measures

BC measures Reference scenario plus the BC measures (the BC measures affect many 

pollutants, especially BC, OC, and CO)

CH
4
 + BC measures Reference scenario plus the CH

4
 and BC measures

CO
2
 measures Emissions modelled using the assumptions of the IEA World Energy 

Outlook 2009 450 Scenario2 and the IIASA GAINS database. Includes CO
2
 

measures only. The CO
2
 measures affect other emissions, especially SO

2
3

CO
2
 + CH

4
 + BC measures CO

2
 measures plus CH

4
 and BC measures

1  In all scenarios, trends in all pollutant emissions are included through 2030, after which only trends in CO
2
 are included.

2 The 450 Scenario is designed to keep total forcing due to long-lived greenhouse gases (including CH
4
 in this case) at a 

level equivalent to 450 ppm CO
2
 by the end of the century. 

3 Emissions of SO
2
 are reduced by 35–40 per cent by implementing CO

2
 measures. A further reduction in sulphur emissions 

would be beneficial to health but would increase global warming. This is because sulphate particles cool the Earth by 

reflecting sunlight back to space.
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Figure 2. Percentage change in anthropogenic emissions of the indicated pollutants in 2030 relative to 2005 for 

the reference, CH
4
, BC and CH

4
 + BC measures scenarios. The CH

4
 measures have minimal effect on emissions of 

anything other than CH
4
. The identified BC measures reduce a large proportion of total BC, OC and CO emissions. 

SO
2
 and CO

2
 emissions are hardly affected by the identified CH

4
 and BC measures, while NO

X
 and other PM

2.5 

emissions are affected by the BC measures.
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Staying within critical 
temperature thresholds 
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Figure 3. Observed deviation of temperature to 2009 and projections under various scenarios. Immediate 

implementation of the identified BC and CH
4
 measures, together with measures to reduce CO

2
 emissions, would 

greatly improve the chances of keeping Earth’s temperature increase to less than 2˚C relative to pre-industrial 

levels. The bulk of the benefits of CH
4
 and BC measure are realized by 2040 (dashed line).

Explanatory notes: Actual mean temperature observations through 2009, and projected under various scenarios 

thereafter, are shown relative to the 1890–1910 mean temperature. Estimated ranges for 2070 are shown in the bars on 

the right. A portion of the uncertainty is common to all scenarios, so that overlapping ranges do not mean there is no 

di$erence, for example, if climate sensitivity is large, it is large regardless of the scenario, so temperatures in all scenarios 

would be towards the high-end of their ranges.
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emissions of O
3

2
. 

Both O
3

3
 and especially BC can 

the Asian monsoon

3
 and 
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Figure 4. Projected global mean temperature changes for the reference scenario and for the CH
4
 and BC 

measures scenario with emission reductions starting immediately or delayed by 20 years. 
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estimates.
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6 suggest that implementation of the BC 

Decreased warming in polar and 
other glaciated regions 

sensitive both to local pollutant emissions 

3 
and CH

4
 should 

of all.

50
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50
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-50
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GISS ECHAM

Figure 6. Change in atmospheric energy absorption (Watts per square metre, W/m2 as annual mean), an 

important factor driving tropical rainfall and the monsoons resulting from implementation of BC measures. 

The changes in absorption of energy by the atmosphere are  linked with changes in regional circulation and 

precipitation patterns, leading to increased precipitation in some regions and decreases in others. BC solar 

absorption increases the energy input to the atmosphere by as much as 5–15 per cent, with the BC measures 

removing the bulk of that heating. Results are shown for two independent models to highlight the similarity in 

the projections of where large regional decreases would occur. 
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human health
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3

3

3

Figure 7. Comparison of premature mortality (millions of premature deaths annually) by region, showing the 

change in 2030 in comparison with 2005 for the reference scenario emission trends and the reference plus CH
4
 + 

BC measures. The lines on each bar show the range of estimates.
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3
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measures
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that have multiple effects on climate that 

Figure 8. Comparison of crop yield losses (million tonnes annually of four key crops – wheat, rice, maize and soy 

combined) by region, showing the change in 2030 compared with 2005 for the reference emission trends and the 

reference with CH
4
 + BC measures. The lines on each bar show the range of estimates.
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The measures identi"ed in the Assessment include 

replacement of traditional cookstoves, such as that 

shown here, with clean burning stoves which would

substantially improve air quality and reduce premature 

deaths due to indoor and outdoor air pollution. 
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3

implementation 

2

taking action.

Widespread haze over the Himalayas where BC 

concentrations can be as high as in mid-sized cities. 

Reducing emissions should lower glacial melt and 

decrease the risk of outbursts from  glacial lakes.
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take action. 

goals simultaneously. 

Field burning of agricultural waste is a common way to dispose of crop residue in many regions.

To the naked eye, no emissions from an oil storage tank are visible (left), but with the aid of an infrared camera, 

escaping CH
4
 is evident (right). 
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CH
4
 measures

Land#ll biogas energy 

Landfill CH
4
 emissions contribute 10 per cent of the total greenhouse gas emissions in Mexico. 

Bioenergia de Nuevo Léon S.A. de C.V. (BENLESA) is using landfill biogas as fuel. Currently, the 

plant has an installed capacity of 12.7 megawatts. Since its opening in September 2003, it has 

avoided the release of more than 81 000 tonnes of CH
4
, equivalent to the reduction in emissions 

of 1.7 million tonnes of CO
2
, generating 409 megawatt hours of electricity. A partnership between 

government and a private company turned a liability into an asset by converting landfill gas (LFG) 

into electricity to help drive the public transit system by day and light city streets by night. LFG 

projects can also be found in Armenia, Brazil, China, India, South Africa, and other countries.

Recovery and $aring from oil and natural gas production

Oil drilling often brings natural gas, mostly CH
4
, to the surface along with the oil, which is often 

vented to the atmosphere to maintain safe pressure in the well. To reduce these emissions, 

associated gas may be flared and converted to CO
2
, or recovered, thus eliminating most of its 

warming potential and removing its ability to form ozone (O
3
). In India, Oil India Limited (OIL), a 

national oil company, is undertaking a project to recover the gas, which is presently flared, from 

the Kumchai oil field, and send it to a gas processing plant for eventual transport and use in the 

natural gas grid. Initiatives in Angola, Indonesia and other countries are flaring and recovering 

associated gas yielding large reductions in CH
4
 emissions and new sources of fuel for local markets. 

Livestock manure management 

In Brazil, a large CDM project in the state of Mina Gerais seeks to improve waste management 

systems to reduce the amount of CH
4
 and other greenhouse gas emissions associated with 

animal effluent. The core of the project is to replace open-air lagoons with ambient temperature 

anaerobic digesters to capture and combust the resulting biogas. Over the course of a 10-year 

period (2004–2014) the project plans to reduce CH
4
 and other greenhouse gas emissions by a total 

of 50 580 tonnes of CO
2
 equivalent. A CDM project in Hyderabad, India, will use the poultry litter 

CH
4
 to generate electricity which will power the plant and supply surplus electricity to the Andhra 

Pradesh state grid. 

Farm scale anaerobic digestion of manure from cattle is one of the key CH
4
 measures 
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(continued)

BC measures

Diesel particle #lters

In Santiago, municipal authorities, responding to public concern on air pollution, adopted a new 

emissions standard for urban buses, requiring installation of diesel particle filters (DPFs). Currently 

about one-third of the fleet is equipped with filters; it is expected that the entire fleet will be 

retrofitted by 2018. New York City adopted regulations in 2000 and 2003 requiring use of DPFs in 

city buses and off-road construction equipment working on city projects. London fitted DPFs to 

the city’s bus fleet over several years beginning in 2003. Low emission zones in London and other 

cities create incentives for diesel vehicle owners to retrofit with particle filters, allowing them to 

drive within the city limits. Implementation in developing regions will require greater availability of 

low sulphur diesel, which is an essential prerequisite for using DPFs.

Improved brick kilns

Small-scale traditional brick kilns are a significant source of air pollution in many developing 

countries; there are an estimated 20 000 in Mexico alone, emitting large quantities of particulates. 

An improved kiln design piloted in Ciudad Juárez, near the border with the United States of 

America, improved efficiency by 50 per cent and decreased particulate pollution by 80 per cent. 

In the Bac Ninh province of Viet Nam, a project initiated with the aim of reducing ambient air 

pollution levels and deposition on surrounding rice fields piloted the use of a simple limestone 

scrubbing emissions control device and demonstrated how a combination of regulation, economic 

tools, monitoring and technology transfer can significantly improve air quality. 

A traditional brick kiln (left) and an improved (right) operating in Mexico. 

Potential international 
regulatory responses 
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3
 

adoption of effective action at multiple levels. 

 

4

change both globally and especially in 

3
 may also 

The Convention on Long-Range Transboundary Air Pollution (CLRTAP) is a mature policy 

framework covering Europe, Central Asia and North America. Similar regional agreements have 

emerged in the last decades in other parts of the world. The Malé Declaration on Control and 

Prevention of Air Pollution and its Likely Transboundary Effects for South Asia was agreed in 

1998 and addresses air quality including tropospheric O
3
 and particulate matter. The Association 

of Southeast Asian Nations (ASEAN) Haze Protocol is a legally binding agreement addresses 

particulate pollution from forest fires in Southeast Asia. In Africa there are a number of framework 

agreements between countries in southern Africa (Lusaka Agreement), in East Africa (Nairobi 

Agreement); and West and Central Africa (Abidjan Agreement). In Latin America and the Caribbean 

a ministerial level intergovernmental network on air pollution has been formed and there is a draft 

framework agreement and ongoing collaboration on atmospheric issues under UNEP’s leadership. 
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Concluding 
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Glossary

Aerosol A collection of airborne solid or liquid particles (excluding pure water), 

with a typical size between 0.01 and 10 micrometers (µm) and residing in 

the atmosphere for at least several hours. Aerosols may be of either natu-

ral or anthropogenic origin. Aerosols may influence climate in two ways: 

directly through scattering or absorbing radiation, and indirectly through 

acting as condensation nuclei for cloud formation or modifying the opti-

cal properties and lifetime of clouds.

Biofuels Biofuels are non-fossil fuels. They are energy carriers that store the energy 

derived from organic materials (biomass), including plant materials and 

animal waste.

Biomass In the context of energy, the term biomass is often used to refer to organic 

materials, such as wood and agricultural wastes, which can be burned to 

produce energy or converted into a gas and used for fuel.

Black carbon Operationally defined aerosol species based on measurement of light 

absorption and chemical reactivity and/or thermal stability. Black carbon 

is formed through the incomplete combustion of fossil fuels, biofuel, and 

biomass, and is emitted in both anthropogenic and naturally occurring 

soot. It consists of pure carbon in several linked forms. Black carbon warms 

the Earth by absorbing heat in the atmosphere and by reducing albedo, 

the ability to reflect sunlight, when deposited on snow and ice.

Carbon          

sequestration

The uptake and storage of carbon. Trees and plants, for example, absorb 

carbon dioxide, release the oxygen and store the carbon.

Fugitive  

emissions

Substances (gas, liquid, solid) that escape to the air from a process or a 

product without going through a smokestack; for example, emissions of 

methane escaping from coal, oil, and gas extraction not caught by a cap-

ture system.

Global    

warming     

potential 

(GWP)

The global warming potential of a gas or particle refers to an estimate of 

the total contribution to global warming over a particular time that results 

from the emission of one unit of that gas or particle relative to one unit of 

the reference gas, carbon dioxide, which is assigned a value of one.

High-emitting 

vehicles

Poorly tuned or defective vehicles (including malfunctioning emission 

control system), with emissions of air pollutants (including particulate 

matter) many times greater than the average.

Hoffman kiln Hoffmann kilns are the most common kiln used in production of bricks. A 

Hoffmann kiln consists of a main fire passage surrounded on each side by 

several small rooms which contain pallets of bricks. Each room is connect-

ed to the next room by a passageway carrying hot gases from the fire. This 

design makes for a very efficient use of heat and fuel.

Incomplete 

combustion

A reaction or process which entails only partial burning of a fuel. Combus-

tion is almost always incomplete and this may be due to a lack of oxygen 

or low temperature, preventing the complete chemical reaction.

Oxidation The chemical reaction of a substance with oxygen or a reaction in which 

the atoms in an element lose electrons and its valence is correspondingly 

increased.
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Ozone Ozone, the triatomic form of oxygen (O
3
), is a gaseous atmospheric constit-

uent. In the troposphere, it is created both naturally and by photochemical 

reactions involving gases resulting from human activities (it is a primary 

component of photochemical smog). In high concentrations, tropospheric 

ozone can be harmful to a wide range of living organisms. Tropospheric 

ozone acts as a greenhouse gas. In the stratosphere, ozone is created by 

the interaction between solar ultraviolet radiation and molecular oxygen. 

Stratospheric ozone provides a shield from ultraviolet B (UVB) radiation. 

Ozone         

precursor

Chemical compounds, such as carbon monoxide (CO), methane (CH
4
), 

non-methane volatile organic compounds (NMVOC), and nitrogen oxides 

(NO
X
), which in the presence of solar radiation react with other chemical 

compounds to form ozone in the troposphere.

Particulate 

matter

Very small pieces of solid or liquid matter such as particles of soot, dust, or 

other aerosols.

Pre-industrial Prior to widespread industrialisation and the resultant changes in the 

environment. Typically taken as the period before 1750.

Radiation Energy transfer in the form of electromagnetic waves or particles that 

release energy when absorbed by an object.

Radiative 

forcing

Radiative forcing is a measure of the change in the energy balance of the 

Earth-atmosphere system with space. It is defined as the change in the 

net, downward minus upward, irradiance (expressed in Watts per square 

metre) at the tropopause due to a change in an external driver of climate 

change, such as, for example, a change in the concentration of carbon 

dioxide or the output of the Sun. 

Smog Classically a combination of smoke and fog in which products of com-

bustion, such as hydrocarbons, particulate matter and oxides of sulphur 

and nitrogen, occur in concentrations that are harmful to human beings 

and other organisms. More commonly, it occurs as photochemical smog, 

produced when sunlight acts on nitrogen oxides and hydrocarbons to 

produce tropospheric ozone.

Stratosphere Region of the atmosphere between the troposphere and mesosphere, 

having a lower boundary of approximately 8 km at the poles to 15 km at 

the equator and an upper boundary of approximately 50 km. Depending 

upon latitude and season, the temperature in the lower stratosphere can 

increase, be isothermal, or even decrease with altitude, but the tempera-

ture in the upper stratosphere generally increases with height due to 

absorption of solar radiation by ozone.

Trans-  

boundary 

movement

Movement from an area under the national jurisdiction of one State to or 

through an area under the national jurisdiction of another State or to or 

through an area not under the national jurisdiction of any State.

Transport                        

(atmospheric)

The movement of chemical species through the atmosphere as a result of 

large-scale atmospheric motions.

Troposphere The lowest part of the atmosphere from the surface to about 10 km in 

altitude in mid-latitudes (ranging from 9 km in high latitudes to 16 km in 

the tropics on average) where clouds and “weather” phenomena occur. In 

the troposphere temperatures generally decrease with height.
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Acronyms and Abbreviations

ASEAN Association of Southeast Asian Nations

BC black carbon

BENLESA Latin America Bioenergia de Nuevo Léon S.A. de C.V. 

CDM Clean Development Mechanism

CH
4

methane

CLRTAP Convention on Long-Range Transboundary Air Pollution

CO carbon monoxide

CO
2

carbon dioxide

DPF diesel particle filter

ECHAM Climate-chemistry-aerosol model developed by the Max Planck Institute in Ham-

burg, Germany

G8 Group of Eight: Canada, France, Germany, Italy, Japan, Russian Federation, United 

Kingdom, United States

GAINS Greenhouse Gas and Air Pollution Interactions and Synergies

GISS Goddard Institute for Space Studies

GWP global warming potential

IEA International Energy Agency

IIASA International Institute for Applied System Analysis

IPCC Intergovernmental Panel on Climate Change

LFG landfill gas

NASA National Aeronautics and Space Administration

NO
X

nitrogen oxides

O
3

ozone

OC organic carbon

OIL Oil India Limited

PM particulate matter (PM
2.5

 has a diameter of 2.5µm or less)

ppm parts per million

SLCF short-lived climate forcer

SO
2

sulphur dioxide

UN United Nations

UNDP United Nations Development Programme

UNEP United Nations Environment Programme

UNFCCC United Nations Framework Convention on Climate Change

UV ultraviolet 

VOC volatile organic compound

WMO World Meteorological Organization
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1 EXECUTIVE SUMMARY 

1.1 Background 

The U.S. Environmental Protection Agency (EPA) reviewed the New Source 

Performance Standards (NSPS) for volatile organic compound and sulfur dioxide emissions from 

Natural Gas Processing Plants.  As a result of these NSPS, this proposal amends the Crude Oil 

and Natural Gas Production source category currently listed under section 111 of the Clean Air 

Act to include Natural Gas Transmission and Distribution, amends the existing NSPS for volatile 

organic compounds (VOCs) from Natural Gas Processing Plants, and proposes NSPS for 

stationary sources in the source categories that are not covered by the existing NSPS.  In 

addition, this proposal addresses the residual risk and technology review conducted for two 

source categories in the Oil and Natural Gas sector regulated by separate National Emission 

Standards for Hazardous Air Pollutants (NESHAP).  It also proposes standards for emission 

sources not currently addressed, as well as amendments to improve aspects of these NESHAP 

related to applicability and implementation.  Finally, it addresses provisions in these NESHAP 

related to emissions during periods of startup, shutdown, and malfunction. 

As part of the regulatory process, EPA is required to develop a regulatory impact analysis 

(RIA) for rules that have costs or benefits that exceed $100 million.  EPA estimates the proposed 

NSPS will have costs that exceed $100 million, so the Agency has prepared an RIA.  Because 

the NESHAP amendments are being proposed in the same rulemaking package (i.e., same 

Preamble), we have chosen to present the economic impact analysis for the proposed NESHAP 

amendments within the same document as the NSPS RIA. 

This RIA includes an economic impact analysis and an analysis of human health and 

climate impacts anticipated from the proposed NSPS and NESHAP amendments.  We also 

estimate potential impacts of the proposed NSPS on the national energy economy using the U.S. 

Energy Information Administration’s National Energy Modeling System (NEMS).  The 

engineering compliance costs are annualized using a 7 percent discount rate.  This analysis 

assumes an analysis year of 2015. 

Several proposed emission controls for the NSPS capture VOC emissions that otherwise 

would be vented to the atmosphere.  Since methane is co-emitted with VOCs, a large proportion 
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of the averted methane emissions can be directed into natural gas production streams and sold.  

One emissions control option, reduced emissions well completions, also recovers saleable 

hydrocarbon condensates which would otherwise be lost to the environment.  The revenues 

derived from additional natural gas and condensate recovery are expected to offset the 

engineering costs of implementing the NSPS in the proposed option.  In the economic impact 

and energy economy analyses for the NSPS, we present results for three regulatory options that 

include the additional product recovery and the revenues we expect producers to gain from the 

additional product recovery.   

1.2 NSPS Results 

For the proposed NSPS, the key results of the RIA follow and are summarized in Table 1-1: 

� Benefits Analysis: The proposed NSPS is anticipated to prevent significant new emissions, 
including 37,000 tons of hazardous air pollutants (HAPs), 540,000 tons of VOCs, and 3.4 
million tons of methane.  While we expect that these avoided emissions will result in 
improvements in ambient air quality and reductions in health effects associated with 
exposure to HAPs, ozone, and particulate matter (PM), we have determined that 
quantification of those benefits cannot be accomplished for this rule.  This is not to imply 
that there are no benefits of the rules; rather, it is a reflection of the difficulties in modeling 
the direct and indirect impacts of the reductions in emissions for this industrial sector with 
the data currently available. In addition to health improvements, there will be improvements 
in visibility effects, ecosystem effects, as well as additional natural gas recovery.  The 
methane emissions reductions associated with the proposed NSPS are likely to result in 
significant climate co-benefits.  The specific control technologies for the proposed NSPS are 
anticipated to have minor secondary disbenefits, including an increase of 990,000 tons of 
carbon dioxide (CO2), 510 tons of nitrogen oxides NOx, 7.6 tons of PM, 2,800 tons of CO, 
and 1,000 tons of total hydrocarbons (THC) as well as emission reductions associated with 
the energy system impacts.  The net CO2-equivalent emission reductions are 62 million 
metric tons.

� Engineering Cost Analysis: EPA estimates the total capital cost of the proposed NSPS will 
be $740 million.  The total annualized engineering costs of the proposed NSPS will be $740 
million.  When estimated revenues from additional natural gas and condensate recovery are 
included, the annualized engineering costs of the proposed NSPS are estimated at $-45 
million, assuming a wellhead natural gas price of $4/thousand cubic feet (Mcf) and 
condensate price of $70/barrel.  Possible explanations for why there appear to be negative 
cost control technologies are discussed in the engineering costs analysis section in the RIA.  
The estimated engineering compliance costs that include the product recovery are sensitive to 
the assumption about the price of the recovered product.  There is also geographic variability 
in wellhead prices, which can also influence estimated engineering costs.  For example, 
$1/Mcf change in the wellhead price causes a change in estimated engineering compliance 
costs of about $180 million, given EPA estimates that 180 billion cubic feet of natural gas 
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will be recovered by implementing the proposed NSPS option.  All estimates are in 2008 
dollars.  

� Energy System Impacts:  Using the NEMS, when additional natural gas recovery is 
included, the analysis of energy system impacts for the proposed NSPS shows that domestic 
natural gas production is likely to increase slightly (about 20 billion cubic feet or 0.1 percent) 
and average natural gas prices to decrease slightly (about $0.04/Mcf or 0.9 percent at the 
wellhead for onshore production in the lower 48 states).  Domestic crude oil production is not 
expected to change, while average crude oil prices are estimated to decrease slightly (about 
$0.02/barrel or less than 0.1 percent at the wellhead for onshore production in the lower 48 
states).  All prices are in 2008 dollars. 

� Small Entity Analyses: EPA performed a screening analysis for impacts on small entities by 
comparing compliance costs to revenues.  For the proposed NSPS, we found that there will 
not be a significant impact on a substantial number of small entities (SISNOSE). 

� Employment Impacts Analysis: EPA estimated the labor impacts due to the installation, 
operation, and maintenance of control equipment, as well as labor associated with new 
reporting and recordkeeping requirements.  We estimate up-front and continual, annual labor 
requirements by estimating hours of labor required for compliance and converting this 
number to full-time equivalents (FTEs) by dividing by 2,080 (40 hours per week multiplied 
by 52 weeks).  The up-front labor requirement to comply with the proposed NSPS is 
estimated at 230 full-time-equivalent employees. The annual labor requirement to comply 
with proposed NSPS is estimated at about 2,400 full-time-equivalent employees. We note 
that this type of FTE estimate cannot be used to make assumptions about the specific number 
of people involved or whether new jobs are created for new employees. 
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Table 1-1 Summary of the Monetized Benefits, Costs, and Net Benefits for the Oil and 

Natural Gas NSPS Regulatory Options in 2015 (millions of 2008$)
1

�� Option 1: Alternative Option 2: Proposed
4
 Option 3: Alternative 

Total Monetized Benefits2 N/A N/A N/A 

Total Costs3 -$19 million -$45 million $77 million 

Net Benefits N/A N/A N/A 

Non-monetized Benefits 17,000 tons of HAPs5 37,000 tons of HAPs5 37,000 tons of HAPs5

 270,000 tons of VOCs  540,000 tons of VOCs  550,000 tons of VOCs 

1.6 million tons of 
methane5 3.4 million tons of methane5 3.4 million tons of methane5

Health effects of HAP 
exposure5

Health effects of HAP 
exposure5

Health effects of HAP 
exposure5

Health effects of PM2.5 and 
ozone exposure 

Health effects of PM2.5 and 
ozone exposure 

Health effects of PM2.5 and 
ozone exposure 

 Visibility impairment Visibility impairment Visibility impairment 

 Vegetation effects Vegetation effects Vegetation effects 

  Climate effects5 Climate effects5 Climate effects5

   
1 All estimates are for the implementation year (2015) and include estimated revenue from additional natural gas 
recovery as a result of the NSPS. 

2 While we expect that these avoided emissions will result in improvements in air quality and reductions in health 
effects associated with HAPs, ozone, and particulate matter (PM) as well as climate effects associated with methane, we 
have determined that quantification of those benefits and co-benefits cannot be accomplished for this rule in a 
defensible way.  This is not to imply that there are no benefits or co-benefits of the rules; rather, it is a reflection of the 
difficulties in modeling the direct and indirect impacts of the reductions in emissions for this industrial sector with the 
data currently available.  The specific control technologies for the proposed NSPS are anticipated to have minor 
secondary disbenefits, including an increase of 990,000 tons of CO2, 510 tons of NOx, 7.6 tons of PM, 2,800 tons of 
CO, and 1,000 tons of total hydrocarbons (THC) as well as emission reductions associated with the energy system 
impacts.  The net CO2-equivalent emission reductions are 62 million metric tons.   

3 The engineering compliance costs are annualized using a 7 percent discount rate.   

4 The negative cost for the NSPS Options 1 and 2 reflects the inclusion of revenues from additional natural gas and 
hydrocarbon condensate recovery that are estimated as a result of the proposed NSPS.  Possible explanations for why 
there appear to be negative cost control technologies are discussed in the engineering costs analysis section in the RIA.  

5 Reduced exposure to HAPs and climate effects are co-benefits. 
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1.3 NESHAP Amendments Results 

For the proposed NESHAP amendments, the key results of the RIA follow and are summarized 

in Table 1-2: 

� Benefits Analysis: The proposed NESHAP amendments are anticipated to reduce a 
significant amount of existing emissions, including 1,400 tons of HAPs, 9,200 tons of VOCs, 
and 4,900 tons of methane.  Results from the residual risk assessment indicate that for 
existing natural gas transmission and storage, the maximum individual cancer risk decreases 
from 90-in-a-million before controls to 20-in-a-million after controls with benzene as the 
primary cancer risk driver. While we expect that these avoided emissions will result in 
improvements in ambient air quality and reductions in health effects associated with 
exposure to HAPs, ozone, and PM, we have determined that quantification of those benefits 
cannot be accomplished for this rule.  This is not to imply that there are no benefits of the 
rules; rather, it is a reflection of the difficulties in modeling the direct and indirect impacts of 
the reductions in emissions for this industrial sector with the data currently available.  In 
addition to health improvements, there will be improvements in visibility effects, ecosystem 
effects, and climate effects as well as additional natural gas recovery. The specific control 
technologies for the proposed NESHAP is anticipated to have minor secondary disbenefits, 
including an increase of 5,500 tons of CO2, 2.9 tons of NOx, 16 tons of CO, and 6.0 tons of 
total hydrocarbons (THC) as well as emission reductions associated with the energy system 
impacts.  The net CO2-equivalent emission reductions are 93 thousand metric tons.   

� Engineering Cost Analysis: EPA estimates the total capital costs of the proposed NESHAP 
amendments to be $52 million. Total annualized engineering costs of the proposed NESHAP 
amendments are estimated to be $16 million. All estimates are in 2008 dollars. 

� Energy System Impacts:  We did not estimate the energy economy impacts of the proposed 
NESHAP amendments as the expected costs of the rule are not likely to have estimable 
impacts on the national energy economy. 

� Small Entity Analyses: EPA performed a screening analysis for impacts on small entities by 
comparing compliance costs to revenues.  For the proposed NESHAP amendments, we found 
that there will not be a significant impact on a substantial number of small entities 
(SISNOSE).

� Employment Impacts Analysis: EPA estimated the labor impacts due to the installation, 
operation, and maintenance of control equipment, as well as labor associated with new 
reporting and recordkeeping requirements.  We estimate up-front and continual, annual labor 
requirements by estimating hours of labor required for compliance and converting this 
number to full-time equivalents (FTEs) by dividing by 2,080 (40 hours per week multiplied 
by 52 weeks).  The up-front labor requirement to comply with the proposed NESHAP 
Amendments is estimated at 120 full-time-equivalent employees. The annual labor 
requirement to comply with proposed NESHAP Amendments is estimated at about 102 full-
time-equivalent employees. We note that this type of FTE estimate cannot be used to make 
assumptions about the specific number of people involved or whether new jobs are created 
for new employees.
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� Break-Even Analysis: A break-even analysis suggests that HAP emissions would need to be 
valued at $12,000 per ton for the benefits to exceed the costs if the health benefits, ecosystem 
and climate co-benefits from the reductions in VOC and methane emissions are assumed to 
be zero.  If we assume the health benefits from HAP emission reductions are zero, the VOC 
emissions would need to be valued at $1,700 per ton or the methane emissions would need to 
be valued at $3,300 per ton for the benefits to exceed the costs.  Previous assessments have 
shown that the PM2.5 benefits associated with reducing VOC emissions were valued at $280 
to $7,000 per ton of VOC emissions reduced in specific urban areas.  Previous assessments 
have shown that the PM2.5 benefits associated with reducing VOC emissions were valued at 
$280 to $7,000 per ton of VOC emissions reduced in specific urban areas, ozone benefits 
valued at $240 to $1,000 per ton of VOC emissions reduced, and climate co-benefits valued 
at $110 to $1,400 per short ton of methane reduced.  All estimates are in 2008 dollars. 

Table 1-2 Summary of the Monetized Benefits, Costs, and Net Benefits for the 

Proposed Oil and Natural Gas NESHAP in 2015 (millions of 2008$)
1 

�� Option 1: Proposed (Floor) 

Total Monetized Benefits2 N/A 

Total Costs3 $16 million 

Net Benefits N/A 

Non-monetized Benefits  1,400 tons of HAPs 

9,200  tons of VOCs4

4,900  tons of methane4

Health effects of HAP exposure 

Health effects of PM2.5 and ozone exposure4

Visibility impairment4

Vegetation effects4

  Climate effects4

1 All estimates are for the implementation year (2015). 

2 While we expect that these avoided emissions will result in improvements in air quality and reductions in health 
effects associated with HAPs, ozone, and PM as well as climate effects associated with methane, we have 
determined that quantification of those benefits and co-benefits cannot be accomplished for this rule in a defensible 
way.  This is not to imply that there are no benefits or co-benefits of the rules; rather, it is a reflection of the 
difficulties in modeling the direct and indirect impacts of the reductions in emissions for this industrial sector with 
the data currently available. The specific control technologies for the proposed NESHAP are anticipated to have 
minor secondary disbenefits, including an increase of 5,500 tons of CO2, 2.9 tons of NOx, 16 tons of CO, and 6.0 
tons of THC as well as emission reductions associated with the energy system impacts.  The net CO2-equivalent 
emission reductions are 93 thousand metric tons.  

3 The engineering compliance costs are annualized using a 7 percent discount rate.   

4 Reduced exposure to VOC emissions, PM2.5 and ozone exposure, visibility and vegetation effects, and climate 
effects are co-benefits. 
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1.4 Organization of this Report 

The remainder of this report details the methodology and the results of the RIA.  Section 

2 presents the industry profile of the oil and natural gas industry.  Section 3 describes the 

emissions and engineering cost analysis.  Section 4 presents the benefits analysis.  Section 5 

presents statutory and executive order analyses.  Section 6 presents a comparison of benefits and 

costs.  Section 7 presents energy system impact, employment impact, and small business impact 

analyses.  
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2 INDUSTRY PROFILE 

2.1 Introduction  

The oil and natural gas industry includes the following five segments: drilling and 

extraction, processing, transportation, refining, and marketing.  The Oil and Natural Gas NSPS 

and NESHAP amendments propose controls for the oil and natural gas products and processes of 

the drilling and extraction of crude oil and natural gas, natural gas processing, and natural gas 

transportation segments.  

Most crude oil and natural gas production facilities are classified under NAICS 211: 

Crude Petroleum and Natural Gas Extraction (211111) and Natural Gas Liquid Extraction 

(211112).  The drilling of oil and natural gas wells is included in NAICS 213111. Most natural 

gas transmission and storage facilities are classified under NAICS 486210—Pipeline 

Transportation of Natural Gas.  While other NAICS (213112—Support Activities for Oil and 

Gas Operations, 221210—Natural Gas Distribution, 486110—Pipeline Transportation of Crude 

Oil, and 541360—Geophysical Surveying and Mapping Services) are often included in the oil 

and natural gas sector, these are not discussed in detail in the Industry Profile because they are 

not directly affected by the proposed NSPS and NESHAP amendments. 

The outputs of the oil and natural gas industry are inputs for larger production processes 

of gas, energy, and petroleum products.  As of 2009, the Energy Information Administration 

(EIA) estimates that about 526,000 producing oil wells and 493,000 producing natural gas wells 

operated in the United States.  Domestic dry natural gas production was 20.5 trillion cubic feet 

(tcf) in 2009, the highest production level since 1970.  The leading five natural gas producing 

states are Texas, Alaska, Wyoming, Oklahoma, and New Mexico.  Domestic crude oil 

production in 2009 was 1,938 million barrels (bbl).  The leading five crude oil producing states 

are Texas, Alaska, California, Oklahoma, and New Mexico.   

The Industry Profile provides a brief introduction to the components of the oil and natural 

gas industry that are relevant to the proposed NSPS and NESHAP Amendments.  The purpose is 

to give the reader a general understanding of the geophysical, engineering, and economic aspects 

of the industry that are addressed in subsequent economic analysis in this RIA.  The Industry 

Profile relies heavily on background material from the U.S. EPA’s “Economic Analysis of Air 
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Pollution Regulations: Oil and Natural Gas Production” (1996) and the U.S. EPA’s “Sector 

Notebook Project: Profile of the Oil and Gas Extraction Industry” (2000). 

2.2 Products of the Crude Oil and Natural Gas Industry 

Each producing crude oil and natural gas field has its own unique properties.  The 

composition of the crude oil and natural gas and reservoir characteristics are likely to be different 

from that of any other reservoir.   

2.2.1 Crude Oil 

Crude oil can be broadly classified as paraffinic, naphthenic (or asphalt-based), or 

intermediate.  Generally, paraffinic crudes are used in the manufacture of lube oils and kerosene.  

Paraffinic crudes have a high concentration of straight chain hydrocarbons and are relatively low 

in sulfur compounds.  Naphthenic crudes are generally used in the manufacture of gasolines and 

asphalt and have a high concentration of olefin and aromatic hydrocarbons.  Naphthenic crudes 

may contain a high concentration of sulfur compounds.  Intermediate crudes are those that are 

not classified in either of the above categories.  

Another classification measure of crude oil and other hydrocarbons is by API gravity.  

API gravity is a weight per unit volume measure of a hydrocarbon liquid as determined by a 

method recommended by the American Petroleum Institute (API).  A heavy or paraffinic crude 

oil is typically one with API gravity of 20o or less, while a light or naphthenic crude oil, which 

typically flows freely at atmospheric conditions, usually has API gravity in the range of the high 

30's to the low 40's. 

Crude oils recovered in the production phase of the petroleum industry may be referred to 

as live crudes.  Live crudes contain entrained or dissolved gases which may be released during 

processing or storage.  Dead crudes are those that have gone through various separation and 

storage phases and contain little, if any, entrained or dissolved gases. 

2.2.2 Natural Gas 

Natural gas is a mixture of hydrocarbons and varying quantities of non-hydrocarbons that 

exists in a gaseous phase or in solution with crude oil or other hydrocarbon liquids in natural 
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underground reservoirs.  Natural gas may contain contaminants, such as hydrogen sulfide (H2S), 

CO2, mercaptans, and entrained solids.   

Natural gas may be classified as wet gas or dry gas.  Wet gas is unprocessed or partially 

processed natural gas produced from a reservoir that contains condensable hydrocarbons.  Dry 

gas is either natural gas whose water content has been reduced through dehydration or natural 

gas that contains little or no recoverable liquid hydrocarbons. 

Natural gas streams that contain threshold concentrations of H2S are classified as sour 

gases.  Those with threshold concentrations of CO2 are classified as acid gases.  The process by 

which these two contaminants are removed from the natural gas stream is called sweetening.  

The most common sweetening method is amine treating.  Sour gas contains a H2S concentration 

of greater than 0.25 grain per 100 standard cubic feet, along with the presence of CO2. 

Concentrations of H2S and CO2, along with organic sulfur compounds, vary widely among sour 

gases.  A majority total onshore natural gas production and nearly all of offshore natural gas 

production is classified as sweet. 

2.2.3 Condensates 

Condensates are hydrocarbons in a gaseous state under reservoir conditions, but become 

liquid in either the wellbore or the production process.  Condensates, including volatile oils, 

typically have an API gravity of 40o or more.  In addition, condensates may include hydrocarbon 

liquids recovered from gaseous streams from various oil and natural gas production or natural 

gas transmission and storage processes and operations. 

2.2.4 Other Recovered Hydrocarbons 

Various hydrocarbons may be recovered through the processing of the extracted 

hydrocarbon streams.  These hydrocarbons include mixed natural gas liquids (NGL), natural 

gasoline, propane, butane, and liquefied petroleum gas (LPG).   
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2.2.5 Produced Water 

Produced water is the water recovered from a production well.  Produced water is 

separated from the extracted hydrocarbon streams in various production processes and 

operations. 

2.3 Oil and Natural Gas Production Processes 

2.3.1 Exploration and Drilling  

Exploration involves the search for rock formations associated with oil or natural gas 

deposits and involves geophysical prospecting and/or exploratory drilling. Well development 

occurs after exploration has located an economically recoverable field and involves the 

construction of one or more wells from the beginning (called spudding) to either abandonment if 

no hydrocarbons are found or to well completion if hydrocarbons are found in sufficient 

quantities. 

After the site of a well has been located, drilling commences.  A well bore is created by 

using a rotary drill to drill into the ground.  As the well bore gets deeper sections of drill pipe are 

added.  A mix of fluids called drilling mud is released down into the drill pipe then up the walls 

of the well bore, which removes drill cuttings by taking them to the surface.  The weight of the 

mud prevents high-pressure reservoir fluids from pushing their way out (“blowing out”).  The 

well bore is cased in with telescoping steel piping during drilling to avoid its collapse and to 

prevent water infiltration into the well and to prevent crude oil and natural gas from 

contaminating the water table.  The steel pipe is cemented by filling the gap between the steel 

casing and the wellbore with cement.   

Horizontal drilling technology has been available since the 1950s.  Horizontal drilling 

facilitates the construction of horizontal wells by allowing for the well bore to run horizontally 

underground, increasing the surface area of contact between the reservoir and the well bore so 

that more oil or natural gas can move into the well.  Horizontal wells are particularly useful in 

unconventional gas extraction where the gas is not concentrated in a reservoir.  Recent advances 

have made it possible to steer the drill in different directions (directional drilling) from the 
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surface without stopping the drill to switch directions and allowing for a more controlled and 

precise drilling trajectory. 

Hydraulic fracturing (also referred to as “fracking”) has been performed since the 1940s 

(U.S. DOE, 2009).  Hydraulic fracturing involves pumping fluids into the well under very high 

pressures in order to fracture the formation containing the resource.  Proppant is a mix of sand 

and other materials that is pumped down to hold the fractures open to secure gas flow from the 

formation (U.S. EPA, 2004).   

2.3.2 Production 

Production is the process of extracting the hydrocarbons and separating the mixture of 

liquid hydrocarbons, gas, water, and solids, removing the constituents that are non-saleable, and 

selling the liquid hydrocarbons and gas.  The major activities of crude oil and natural gas 

production are bringing the fluid to the surface, separating the liquid and gas components, and 

removing impurities.   

Oil and natural gas are found in the pores of rocks and sand (Hyne, 2001).  In a 

conventional source, the oil and natural gas have been pushed out of these pores by water and 

moved until an impermeable surface had been reached.  Because the oil and natural gas can 

travel no further, the liquids and gases accumulate in a reservoir.  Where oil and gas are 

associated, a gas cap forms above the oil.  Natural gas is extracted from a well either because it is 

associated with oil in an oil well or from a pure natural gas reservoir.  Once a well has been 

drilled to reach the reservoir, the oil and gas can be extracted in different ways depending on the 

well pressure (Hyne, 2001). 

Frequently, oil and natural gas are produced from the same reservoir. As wells deplete the 

reservoirs into which they are drilled, the gas to oil ratio increases (as does the ratio of water to 

hydrocarbons).  This increase of gas over oil occurs because natural gas usually is in the top of 

the oil formation, while the well usually is drilled into the bottom portion to recover most of the 

liquid.  Production sites often handle crude oil and natural gas from more than one well (Hyne, 

2001).   
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Well pressure is required to move the resource up from the well to the surface.  During 

primary extraction, pressure from the well itself drives the resource out of the well directly.  

Well pressure depletes during this process.  Typically, about 30 to 35 percent of the resource in 

the reservoir is extracted this way (Hyne, 2001).  The amount extracted depends on the specific 

well characteristics (such as permeability and oil viscosity).  Lacking enough pressure for the 

resource to surface, gas or water is injected into the well to increase the well pressure and force 

the resource out (secondary or improved oil recovery).  Finally, in tertiary extraction or

enhanced recovery, gas, chemicals or steam are injected into the well.  This can result in 

recovering up to 60 percent of the original amount of oil in the reservoir (Hyne, 2001).

In contrast to conventional sources, unconventional oil and gas are trapped in rock or 

sand or, in the case of oil, are found in rock as a chemical substance that requires a further 

chemical transformation to become oil (U.S. DOE, 2009).  Therefore, the resource does not 

move into a reservoir as in the case with a conventional source.  Mining, induced pressure, or 

heat is required to release the resource.  The specific type of extraction method needed depends 

on the type of formation where the resource is located.  Unconventional natural gas resource 

types relevant for this proposal include: 

• Shale Natural Gas:  Shale natural gas comes from sediments of clay mixed with organic 

matter.  These sediments form low permeability shale rock formations that do not allow 

the gas to move.  To release the gas, the rock must be fragmented, making the extraction 

process more complex than it is for conventional gas extraction.  Shale gas can be 

extracted by drilling either vertically or horizontally, and breaking the rock using 

hydraulic fracturing (U.S. DOE, 2009). 

• Tight Sands Natural Gas:  Reservoirs are composed of low-porosity sandstones and 

carbonate into which natural gas has migrated from other sources.  Extraction of the 

natural gas from tight gas reservoirs is often performed using horizontal wells.  Hydraulic 

fracturing is often used in tight sands (U.S. DOE, 2009). 

• Coalbed Methane:  Natural gas is present in a coal bed due to the activity of microbes in 

the coal or from alterations of the coal through temperature changes.  Horizontal drilling 
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is used but given that coalbed methane reservoirs are frequently associated with 

underground water reservoirs, hydraulic fracturing is often restricted (Andrews, 2009). 

2.3.3 Natural Gas Processing 

Natural gas conditioning is the process of removing impurities from the gas stream so 

that it is of sufficient quality to pass through transportation systems and used by final consumers.  

Conditioning is not always required.  Natural gas from some formations emerges from the well 

sufficiently pure that it can be sent directly to the pipeline.  As the natural gas is separated from 

the liquid components, it may contain impurities that pose potential hazards or other problems.  

The most significant impurity is H2S, which may or may not be contained in natural gas. 

H2S is toxic (and potentially fatal at certain concentrations) to humans and is corrosive for pipes.  

It is therefore desirable to remove H2S as soon as possible in the conditioning process.   

Another concern is that posed by water vapor.  At high pressures, water can react with 

components in the gas to form gas hydrates, which are solids that can clog pipes, valves, and 

gauges, especially at cold temperatures (Manning and Thompson, 1991).  Nitrogen and other 

gases may also be mixed with the natural gas in the subsurface.  These other gases must be 

separated from the methane prior to sale.  High vapor pressure hydrocarbons that are liquids at 

surface temperature and pressure (benzene, toluene, ethylbenzene, and xylene, or BTEX) are 

removed and processed separately. 

Dehydration removes water from the gas stream.  Three main approaches toward 

dehydration are the use of a liquid or solid desiccant, and refrigeration.  When using a liquid 

desiccant, the gas is exposed to a glycol that absorbs the water.  The water can be evaporated 

from the glycol by a process called heat regeneration.  The glycol can then be reused.  Solid 

desiccants, often materials called molecular sieves, are crystals with high surface areas that 

attract the water molecules.  The solids can be regenerated simply by heating them above the 

boiling point of water.  Finally, particularly for gas extracted from deep, hot wells, simply 

cooling the gas to a temperature below the condensation point of water can remove enough water 

to transport the gas.  Of the three approaches mentioned above, glycol dehydration is the most 

common when processing at or near the well. 
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Sweetening is the procedure in which H2S and sometimes CO2 are removed from the gas 

stream.  The most common method is amine treatment.  In this process, the gas stream is exposed 

to an amine solution, which will react with the H2S and separate them from the natural gas.  The 

contaminant gas solution is then heated, thereby separating the gases and regenerating the amine.  

The sulfur gas may be disposed of by flaring, incinerating, or when a market exists, sending it to 

a sulfur-recovery facility to generate elemental sulfur as a salable product.  

2.3.4 Natural Gas Transmission and Distribution 

After processing, natural gas enters a network of compressor stations, high-pressure 

transmission pipelines, and often-underground storage sites.  Compressor stations are any facility 

which supplies energy to move natural gas at increased pressure in transmission pipelines or into 

underground storage.  Typically, compressor stations are located at intervals along a transmission 

pipeline to maintain desired pressure for natural gas transport.  These stations will use either 

large internal combustion engines or gas turbines as prime movers to provide the necessary 

horsepower to maintain system pressure.  Underground storage facilities are subsurface facilities 

utilized for storing natural gas which has been transferred from its original location for the 

primary purpose of load balancing, which is the process of equalizing the receipt and delivery of 

natural gas.  Processes and operations that may be located at underground storage facilities 

include compression and dehydration.   

2.4 Reserves and Markets 

Crude oil and natural gas have historically served two separate and distinct markets.  Oil 

is an international commodity, transported and consumed throughout the world.  Natural gas, on 

the other hand, has historically been consumed close to where it is produced.  However, as 

pipeline infrastructure and LNG trade expand, natural gas is increasingly a national and 

international commodity.  The following subsections provide historical and forecast data on the 

U.S. reserves, production, consumption, and foreign trade of crude oil and natural gas.



2-9 

2.4.1 Domestic Proved Reserves 

Table 2-1 shows crude oil and natural gas proved reserves, inferred reserves, and 

undiscovered and total technically recoverable resources as of 2007.  According to EIA1, these 

concepts are defined as: 

• Proved reserves: estimated quantities of energy sources that analysis of geologic and 

engineering data demonstrates with reasonable certainty are recoverable under 

existing economic and operating conditions. 

• Inferred reserves: the estimate of total volume recovery from known crude oil or 

natural gas reservoirs or aggregation of such reservoirs is expected to increase during 

the time between discovery and permanent abandonment.  

• Technically recoverable: resources that are producible using current technology 

without reference to the economic viability of production.   

The sum of proved reserves, inferred reserves, and undiscovered technically recoverable 

resources equal the total technically recoverable resources.  As seen in Table 2-1, as of 2007, 

proved domestic crude oil reserves accounted for about 12 percent of the totally technically 

recoverable crude oil resources. 

                                                
1 U.S. Department of Energy, Energy Information Administration, Glossary of Terms  

<http://www.eia.doe.gov/glossary/index.cfm?id=P>  Accessed 12/21/2010. 
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Table 2-1 Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 

2007 

Region 
Proved  

Reserves 
Inferred 
Reserves 

Undiscovered 
Technically 
Recoverable 
Resources 

Total 
Technically 
Recoverable 
Resources 

Crude Oil and Lease Condensate (billion bbl)     

   48 States Onshore 14.2 48.3 25.3 87.8 

   48 States Offshore 4.4 10.3 47.2 61.9 

   Alaska 4.2 2.1 42.0 48.3 

   Total U.S. 22.8 60.7 114.5 198.0 

    

Dry Natural Gas (tcf)     

   Conventionally Reservoired Fields 194.0 671.3 760.4 1625.7 

      48 States Onshore Non-Associated Gas 149.0 595.9 144.1 889.0 

      48 States Offshore Non-Associated Gas 12.4 50.7 233.0 296.0 

      Associated-Dissolved Gas 20.7  117.2 137.9 

      Alaska 11.9 24.8 266.1 302.8 

   Shale Gas and Coalbed Methane 43.7 385 64.2 493.0 

   Total U.S. 237.7 1056.3 824.6 2118.7 

Source: U.S. Energy Information Administration, Annual Energy Review 2010.  Inferred reserves for associated-
dissolved natural gas are included in "Undiscovered Technically Recoverable Resources."  Totals may not sum due 
to independent rounding. 

Proved natural gas reserves accounted for about 11 percent of the totally technically recoverable 

natural gas resources.  Significant proportions of these reserves exist in Alaska and offshore 

areas. 

Table 2-2 and Figure 2-1 show trends in crude oil and natural gas production and reserves 

from 1990 to 2008.  In Table 2-2, proved ultimate recovery equals the sum of cumulative 

production and proved reserves.  While crude oil and natural gas are nonrenewable resources, the 

table shows that proved ultimate recovery rises over time as new discoveries become 

economically accessible.  Reserves growth and decline is also partly a function of exploration 

activities, which are correlated with oil and natural gas prices.  For example, when oil prices are 

high there is more of an incentive to use secondary and tertiary recovery, as well as to develop 

unconventional sources.  
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Table 2-2 Crude Oil and Natural Gas Cumulative Domestic Production, Proved 

Reserves, and Proved Ultimate Recovery, 1977-2008 

  
Crude Oil and Lease Condensate 

 (million bbl) 
Dry Natural Gas  

(bcf) 

Year 
Cumulative  
Production 

Proved  
Reserves 

Proved  
Ultimate  
Recovery 

Cumulative 
Production 

Proved  
Reserves 

Proved  
Ultimate 
Recovery 

1990 158,175 27,556 185,731 744,546 169,346 913,892

1991 160,882 25,926 186,808 762,244 167,062 929,306

1992 163,507 24,971 188,478 780,084 165,015 945,099

1993 166,006 24,149 190,155 798,179 162,415 960,594

1994 168,438 23,604 192,042 817,000 163,837 980,837

1995 170,832 23,548 194,380 835,599 165,146 1,000,745 

1996 173,198 23,324 196,522 854,453 166,474 1,020,927 

1997 175,553 23,887 199,440 873,355 167,223 1,040,578 

1998 177,835 22,370 200,205 892,379 164,041 1,056,420 

1999 179,981 23,168 203,149 911,211 167,406 1,078,617 

2000 182,112 23,517 205,629 930,393 177,427 1,107,820 

2001 184,230 23,844 208,074 950,009 183,460 1,133,469 

2002 186,327 24,023 210,350 968,937 186,946 1,155,883 

2003 188,400 23,106 211,506 988,036 189,044 1,177,080 

2004 190,383 22,592 212,975 1,006,564 192,513 1,199,077 

2005 192,273 23,019 215,292 1,024,638 204,385 1,229,023 

2006 194,135 22,131 216,266 1,043,114 211,085 1,254,199 

2007 196,079 22,812 218,891 1,062,203 237,726 1,299,929 

2008 197,987 20,554 218,541 1,082,489 244,656 1,327,145 

Source: U.S. Energy Information Administration, Annual Energy Review 2010.

However, annual production as a percentage of proved reserves has declined over time for both 

crude oil and natural gas, from above 10 percent in the early 1990s to 8 to 9 percent from 2006 to 

2008 for crude oil and from above 11 percent during the 1990s to about 8 percent from 2008 to 

2008 for natural gas. 
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Figure 2-1 A) Domestic Crude Oil Proved Reserves and Cumulative Production, 1990-

2008. B) Domestic Natural Gas Proved Reserves and Cumulative Production, 1990-2008 

�

Table 2-3 presents the U.S. proved reserves of crude oil and natural gas by state or 

producing area as of 2008.  Four areas currently account for 77 percent of the U.S. total proved 

reserves of crude oil, led by Texas and followed by U.S. Federal Offshore, Alaska, and 

California.  The top five states (Texas, Wyoming, Colorado, Oklahoma, and New Mexico) 

account for about 69 percent of the U.S. total proved reserves of natural gas. 
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Table 2-3 Crude Oil and Dry Natural Gas Proved Reserves by State, 2008

State/Region 
Crude Oil 

(million bbls) 
Dry Natural Gas  

(bcf) 
Crude Oil 

 (percent of total) 
Dry Natural Gas 
 (percent of total) 

Alaska  3,507 7,699 18.3 3.1 

Alabama  38 3,290 0.2 1.3 

Arkansas  30 5,626 0.2 2.3 

California  2,705 2,406 14.1 1.0 

Colorado  288 23,302 1.5 9.5 

Florida  3 1 0.0 0.0 

Illinois  54 0 0.3 0.0 

Indiana  15 0 0.1 0.0 

Kansas  243 3,557 1.3 1.5 

Kentucky  17 2,714 0.1 1.1 

Louisiana  388 11,573 2.0 4.7 

Michigan  48 3,174 0.3 1.3 

Mississippi  249 1,030 1.3 0.4 

Montana  321 1,000 1.7 0.4 

Nebraska  8 0 0.0 0.0 

New Mexico  654 16,285 3.4 6.7 

New York 0 389 0.0 0.2 

North Dakota  573 541 3.0 0.2 

Ohio  38 985 0.2 0.4 

Oklahoma  581 20,845 3.0 8.5 

Pennsylvania  14 3,577 0.1 1.5 

Texas  4,555 77,546 23.8 31.7 

Utah  286 6,643 1.5 2.7 

Virginia 0 2,378 0.0 1.0 

West Virginia  23 5,136 0.1 2.1 

Wyoming  556 31,143 2.9 12.7 

Miscellaneous States  24 270 0.1 0.1 

U.S. Federal Offshore  3,903 13,546 20.4 5.5 

Total Proved Reserves 19,121 244,656 100.0 100.0 

Source: U.S. Energy Information Administration, Annual Energy Review 2010.  Totals may not sum due to 
independent rounding. 

2.4.2 Domestic Production 

Domestic oil production is currently in a state of decline that began in 1970. Table 2-4 

shows U.S. production in 2009 at 1938 million bbl per year, the highest level since 2004.  

However, annual domestic production of crude oil has dropped by almost 750 million bbl since 

1990.  
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Table 2-4 Crude Oil Domestic Production, Wells, Well Productivity, and U.S. Average 

First Purchase Price 

Year 
Total Production 

(million bbl) 
Producing Wells 

(1000s) 

Avg. Well 
Productivity 
(bbl/well) 

U.S. Average First 
Purchase Price/Barrel 

(2005 dollars) 

1990 2,685 602 4,460 27.74 

1991 2,707 614 4,409 22.12 

1992 2,625 594 4,419 20.89 

1993 2,499 584 4,279 18.22 

1994 2,431 582 4,178 16.51 

1995 2,394 574 4,171 17.93 

1996 2,366 574 4,122 22.22 

1997 2,355 573 4,110 20.38 

1998 2,282 562 4,060 12.71 

1999 2,147 546 3,932 17.93 

2000 2,131 534 3,990 30.14 

2001 2,118 530 3,995 24.09 

2002 2,097 529 3,964 24.44 

2003 2,073 513 4,042 29.29 

2004 1,983 510 3,889 38.00 

2005 1,890 498 3,795 50.28 

2006 1,862 497 3,747 57.81 

2007 1,848 500 3,697 62.63 

2008 1,812 526 3,445 86.69 

2009 1,938 526 3,685 51.37* 

Source: U.S. Energy Information Administration, Annual Energy Review 2010.

First purchase price represents the average price at the lease or wellhead at which domestic crude is purchased. * 
2009 Oil price is preliminary 

Average well productivity has also decreased since 1990 (Table 2-4 and Figure 2-2).  These 

production and productivity decreases are in spite of the fact that average first purchase prices 

have shown a generally increasing trend.  The exception to this general trend occurred in 2008 

and 2009 when the real price increased up to 86 dollars per barrel and production in 2009 

increased to almost 2 million bbl of oil. 

Annual production of natural gas from natural gas wells has increased nearly 3000 bcf 

from the 1990 to 2009 (Table 2-5).  Natural gas extracted from crude oil wells (associated 

natural gas) has remained more or less constant for the last twenty years.  Coalbed methane has 

become a significant component of overall gas withdrawals in recent years.  
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Table 2-5 Natural Gas Production and Well Productivity, 1990-2009

  
Natural Gas Gross Withdrawals  

(bcf) 
Natural Gas Well  

Productivity 

Year 
Natural Gas  

Wells 
Crude Oil  

Wells 

Coalbed 
Methane  

Wells Total 
Dry Gas 

Production* 

Producing 
Wells 
(no.) 

Avg. 
Productivity 

per Well 
(MMcf) 

1990 16,054 5,469 NA 21,523 17,810 269,100 59.657 

1991 16,018 5,732 NA 21,750 17,698 276,337 57.964 

1992 16,165 5,967 NA 22,132 17,840 275,414 58.693 

1993 16,691 6,035 NA 22,726 18,095 282,152 59.157 

1994 17,351 6,230 NA 23,581 18,821 291,773 59.468 

1995 17,282 6,462 NA 23,744 18,599 298,541 57.888 

1996 17,737 6,376 NA 24,114 18,854 301,811 58.770 

1997 17,844 6,369 NA 24,213 18,902 310,971 57.382 

1998 17,729 6,380 NA 24,108 19,024 316,929 55.938 

1999 17,590 6,233 NA 23,823 18,832 302,421 58.165 

2000 17,726 6,448 NA 24,174 19,182 341,678 51.879 

2001 18,129 6,371 NA 24,501 19,616 373,304 48.565 

2002 17,795 6,146 NA 23,941 18,928 387,772 45.890 

2003 17,882 6,237 NA 24,119 19,099 393,327 45.463 

2004 17,885 6,084 NA 23,970 18,591 406,147 44.036 

2005 17,472 5,985 NA 23,457 18,051 425,887 41.025 

2006 17,996 5,539 NA 23,535 18,504 440,516 40.851 

2007 17,065 5,818 1,780 24,664 19,266 452,945 37.676 

2008 18,011 5,845 1,898 25,754 20,286 478,562 37.636 

2009 18,881 5,186 2,110 26,177 20,955 495,697 38.089 

Source: U.S. Energy Information Administration, Annual Energy Review 2010.

*Dry gas production is gas production after accounting for gas used repressurizing wells, the removal of 

nonhydrocarbon gases, vented and flared gas, and gas used as fuel during the production process. 

The number of wells producing natural gas wells has nearly doubled between 1990 and 2009 

(Figure 2-2).  While the number of producing wells has increased overall, average well 

productivity has declined, despite improvements in exploration and gas well stimulation 

technologies.   
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Figure 2-2 A) Total Producing Crude Oil Wells and Average Well Productivity, 1990-

2009.  B) Total Producing Natural Gas Wells and Average Well Productivity, 1990-2009. 

Domestic exploration and development for oil has continued during the last two decades.  

From 2002 to 2009, crude oil well drilling showed significant increases, although the 1992-2001 

period showed relatively low levels of crude drilling activity compared to periods before and 

after (Table 2-6).  The drop in 2009 showed a departure from this trend, likely due to the 

recession experienced in the U.S.

Meanwhile, natural gas drilling has increased significantly during the 1990-2009 period.  

Like crude oil drilling, 2009 saw a relatively low level of natural gas drillings.  The success rate 

of wells (producing wells versus dry wells) has also increased gradually over time from 75 

percent in 1990, to 86 percent in 2000, to 90 percent in 2009 (Table 2-6).  The increasing success 

rate reflects improvements in exploration technology, as well as technological improvements in 
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well drilling and completion.  Similarly, well average depth has also increased by during this 

period (Table 2-6).  

Table 2-6 Crude Oil and Natural Gas Exploratory and Development Wells and 

Average Depth, 1990-2009 

  Wells Drilled     

Year Crude Oil Natural Gas Dry Holes Total 

Successful 
Wells 

(percent) 
Average 

Depth (ft) 

1990 12,800 11,227 8,237 32,264 75 4,841 

1991 12,542 9,768 7,476 29,786 75 4,872 

1992 9,379 8,149 5,857 23,385 75 5,138 

1993 8,828 9,829 6,093 24,750 75 5,407 

1994 7,334 9,358 5,092 21,784 77 5,736 

1995 8,230 8,081 4,813 21,124 77 5,560 

1996 8,819 9,015 4,890 22,724 79 5,573 

1997 11,189 11,494 5,874 28,557 79 5,664 

1998 7,659 11,613 4,763 24,035 80 5,722 

1999 4,759 11,979 3,554 20,292 83 5,070 

2000 8,089 16,986 4,134 29,209 86 4,942 

2001 8,880 22,033 4,564 35,477 87 5,077 

2002 6,762 17,297 3,728 27,787 87 5,223 

2003 8,104 20,685 3,970 32,759 88 5,418 

2004 8,764 24,112 4,053 36,929 89 5,534 

2005E 10,696 28,500 4,656 43,852 89 5,486 

2006E 13,289 32,878 5,183 51,350 90 5,537 

2007E 13,564 33,132 5,121 51,817 90 5,959 

2008E 17,370 34,118 5,726 57,214 90 6,202 

2009E 13,175 19,153 3,537 35,865 90 6,108 

Source: U.S. Energy Information Administration, Annual Energy Review 2010. Values for 2005-2009 are 
estimates. 

Produced water is an important byproduct of the oil and natural gas industry, as 

management, including reuse and recycling, of produced water can be costly and challenging.  

Texas, California, Wyoming, Oklahoma, and Kansas were the top five states in terms of 

produced water volumes in 2007 (Table 2-7).  These estimates do not include estimates of 

flowback water from hydraulic fracturing activities (ANL 2009). 
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Table 2-7 U.S. Onshore and Offshore Oil, Gas, and Produced Water Generation, 2007 

State  
Crude Oil 
(1000 bbl)  

Total Gas  
(bcf)  

Produced Water 
(1000 bbl)  

Total Oil and 
Natural Gas 

(1000 bbls oil 
equivalent)  

Barrels 
Produced Water 
per Barrel Oil 

Equivalent 

Alabama  5,028 285 119,004 55,758 2.13 

Alaska  263,595 3,498 801,336 886,239 0.90 

Arizona  43 1 68 221 0.31 

Arkansas  6,103 272 166,011 54,519 3.05 

California  244,000 312 2,552,194 299,536 8.52 

Colorado  2,375 1,288 383,846 231,639 1.66 

Florida  2,078 2 50,296 2,434 20.66 

Illinois  3,202 no data 136,872 3,202 42.75 

Indiana  1,727 4 40,200 2,439 16.48 

Kansas  36,612 371 1,244,329 102,650 12.12 

Kentucky  3,572 95 24,607 20,482 1.20 

Louisiana  52,495 1,382 1,149,643 298,491 3.85 

Michigan  5,180 168 114,580 35,084 3.27 

Mississippi  20,027 97 330,730 37,293 8.87 

Missouri  80 no data 1,613 80 20.16 

Montana  34,749 95 182,266 51,659 3.53 

Nebraska  2,335 1 49,312 2,513 19.62 

Nevada  408 0 6,785 408 16.63 

New Mexico  59,138 1,526 665,685 330,766 2.01 

New York  378 55 649 10,168 0.06 

North Dakota  44,543 71 134,991 57,181 2.36 

Ohio  5,422 86 6,940 20,730 0.33 

Oklahoma  60,760 1,643 2,195,180 353,214 6.21 

Pennsylvania  1,537 172 3,912 32,153 0.12 

South Dakota  1,665 12 4,186 3,801 1.10 

Tennessee  350 1 2,263 528 4.29 

Texas  342,087 6,878 7,376,913 1,566,371 4.71 

Utah  19,520 385 148,579 88,050 1.69 

Virginia  19 112 1,562 19,955 0.08 

West Virginia  679 225 8,337 40,729 0.20 

Wyoming  54,052 2,253 2,355,671 455,086 5.18 

State Total  1,273,759 21,290 20,258,560 5,063,379 4.00 

Federal Offshore  467,180 2,787 587,353 963,266 0.61 

Tribal Lands  9,513 297 149,261 62,379 2.39 

Federal Total  476,693 3,084 736,614 1,025,645 0.72

U.S. Total  1,750,452 24,374 20,995,174 6,089,024 3.45 

Source: Argonne National Laboratory and Department of Energy (2009).  Natural gas production converted to 
barrels oil equivalent to facilitate comparison using the conversion of 0.178 barrels of crude oil equals 1000 cubic 
feet natural gas.  Totals may not sum due to independent rounding. 
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As can be seen in Table 2-7, the amount of water produced is not necessarily correlated 

with the ratio of water produced to the volume of oil or natural gas produced.  Texas, Alaska and 

Wyoming were the three largest producers in barrels of oil equivalent (boe) terms, but had 

relatively low rates of water production compared to more Midwestern states, such Illinois, 

Missouri, Indiana, and Kansas.   

Figure 2-3 shows the distribution of produced water management practices in 2007.   

Figure 2-3 U.S. Produced Water Volume by Management Practice, 2007 

More than half of the water produced (51 percent) was re-injected to enhance resource recovery 

through maintaining reservoir pressure or hydraulically pushing oil from the reservoir.  Another 

third (34 percent) was injected, typically into wells whose primary purpose is to sequester 

produced water.  A small percentage (three percent) is discharged into surface water when it 

meets water quality criteria.  The destination of the remaining produced water (11 percent, the 

difference between the total managed and total generated) is uncertain (ANL, 2009).

The movement of crude oil and natural gas primarily takes place via pipelines.  Total 

crude oil pipeline mileage has decreased during the 1990-2008 period (Table 2-8), appearing to 

follow the downward supply trend shown in Table 2-4.  While exhibiting some variation, 

pipeline mileage transporting refined products remained relatively constant. 

51%
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Source: Argonne National Laboratory 
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Table 2-8 U.S. Oil and Natural Gas Pipeline Mileage, 1990-2008 

  Oil Pipelines   Natural Gas Pipelines 

Year 
Crude 
Lines 

Product 
Lines Total   

Distribution 
Mains 

Transmission 
Pipelines 

Gathering 
Lines Total 

1990 118,805 89,947 208,752  945,964 291,990 32,420 1,270,374 

1991 115,860 87,968 203,828  890,876 293,862 32,713 1,217,451 

1992 110,651 85,894 196,545  891,984 291,468 32,629 1,216,081 

1993 107,246 86,734 193,980  951,750 293,263 32,056 1,277,069 

1994 103,277 87,073 190,350  1,002,669 301,545 31,316 1,335,530 

1995 97,029 84,883 181,912  1,003,798 296,947 30,931 1,331,676 

1996 92,610 84,925 177,535  992,860 292,186 29,617 1,314,663 

1997 91,523 88,350 179,873  1,002,942 294,370 34,463 1,331,775 

1998 87,663 90,985 178,648  1,040,765 302,714 29,165 1,372,644 

1999 86,369 91,094 177,463  1,035,946 296,114 32,276 1,364,336 

2000 85,480 91,516 176,996  1,050,802 298,957 27,561 1,377,320 

2001 52,386 85,214 154,877  1,101,485 290,456 21,614 1,413,555 

2002 52,854 80,551 149,619  1,136,479 303,541 22,559 1,462,579 

2003 50,149 75,565 139,901  1,107,559 301,827 22,758 1,432,144 

2004 50,749 76,258 142,200  1,156,863 303,216 24,734 1,484,813 

2005 46,234 71,310 131,348  1,160,311 300,663 23,399 1,484,373 

2006 47,617 81,103 140,861  1,182,884 300,458 20,420 1,503,762 

2007 46,658 85,666 147,235  1,202,135 301,171 19,702 1,523,008 

2008 50,214 84,914 146,822   1,204,162 303,331 20,318 1,527,811 

Source: U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration, Office of 
Pipeline Safety, Natural Gas Transmission, Gas Distribution, and Hazardous Liquid Pipeline Annual Mileage, 
available at http://ops.dot.gov/stats.htm as of Apr. 28, 2010.  Totals may not sum due to independent rounding. 

Table 2-8 splits natural gas pipelines into three types: distribution mains, transmission 

pipelines, and gathering lines.  Gathering lines are low-volume pipelines that gather natural gas 

from production sites to deliver directly to gas processing plants or compression stations that 

connect numerous gathering lines to transport gas primarily to processing plants.  Transmission 

pipelines move large volumes of gas to or from processing plants to distribution points.  From 

these distribution points, the gas enters a distribution system that delivers the gas to final 

consumers.  Table 2-8 shows gathering lines decreasing from 1990 from above 30,000 miles 

from 1990 to 1995 to around 20,000 miles in 2007 and 2008.  Transmission pipelines added 
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about 10,000 miles during this period, from about 292,000 in 1990 to about 303,000 miles in 

2008.  The most significant growth among all types of pipeline was in distribution, which 

increased about 260,000 miles during the 1990 to 2008 period, driving an increase in total 

natural gas pipeline mileage (Figure 2-1).  The growth in distribution is likely driven by 

expanding production as well as expanding gas markets in growing U.S. towns and cities. 

2.4.3 Domestic Consumption 

Historical crude oil sector-level consumption trends for 1990 through 2009 are shown in 

Table 2-9 and Figure 2-4.  Total consumption rose gradually until 2008 when consumption 

dropped as a result of the economic recession.  The share of residential, commercial, industrial, 

and electric power on a percentage basis declined during this period, while the share of total 

consumption by the transportation sector rose from 64 percent in 1990 to 71 percent in 2009. 

Table 2-9 Crude Oil Consumption by Sector, 1990-2009 

    Percent of Total 

Year 
Total 

(million bbl) Residential Commercial Industrial 
Transportation  

Sector 
Electric 
Power 

1990 6,201 4.4 2.9 25.3 64.1 3.3 

1991 6,101 4.4 2.8 25.2 64.4 3.1 

1992 6,234 4.4 2.6 26.5 63.9 2.5 

1993 6,291 4.5 2.4 25.7 64.5 2.9 

1994 6,467 4.3 2.3 26.3 64.4 2.6 

1995 6,469 4.2 2.2 25.9 65.8 1.9 

1996 6,701 4.4 2.2 26.3 65.1 2.0 

1997 6,796 4.2 2.0 26.6 65.0 2.2 

1998 6,905 3.8 1.9 25.6 65.7 3.0 

1999 7,125 4.2 1.9 25.8 65.4 2.7 

2000 7,211 4.4 2.1 24.9 66.0 2.6 

2001 7,172 4.3 2.1 24.9 65.8 2.9 

2002 7,213 4.1 1.9 25.0 66.8 2.2 

2003 7,312 4.2 2.1 24.5 66.5 2.7 

2004 7,588 4.0 2.0 25.2 66.2 2.6 

2005 7,593 3.9 1.9 24.5 67.1 2.6 

2006 7,551 3.3 1.7 25.1 68.5 1.4 

2007 7,548 3.4 1.6 24.4 69.1 1.4 

2008 7,136 3.7 1.8 23.2 70.3 1.1 

2009* 6,820 3.8 1.8 22.5 71.1 0.9 

Source: U.S. Energy Information Administration, Annual Energy Review 2010.  2009 consumption is preliminary. 
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Figure 2-4 Crude Oil Consumption by Sector (Percent of Total Consumption), 1990-

2009 

Natural gas consumption has increased over the last twenty years.  From 1990 to 2009, 

total U.S. consumption increased by an average of about 1 percent per year (Table 2-10 and 

Figure 2-5).  Over the same period, industrial consumption of natural gas declined, whereas 

electric power generation increased its consumption quite dramatically, an important trend in the 

industry as many utilities increasingly use natural gas for peak generation or switch from coal-

based to natural gas-based electricity generation.  The residential, commercial, and transportation 

sectors maintained their consumption levels at more or less constant levels during this time 

period. 
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Table 2-10 Natural Gas Consumption by Sector, 1990-2009

    Percent of Total 

Year 
Total  
(bcf) Residential Commercial Industrial 

Transportation 
Sector 

Electric  
Power 

1990 19,174 22.9 13.7 43.1 3.4 16.9 

1991 19,562 23.3 13.9 42.7 3.1 17.0 

1992 20,228 23.2 13.9 43.0 2.9 17.0 

1993 20,790 23.8 13.8 42.7 3.0 16.7 

1994 21,247 22.8 13.6 42.0 3.2 18.4 

1995 22,207 21.8 13.6 42.3 3.2 19.1 

1996 22,609 23.2 14.0 42.8 3.2 16.8 

1997 22,737 21.9 14.1 42.7 3.3 17.9 

1998 22,246 20.3 13.5 42.7 2.9 20.6 

1999 22,405 21.1 13.6 40.9 2.9 21.5 

2000 23,333 21.4 13.6 39.8 2.8 22.3 

2001 22,239 21.5 13.6 38.1 2.9 24.0 

2002 23,007 21.2 13.7 37.5 3.0 24.7 

2003 22,277 22.8 14.3 37.1 2.7 23.1 

2004 22,389 21.7 14.0 37.3 2.6 24.4 

2005 22,011 21.9 13.6 35.0 2.8 26.7 

2006 21,685 20.1 13.1 35.3 2.8 28.7 

2007 23,097 20.4 13.0 34.1 2.8 29.6 

2008 23,227 21.0 13.5 33.9 2.9 28.7 

2009* 22,834 20.8 13.6 32.4 2.9 30.2 

Source: U.S. Energy Information Administration, Annual Energy Review 2010.  2009 consumption is preliminary. 
Totals may not sum due to independent rounding. 
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Figure 2-5  Natural Gas Consumption by Sector (Percent of Total Consumption), 1990-

2009 

�

2.4.4 International Trade 

Imports of crude oil and refined petroleum products have increased over the last twenty 

years, showing increased substitution of imports for domestic production, as well as imports 

satisfying growing consumer demand in the U.S (Table 2-11).  Crude oil imports have increased 

by about 2 percent per year on average, whereas petroleum products have increased by 1 percent 

on average per year.   
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Table 2-11 Total Crude Oil and Petroleum Products Imports (Million Bbl), 1990-2009

Year Crude Oil Petroleum Products Total Petroleum 

1990 2,151 775 2,926 

1991 2,111 673 2,784 

1992 2,226 661 2,887 

1993 2,477 669 3,146 

1994 2,578 706 3,284 

1995 2,639 586 3,225 

1996 2,748 721 3,469 

1997 3,002 707 3,709 

1998 3,178 731 3,908 

1999 3,187 774 3,961 

2000 3,320 874 4,194 

2001 3,405 928 4,333 

2002 3,336 872 4,209 

2003 3,528 949 4,477 

2004 3,692 1,119 4,811 

2005 3,696 1,310 5,006 

2006 3,693 1,310 5,003 

2007 3,661 1,255 4,916 

2008 3,581 1,146 4,727 

2009 3,307 973 4,280 

Source: U.S. Energy Information Administration, Annual Energy Review 2010.  * 2009 Imports are preliminary. 

Natural gas imports also increased steadily from 1990 to 2007 in volume and percentage 

terms (Table 2-12). The years 2007 and 2008 saw imported natural gas constituting a lower 

percentage of domestic natural gas consumption.  In 2009, the U.S exported 700 bcf natural gas 

to Canada, 338 bcf to Mexico via pipeline, and 33 bcf to Japan in LNG-form.  In 2009, the U.S. 

primarily imported natural gas from Canada (3268 bcf, 87 percent) via pipeline, although a 

growing percentage of natural gas imports are in LNG-form shipped from countries such as 

Trinidad and Tobago and Egypt.  Until recent years, industry analysts forecast that LNG imports 

would continue to grow as a percentage of U.S consumption.  However, it is possible that 

increasingly accessible domestic unconventional gas resources, such as shale gas and coalbed 

methane, might reduce the need for the U.S. to import natural gas, either via pipeline or shipped 

LNG. 
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Table 2-12 Natural Gas Imports and Exports, 1990-2009

Year 
Total Imports 

(bcf) 
Total Exports 

(bcf) 
Net Imports 

(bcf) 
Percent of 

 U.S. Consumption 

1990 1,532 86 1,447 7.5 

1991 1,773 129 1,644 8.4 

1992 2,138 216 1,921 9.5 

1993 2,350 140 2,210 10.6 

1994 2,624 162 2,462 11.6 

1995 2,841 154 2,687 12.1 

1996 2,937 153 2,784 12.3 

1997 2,994 157 2,837 12.5 

1998 3,152 159 2,993 13.5 

1999 3,586 163 3,422 15.3 

2000 3,782 244 3,538 15.2 

2001 3,977 373 3,604 16.2 

2002 4,015 516 3,499 15.2 

2003 3,944 680 3,264 14.7 

2004 4,259 854 3,404 15.2 

2005 4,341 729 3,612 16.4 

2006 4,186 724 3,462 16.0 

2007 4,608 822 3,785 16.4 

2008 3,984 1,006 2,979 12.8 

2009* 3,748 1,071 2,677 11.7 

Source: U.S. Energy Information Administration, Annual Energy Review 2010.   2009 Imports are preliminary.

2.4.5 Forecasts 

In this section, we provide forecasts of well drilling activity and crude oil and natural gas 

domestic production, imports, and prices.  The forecasts are from the 2011 Annual Energy 

Outlook produced by EIA, the most current forecast information available from EIA.  As will be 

discussed in detail in Section 3, to analyze the impacts of the proposed NSPS on the national 

energy economy, we use the National Energy Modeling System (NEMS) that was used to 

produce the 2011 Annual Energy Outlook.   

Table 2-13 and Figure 2-6 present forecasts of successful wells drilled in the U.S. from 

2010 to 2035.  Crude oil well forecasts for the lower 48 states show a rise from 2010 to a peak in 

2019, which is followed by a gradual decline until the terminal year in the forecast, totaling a 28 

percent decline for the forecast period.  The forecast of successful offshore crude oil wells shows 

a variable but generally increasing trend. 
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Table 2-13  Forecast of Total Successful Wells Drilled, Lower 48 States, 2010-2035

  Lower 48 U.S. States Offshore   Totals 

Year 
Crude 

Oil 
Conventional 
Natural Gas 

Tight 
Sands 

Devonian 
Shale 

Coalbed 
Methane 

Crude 
Oil 

Natural 
gas 

Crude 
Oil 

Natural 
Gas 

2010 12,082 7,302 2,393 4,196 2,426 74 56 12,155 16,373 

2011 10,271 7,267 2,441 5,007 1,593 81 73 10,352 16,380 

2012 10,456 7,228 2,440 5,852 1,438 80 71 10,536 17,028 

2013 10,724 7,407 2,650 6,758 1,564 79 68 10,802 18,447 

2014 10,844 7,378 2,659 6,831 1,509 85 87 10,929 18,463 

2015 10,941 7,607 2,772 7,022 1,609 84 87 11,025 19,096 

2016 11,015 7,789 2,817 7,104 1,633 94 89 11,108 19,431 

2017 11,160 7,767 2,829 7,089 1,631 104 100 11,264 19,416 

2018 11,210 7,862 2,870 7,128 1,658 112 101 11,323 19,619 

2019 11,268 8,022 2,943 7,210 1,722 104 103 11,373 20,000 

2020 10,845 8,136 3,140 7,415 2,228 89 81 10,934 21,000 

2021 10,849 8,545 3,286 7,621 2,324 91 84 10,940 21,860 

2022 10,717 8,871 3,384 7,950 2,361 90 77 10,807 22,642 

2023 10,680 9,282 3,558 8,117 2,499 92 96 10,772 23,551 

2024 10,371 9,838 3,774 8,379 2,626 87 77 10,458 24,694 

2025 10,364 10,200 3,952 8,703 2,623 93 84 10,457 25,562 

2026 10,313 10,509 4,057 9,020 2,705 104 103 10,417 26,394 

2027 10,103 10,821 4,440 9,430 2,862 99 80 10,202 27,633 

2028 9,944 10,995 4,424 9,957 3,185 128 111 10,072 28,672 

2029 9,766 10,992 4,429 10,138 3,185 121 127 9,887 28,870 

2030 9,570 11,161 4,512 10,539 3,240 127 103 9,697 29,556 

2031 9,590 11,427 4,672 10,743 3,314 124 109 9,714 30,265 

2032 9,456 11,750 4,930 11,015 3,449 143 95 9,599 31,239 

2033 9,445 12,075 5,196 11,339 3,656 116 107 9,562 32,372 

2034 9,278 12,457 5,347 11,642 3,669 128 92 9,406 33,206 

2035 8,743 13,003 5,705 12,062 3,905 109 108   8,852 34,782 

Source: U.S. Energy Information Administration, Annual Energy Outlook 2011.  

Meanwhile, Table 2-13 and Figure 2-6 show increases for all types of natural gas drilling 

in the lower 48 states.  Drilling in shale reservoirs is expected to rise most dramatically, about 

190 percent during the forecast period, while drilling in coalbed methane and tight sands 

reservoirs increase significantly, 61 percent and 138 percent, respectively.  Despite the growth in 

drilling in unconventional reservoirs, EIA forecasts successful conventional natural gas wells to 

increase about 78 percent during this period.  Offshore natural gas wells are also expected to 

increase during the next 25 years, but not to the degree of onshore drilling. 
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Figure 2-6 Forecast of Total Successful Wells Drilled, Lower 48 States, 2010-2035

Table 2-14 presents forecasts of domestic crude oil production, reserves, imports and 

prices.  Domestic crude oil production increases slightly during the forecast period, with much of 

the growth coming from onshore production in the lower 48 states.  Alaskan oil production is 

forecast to decline from 2010 to a low of 99 million barrels in 2030, but rising above that level 

for the final five years of the forecast.  Net imports of crude oil are forecast to decline slightly 

during the forecast period.  Figure 2-7 depicts these trends graphically.  All told, EIA forecasts 

total crude oil to decrease about 3 percent from 2010 to 2035. 
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Table 2-14 Forecast of Crude Oil Supply, Reserves, and Wellhead Prices, 2010-2035 

  Domestic Production (million bbls)           

 Year 
Total 

Domestic 
Lower 48 
Onshore 

Lower 48 
Offshore Alaska 

Lower 48 
End of 
Year 

Reserves   
Net 

Imports 

Total 
Crude 
Supply 
(million 

bbls)   

Lower 48 
Average 

Wellhead Price 
(2009 dollars 

per bbl) 

2010 2,011 1,136 653 223 17,634  3,346 5,361  78.6 

2011 1,993 1,212 566 215 17,955  3,331 5,352  84.0 

2012 1,962 1,233 529 200 18,026  3,276 5,239  86.2 

2013 2,037 1,251 592 194 18,694  3,259 5,296  88.6 

2014 2,102 1,267 648 188 19,327  3,199 5,301  92.0 

2015 2,122 1,283 660 179 19,690  3,177 5,299  95.0 

2016 2,175 1,299 705 171 20,243  3,127 5,302  98.1 

2017 2,218 1,320 735 163 20,720  3,075 5,293  101.0

2018 2,228 1,323 750 154 21,129  3,050 5,277  103.7

2019 2,235 1,343 746 147 21,449  3,029 5,264  105.9

2020 2,219 1,358 709 153 21,573  3,031 5,250  107.4

2021 2,216 1,373 680 163 21,730  3,049 5,265  108.8

2022 2,223 1,395 659 169 21,895  3,006 5,229  110.3

2023 2,201 1,418 622 161 21,921  2,994 5,196  112.0

2024 2,170 1,427 588 155 21,871  2,996 5,166  113.6

2025 2,146 1,431 566 149 21,883  3,010 5,155  115.2

2026 2,123 1,425 561 136 21,936  3,024 5,147  116.6

2027 2,114 1,415 573 125 22,032  3,018 5,131  117.8

2028 2,128 1,403 610 116 22,256  2,999 5,127  118.8

2029 2,120 1,399 614 107 22,301  2,988 5,108  119.3

2030 2,122 1,398 625 99 22,308  2,994 5,116  119.5 

2031 2,145 1,391 641 114 22,392  2,977 5,122  119.6

2032 2,191 1,380 675 136 22,610  2,939 5,130  118.8

2033 2,208 1,365 691 152 22,637  2,935 5,143  119.1

2034 2,212 1,351 714 147 22,776  2,955 5,167  119.2

2035 2,170 1,330 698 142 22,651   3,007 5,177   119.5 

Source: U.S. Energy Information Administration, Annual Energy Outlook 2011.  Totals may not sum due to 
independent rounding. 

Table 2-14 also shows forecasts of proved reserves in the lower 48 states.  The reserves forecast 

shows steady growth from 2010 to 2035, an increase of 28 percent overall.  This increment is 

larger than the forecast increase in production from the lower 48 states during this period, 8 

percent, showing reserves are forecast to grow more rapidly than production.  Table 2-14 also 
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shows average wellhead prices increasing a total of 52 percent from 2010 to 2035, from $78.6 

per barrel to $119.5 per barrel in 2008 dollar terms. 

Figure 2-7 Forecast of Domestic Crude Oil Production and Net Imports, 2010-2035 

Table 2-15 shows domestic natural gas production is forecast to increase about 24 percent 

from 2010 to 2035.  Contrasted against the much higher growth in natural gas wells drilled as 

shown in Table 2-13, per well productivity is expected to continue its declining trend.  

Meanwhile, imports of natural gas via pipeline are expected to decline during the forecast period 

almost completely, from 2.33 tcf in 2010 to 0.04 in 2035 tcf.  Imported LNG also decreases from 

0.41 tcf in 2010 to 0.14 tcf in 2035.  Total supply, then, increases about 10 percent, from 24.08 

tcf in 2010 to 26.57 tcf in 2035.  
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Table 2-15 Forecast of Natural Gas Supply, Lower 48 Reserves, and Wellhead Price 

   Production  Net Imports           

 Year 
Dry Gas 

Production 
Supplemental 
Natural Gas 

Net 
Imports 

(Pipeline) 

Net 
Imports 
(LNG) 

Total 
Supply   

Lower 48 
End of 

Year Dry 
Reserves   

Average Lower 48 
Wellhead Price 

(2009 dollars per 
Mcf) 

2010 21.28 0.07 2.33 0.41 24.08  263.9  4.08 

2011 21.05 0.06 2.31 0.44 23.87  266.3  4.09 

2012 21.27 0.06 2.17 0.47 23.98  269.1  4.09 

2013 21.74 0.06 2.22 0.50 24.52  272.5  4.15 

2014 22.03 0.06 2.26 0.45 24.80  276.6  4.16 

2015 22.43 0.06 2.32 0.36 25.18  279.4  4.24 

2016 22.47 0.06 2.26 0.36 25.16  282.4  4.30 

2017 22.66 0.06 2.14 0.41 25.28  286.0  4.33 

2018 22.92 0.06 2.00 0.43 25.40  289.2  4.37 

2019 23.20 0.06 1.75 0.47 25.48  292.1  4.43 

2020 23.43 0.06 1.40 0.50 25.40  293.6  4.59 

2021 23.53 0.06 1.08 0.52 25.19  295.1  4.76 

2022 23.70 0.06 0.89 0.49 25.14  296.7  4.90 

2023 23.85 0.06 0.79 0.45 25.15  297.9  5.08 

2024 23.86 0.06 0.77 0.39 25.08  298.4  5.27 

2025 23.99 0.06 0.74 0.34 25.12  299.5  5.43 

2026 24.06 0.06 0.71 0.27 25.10  300.8  5.54 

2027 24.30 0.06 0.69 0.22 25.27  302.1  5.67 

2028 24.59 0.06 0.67 0.14 25.47  304.4  5.74 

2029 24.85 0.06 0.63 0.14 25.69  306.6  5.78 

2030 25.11 0.06 0.63 0.14 25.94  308.5  5.82 

2031 25.35 0.06 0.57 0.14 26.13  310.1  5.90 

2032 25.57 0.06 0.50 0.14 26.27  311.4  6.01 

2033 25.77 0.06 0.38 0.14 26.36  312.6  6.12 

2034 26.01 0.06 0.23 0.14 26.44  313.4  6.24 

2035 26.33 0.06 0.04 0.14 26.57   314.0   6.42 

Source: U.S. Energy Information Administration, Annual Energy Outlook 2011.  Totals may not sum due to 
independent rounding. 

2.5 Industry Costs 

2.5.1 Finding Costs 

Real costs of drilling oil and natural gas wells have increased significantly over the past 

two decades, particularly in recent years.  Cost per well has increased by an annual average of 

about 15 percent, and cost per foot has increased on average of about 13 percent per year (Figure 

2-8).   
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Figure 2-8 Costs of Crude Oil and Natural Gas Wells Drilled, 1981-2008 

The average finding costs compiled and published by EIA add an additional level of detail to 

drilling costs, in that finding costs incorporate the costs more broadly associated with adding 

proved reserves of crude oil and natural gas.  These costs include exploration and development 

costs, as well as costs associated with the purchase or leasing of real property.  EIA publishes 

finding costs as running three-year averages, in order to better compare these costs, which occur 

over several years, with annual average lifting costs.  Figure 2-9 shows average domestic 

onshore and offshore and foreign finding costs for the sample of U.S. firms in EIA’s Financial 

Reporting System (FRS) database from 1981 to 2008.  The costs are reported in 2008 dollars on 

a barrel of oil equivalent basis for crude oil and natural gas combined.  The average domestic 

finding costs dropped from 1981 until the mid-1990s.  Interestingly, in the mid-1990s, domestic 

onshore and offshore and foreign finding costs converged for a few years. After this period, 

offshore finding costs rose faster than domestic onshore and foreign costs.   
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Figure 2-9 Finding Costs for FRS Companies, 1981-2008 

After 2000, average finding costs rose sharply, with the finding costs for domestic onshore and 

offshore and foreign proved reserves diverging onto different trajectories.   Note the drilling 

costs in Figure 2-8 and finding costs in Figure 2-9 present similar trends overall.  

2.5.2 Lifting Costs 

Lifting costs are the costs to produce crude oil or natural gas once the resource has been 

found and accessed.  EIA’s definition of lifting costs includes costs of operating and maintaining 

wells and associated production equipment.  Direct lifting costs exclude production taxes or 

royalties, while total lifting costs includes taxes and royalties.  Like finding costs, EIA reports 

average lifting costs for FRS firms in 2008 dollars on a barrel of oil equivalent basis.  Total 

lifting costs are the sum of direct lifting costs and production taxes.  Figure 2-10 depicts direct 

lifting cost trends from 1981 to 2008 for domestic and foreign production. 
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Figure 2-10 Direct Oil and Natural Gas Lifting Costs for FRS Companies, 1981-2008 (3-

year Running Average) 

Direct lifting costs (excludes taxes and royalties) for domestic production rose a little more than 

$2 per barrels of oil equivalent from 1981 to 1985, then declined almost $5 per barrel of oil 

equivalent from 1985 until 2000.  From 2000 to 2008, domestic lifting costs increased sharply, 

about $6 per barrel of oil equivalent.  Foreign lifting costs diverged from domestic lifting costs 

from 1981 to 1991, as foreign lifting costs were lower than domestic costs during this period.  

Foreign and domestic lifting costs followed a similar track until they again diverged in 2004, 

with domestic lifting again becoming more expensive.  Combined with finding costs, the total 

finding and lifting costs rose significantly in from 2000 to 2008. 

2.5.3 Operating and Equipment Costs 

The EIA report, “Oil and Gas Lease Equipment and Operating Costs 1994 through 

2009”2, contains indices and estimated costs for domestic oil and natural gas equipment and 

production operations.  The indices and cost trends track costs for representative operations in 

                                                
2 U.S. Energy Information Administration. “Oil and Gas Lease Equipment and Operating Costs 1994 through 2009.” 

September 28, 2010. 
<http://www.eia.doe.gov/pub/oil_gas/natural_gas/data_publications/cost_indices_equipment_production/current/
coststudy.html> Accessed February 2, 2011. 
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six regions (California, Mid-Continent, South Louisiana, South Texas, West Texas, and Rocky 

Mountains) with producing depths ranging from 2000 to 16,000 feet and low to high production 

rates (for example, 50,000 to 1 million cubic feet per day for natural gas).  

Figure 2-11 depicts crude oil operating costs and equipment costs indices for 1976 to 

2009, as well as the crude oil price in 1976 dollars.  The indices show that crude oil operating 

and equipment costs track the price of oil over this time period, while operating costs have risen 

more quickly than equipment costs.  Operating and equipment costs and oil prices rose steeply in 

the late 1970s, but generally decreased from about 1980 until the late 1990s. 

Figure 2-11 Crude Oil Operating Costs and Equipment Costs Indices (1976=100) and 

Crude Oil Price (in 1976 dollars), 1976-2009 

Oil costs and prices again generally rose between 2000 to present, with a peak in 2008.  The 

2009 index values for crude oil operating and equipment costs are 154 and 107, respectively. 
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Figure 2-12 Natural Operating Costs and Equipment Costs Indices (1976=100) and 

Natural Gas Price, 1976-2009 

Figure 2-12 depicts natural gas operating and equipment costs indices, as well as natural gas 

prices.  Similar to the cost trends for crude oil, natural gas operating and equipment costs track 

the price of natural gas over this time period, while operating costs have risen more quickly than 

equipment costs.  Operating and equipment costs and gas prices also rose steeply in the late 

1970s, but generally decreased from about 1980 until the mid 1990s. The 2009 index values for 

natural gas operating and equipment costs are 137 and 112, respectively. 

2.6 Firm Characteristics 

A regulatory action to reduce pollutant discharges from facilities producing crude oil and 

natural gas will potentially affect the business entities that own the regulated facilities. In the oil 

and natural gas production industry, facilities comprise those sites where plant and equipment 

extract, process, and transport extracted streams recovered from the raw crude oil and natural gas 

resources. Companies that own these facilities are legal business entities that have the capacity to 

conduct business transactions and make business decisions that affect the facility. 

2.6.1 Ownership 

Enterprises in the oil and natural gas industry may be divided into different groups that 

include producers, transporters, and distributors.  The producer segment may be further divided 

between major and independent producers.  Major producers include large oil and gas companies 
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that are involved in each of the five industry segments: drilling and exploration, production, 

transportation, refining, and marketing.  Independent producers include smaller firms that are 

involved in some but not all of the five activities.  

According to the Independent Petroleum Association of America (IPAA), independent 

companies produce approximately 68 percent of domestic crude oil production of our oil, 85 

percent of domestic natural gas, and drill almost 90 percent of the wells in the U.S (IPAA, 2009).  

Through the mid-1980s, natural gas was a secondary fuel for many producers.  However, now it 

is of primary importance to many producers.  IPAA reports that about 50 percent of its members’ 

spending in 2007 was directed toward natural gas production, largely toward production of 

unconventional gas (IPAA, 2009).  Meanwhile, transporters are comprised of the pipeline 

companies, while distributors are comprised of the local distribution companies. 

2.6.2 Size Distribution of Firms in Affected  

As of 2007, there were 6,563 firms within the 211111 and 211112 NAICS codes, of 

which 6427 (98 percent) were considered small businesses (Table 2-16).  Within NAICS 211111 

and 211112, large firms compose about 2 percent of the firms, but account for 59 percent of 

employment and generate about 80 percent of estimated receipts listed under the NAICS.  
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Table 2-16 SBA Size Standards and Size Distribution of Oil and Natural Gas Firms

NAICS NAICS Description 
SBA Size 
Standard  

 Small 
Firms   Large Firms Total Firms 

Number of Firms by Firm Size     

211111 Crude Petroleum and Natural Gas Extraction 500 6,329 95 6,424 

211112 Natural Gas Liquid Extraction 500 98 41 139 

213111 Drilling Oil and Gas Wells 500 2,010 49 2,059 

486210 Pipeline Transportation of Natural Gas $7.0 million 61* 65* 126 

      

Total Employment by Firm Size     

211111 Crude Petroleum and Natural Gas Extraction 500 55,622 77,664 133,286 

211112 Natural Gas Liquid Extraction 500 1,875 6,648 8,523 

213111 Drilling Oil and Gas Wells 500 36,652 69,774 106,426 

486210 Pipeline Transportation of Natural Gas $7.0 million N/A* N/A* 24,683 

      

Estimated Receipts by Firm Size ($1000)     

211111 Crude Petroleum and Natural Gas Extraction 500 44,965,936 149,141,316 194,107,252 

211112 Natural Gas Liquid Extraction 500 2,164,328 37,813,413 39,977,741 

213111 Drilling Oil and Gas Wells 500 7,297,434 16,550,804 23,848,238 

486210 Pipeline Transportation of Natural Gas $7.0 million N/A* N/A* 20,796,681 

Note: *The counts of small and large firms in NAICS 486210 is based upon firms with less than $7.5 million in 
receipts, rather than the $7 million required by the SBA Size Standard.  We used this value because U.S. Census 
reports firm counts for firms with receipts less than $7.5 million.  **Employment and receipts could not be split 
between small and large businesses because of non-disclosure requirements faced by the U.S. Census Bureau. 
Source: U.S. Census Bureau. 2010. “Number of Firms, Number of Establishments, Employment, Annual Payroll, 
and Estimated Receipts by Enterprise Receipt Size for the United States, All Industries:  2007.” 
<http://www.census.gov/econ/susb/>

The small and large firms within NAICS 21311 are similarly distributed, with large firms 

accounting for about 2 percent of firms, but 66 percent and 69 percent of employment and 

estimated receipts, respectively.  Because there are relatively few firms within NAICS 486210, 

the Census Bureau cannot release breakdowns of firms by size in sufficient detail to perform 

similar calculation. 
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2.6.3 Trends in National Employment and Wages 

As well as producing much of the U.S. energy supply, the oil and natural gas industry 

directly employs a significant number of people.  Table 2-17 shows employment in oil and 

natural gas-related NAICS codes from 1990 to 2009.  The overall trend shows a decline in total 

industry employment throughout the 1990s, hitting a low of 313,703 in 1999, but rebounding to a 

2008 peak of 511,805.  Crude Petroleum and Natural Gas Extraction (NAICS 211111) and 

Support Activities for Oil and Gas Operations (NAICS 213112) employ the majority of workers 

in the industry. 

Table 2-17 Oil and Natural Gas Industry Employment by NAICS, 1990-09 

Year  

Crude 
Petroleum 

and Natural 
Gas 

Extraction 
(211111) 

Natural Gas 
Liquid 

Extraction 
(211112) 

Drilling of 
Oil and 
Natural 

Gas Wells 
(213111) 

Support 
Activities 

for Oil and 
Gas Ops. 
(213112) 

Pipeline 
Trans. of 
Crude Oil 
(486110) 

Pipeline 
Trans. of 
Natural 

Gas 
(486210) Total 

1990 182,848 8,260 52,365 109,497 11,112 47,533 411,615 

1991 177,803 8,443 46,466 116,170 11,822 48,643 409,347 

1992 169,615 8,819 39,900 99,924 11,656 46,226 376,140 

1993 159,219 7,799 42,485 102,840 11,264 43,351 366,958 

1994 150,598 7,373 44,014 105,304 10,342 41,931 359,562 

1995 142,971 6,845 43,114 104,178 9,703 40,486 347,297 

1996 139,016 6,654 46,150 107,889 9,231 37,519 346,459 

1997 137,667 6,644 55,248 117,460 9,097 35,698 361,814 

1998 133,137 6,379 53,943 122,942 8,494 33,861 358,756 

1999 124,296 5,474 41,868 101,694 7,761 32,610 313,703 

2000 117,175 5,091 52,207 108,087 7,657 32,374 322,591 

2001 119,099 4,500 62,012 123,420 7,818 33,620 30,469 

2002 116,559 4,565 48,596 120,536 7,447 31,556 329,259 

2003 115,636 4,691 51,526 120,992 7,278 29,684 329,807 

2004 117,060 4,285 57,332 128,185 7,073 27,340 341,275 

2005 121,535 4,283 66,691 145,725 6,945 27,341 372,520 

2006 130,188 4,670 79,818 171,127 7,202 27,685 420,690 

2007 141,239 4,842 84,525 197,100 7,975 27,431 463,112 

2008 154,898 5,183 92,640 223,635 8,369 27,080 511,805 

2009 155,150 5,538 67,756 193,589 8,753 26,753 457,539 

Source: U.S. Bureau of Labor Statistics, Quarterly Census of Employment and Wages, 2011 , 
<http://www.bls.gov/cew/> 
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Figure 2-13 Employment in Drilling of Oil and Natural Gas Wells (NAICS 213111), and 

Total Oil and Natural Gas Wells Drilled, 1990-2009 

Figure 2-13 compares employment in Drilling of Oil and Natural Gas Wells (NAICS 

213111) with the total number of oil and natural gas wells drilled from 1990 to 2009.  The figure 

depicts a strong positive correlation between employment in the sector with drilling activity.  

This correlation also holds throughout the period covered by the data. 
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Figure 2-14 Employment in Crude Petroleum and Natural Gas Extraction (NAICS 

211111) and Total Crude Oil and Natural Gas Production (boe), 1990-2009 

Figure 2-14 compares employment in Crude Petroleum and Natural Gas Extraction 

(NAICS 211111) with total domestic oil and natural gas production from 1990 to 2009 in barrels 

of oil equivalent terms.  While until 2003, employment in this sector and total production 

declined gradually, employment levels declined more rapidly.  However, from 2004 to 2009 

employment in Extraction recovered, rising to levels similar to the early 1990s. 
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Figure 2-15 Employment in Natural Gas Liquid Extraction (NAICS 211112), 

Employment in Pipeline Transportation of Natural Gas (NAICS 486210), and Total 

Natural Gas Production, 1990-2009 

 Figure 2-15 depicts employment in Natural Gas Liquid Extraction (NAICS 211112), 

Employment in Pipeline Transportation of Natural Gas (NAICS 486210), and Total Natural Gas 

Production, 1990-2009.  While total natural gas production has risen slightly over this time 

period, employment in natural gas pipeline transportation has steadily declined to almost half of 

its 1991 peak.  Employment in natural gas liquid extraction declined from 1992 to a low in 2005, 

then rebounded slightly from 2006 to 2009.  Overall, however, these trends depict these sectors 

becoming decreasingly labor intensive, unlike the trends depicted in Figure 2-13 and Figure 

2-14. 

 From 1990 to 2009, average wages for the oil and natural gas industry have increased.  

Table 2-18 and Figure 2-16 show real wages (in 2008 dollars) from 1990 to 2009 for the NAICS 

codes associated with the oil and natural gas industry. 
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Table 2-18 Oil and Natural Gas Industry Average Wages by NAICS, 1990-2009 (2008 

dollars) 

Year 

Crude 
Petroleum 

and Natural 
Gas 

Extraction 
(211111) 

Natural 
Gas Liquid 
Extraction 
(211112) 

Drilling 
of Oil and 

Natural 
Gas Wells 
(213111) 

Support 
Activities 

for Oil and 
Gas 

Operations 
(213112) 

Pipeline 
Transportation 
of Crude Oil 

(486110) 

Pipeline 
Transportation 
of Natural Gas 

(486210) Total 

1990 71,143 66,751 42,215 45,862 68,044 61,568 59,460 

1991 72,430 66,722 43,462 47,261 68,900 65,040 60,901 

1992 76,406 68,846 43,510 48,912 74,233 67,120 64,226 

1993 77,479 68,915 45,302 50,228 72,929 67,522 64,618 

1994 79,176 70,875 44,577 50,158 76,136 68,516 64,941 

1995 81,433 67,628 46,243 50,854 78,930 71,965 66,446 

1996 84,211 68,896 48,872 52,824 76,841 76,378 68,391 

1997 89,876 79,450 52,180 55,600 78,435 82,775 71,813 

1998 93,227 89,948 53,051 57,578 79,089 84,176 73,722 

1999 98,395 89,451 54,533 59,814 82,564 94,471 79,078 

2000 109,744 112,091 60,862 60,594 81,097 130,630 86,818 

2001 111,101 111,192 61,833 61,362 83,374 122,386 85,333 

2002 109,957 103,653 62,196 59,927 87,500 91,550 82,233 

2003 110,593 112,650 61,022 61,282 87,388 91,502 82,557 

2004 121,117 118,311 63,021 62,471 93,585 93,684 86,526 

2005 127,243 127,716 70,772 67,225 92,074 90,279 90,292 

2006 138,150 133,433 74,023 70,266 91,708 98,691 94,925 

2007 135,510 132,731 82,010 71,979 96,020 105,441 96,216 

2008 144,542 125,126 81,961 74,021 101,772 99,215 99,106 

2009 133,575 123,922 80,902 70,277 100,063 100,449 96,298 

Source: U.S. Bureau of Labor Statistics, Quarterly Census of Employment and Wages, 2011 , 
<http://www.bls.gov/cew/> 

Employees in the NAICS 211 codes enjoy the highest average wages in the industry, while 

employees in the NAICS 213111 code have relatively lower wages.  Average wages in natural 

gas pipeline transportation show the highest variation, with a rapid climb from 1990 to 2000, 

more than doubling in real terms.  However, since 2000 wages have declined in the pipeline 

transportation sector, while wages have risen in the other NAICS. 
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Figure 2-16 Oil and Natural Gas Industry Average Wages by NAICS, 1990-2009 ($2008) 

2.6.4 Horizontal and Vertical Integration 

Because of the existence of major companies, the industry possesses a wide dispersion of 

vertical and horizontal integration.  The vertical aspects of a firm’s size reflect the extent to 

which goods and services that can be bought from outside are produced in house, while the 

horizontal aspect of a firm’s size refers to the scale of production in a single-product firm or its 

scope in a multiproduct one.  Vertical integration is a potentially important dimension in 

analyzing firm-level impacts because the regulation could affect a vertically integrated firm on 

more than one level.  The regulation may affect companies for whom oil and natural gas 

production is only one of several processes in which the firm is involved.  For example, a 

company that owns oil and natural gas production facilities may ultimately produce final 

petroleum products, such as motor gasoline, jet fuel, or kerosene.  This firm would be considered 

vertically integrated because it is involved in more than one level of requiring crude oil and 

natural gas and finished petroleum products.  A regulation that increases the cost of oil and 

natural gas production will ultimately affect the cost of producing final petroleum products. 

Horizontal integration is also a potentially important dimension in firm-level analyses for 

any of the following reasons.  A horizontally integrated firm may own many facilities of which 
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only some are directly affected by the regulation.  Additionally, a horizontally integrated firm 

may own facilities in unaffected industries.  This type of diversification would help mitigate the 

financial impacts of the regulation.  A horizontally integrated firm could also be indirectly as 

well as directly affected by the regulation.  

In addition to the vertical and horizontal integration that exists among the large firms in 

the industry, many major producers often diversify within the energy industry and produce a 

wide array of products unrelated to oil and gas production.  As a result, some of the effects of 

regulation of oil and gas production can be mitigated if demand for other energy sources moves 

inversely compared to petroleum product demand. 

In the natural gas sector of the industry, vertical integration is less predominant than in 

the oil sector.  Transmission and local distribution of natural gas usually occur at individual 

firms, although processing is increasing performed by the integrated major companies.  Several 

natural gas firms operate multiple facilities. However, natural gas wells are not exclusive to 

natural gas firms only. Typically wells produce both oil and gas and can be owned by a natural 

gas firm or an oil company.    

Unlike the large integrated firms that have several profit centers such as refining, 

marketing, and transportation, most independents have to rely only on profits generated at the 

wellhead from the sale of oil and natural gas or the provision of oil and gas production-related 

engineering or financial services.  Overall, independent producers typically sell their output to 

refineries or natural gas pipeline companies and are not vertically integrated.   Independents may 

also own relatively few facilities, indicating limited horizontal integration. 

2.6.5 Firm-level Information 

The annual Oil and Gas Journal (OGJ) survey, the OGJ150, reports financial and 

operating results for top 150 public oil and natural gas companies with domestic reserves and 

headquarters in the U.S.  In the past, the survey reported information on the top 300 companies, 

now the top 150.  In 2010, only 137 companies are listed3.  Table 2-19 lists selected statistics for 

                                                
3 Oil and Gas Journal. “OGJ150 Financial Results Down in '09; Production, Reserves Up.” September 6, 2010. 
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the top 20 companies in 2010. The results presented in the table reflect relatively lower 

production and financial figures as a result of the economic recession of this period.  

Total earnings for the top 137 companies fell from 2008 to 2009 from $71 billion to $27 

billion, reflecting the weak economy.  Revenues for these companies also fell 35 percent during 

this period.  69 percent of the firms posted net losses in 2009, compared to 46 percent one year 

earlier (Oil and Gas Journal, September 6, 2010).  

The total worldwide liquids production for the 137 firms declined 0.5 percent to 2.8 

billion bbl, while total worldwide gas production increased about 3 percent to a total of 16.5 tcf 

(Oil and Gas Journal, September 6, 2010).  Meanwhile, the 137 firms on the OGJ list increased 

both oil and natural gas production and reserves from 2008 to 2009.  Domestic production of 

liquids increased about 7 percent to 1.1 billion bbl, and natural gas production increased to 10.1 

tcf.  For context, the OGJ150 domestic crude production represents about 57 percent of total 

domestic production (1.9 billion bbl, according to EIA).  The OGJ150 natural gas production 

represents about 54 percent of total domestic production (18.8 tcf, according to EIA). 

The OGJ also releases a period report entitled “Worldwide Gas Processing Survey”, 

which provides a wide range of information on existing processing facilities.  We used a recent 

list of U.S. gas processing facilities (Oil and Gas Journal, June 7, 2010) and other resources, 

such as the American Business Directory and company websites, to best identify the parent 

company of the facilities.  As of 2009, there are 579 gas processing facilities in the U.S., with a 

processing capacity of 73,767 million cubic feet per day and throughout of 45,472 million cubic 

feet per day (Table 2-20).  The overall trend in U.S. gas processing capacity is showing fewer, 

but larger facilities.  For example, in 1995, there were 727 facilities with a capacity of 60,533 

million cubic feet per day (U.S. DOE, 2006). 

Trends in gas processing facility ownership are also showing a degree of concentration, 

as large firms own multiple facilities, which also tend to be relatively large facilities (Table 

2-20).    While we estimate 142 companies own the 579 facilities, the top 20 companies (in terms 

of total throughput) own 264 or 46 percent of the facilities.  That larger companies tend to own 

larger facilities is indicated by these top 20 firms owning 86 percent of the total capacity and 88 

percent of actual throughput. 



2
-4

7
 

T
a
b

le
 2

-1
9
 

T
o
p

 2
0
 O

il
 a

n
d

 N
a
tu

ra
l 

G
a
s 

C
o

m
p

a
n

ie
s 

(B
a
se

d
 o

n
 T

o
ta

l 
A

ss
et

s)
, 
2
0
1
0
 

  
  

  
  

  
  

W
o

rl
d

w
id

e 
P

ro
d

u
ct

io
n

 
U

.S
. 

P
ro

d
u
ct

io
n

 
  

R
an

k
 b

y
 

T
o

ta
l 

A
ss

et
s 

C
o

m
p

an
y

 
E

m
p

lo
y
ee

s 
T

o
ta

l 
A

ss
et

s 
($

 m
il

li
o

n
s)

 

T
o

ta
l 

R
ev

. 
($

 
m

il
li

o
n
s)

 

N
et

 I
n
c.

 
($

 
m

il
li

o
n
s)

 

L
iq

u
id

s 
(M

il
li

o
n
 

b
b

l)
 

N
at

u
ra

l 
G

as
 

(B
cf

) 

L
iq

u
id

s 
(M

il
li

o
n
 

b
b

l)
 

N
at

u
ra

l 
G

as
 

(B
cf

) 

N
et

 
W

el
ls

 
D

ri
ll

ed
 

1
 

 E
x
x
o

n
M

o
b

il
 C

o
rp

. 
  

1
0

2
,7

0
0
 

2
3

3
,3

2
3
 

3
1

0
,5

8
6
 

1
9

,2
8
0
 

7
2

5
 

2
,3

8
3
 

1
1

2
 

5
6

6
 

4
6

6
 

2
 

 C
h
ev

ro
n
 C

o
rp

. 
  

6
4

,0
0
0
 

1
6

4
,6

2
1
 

1
7

1
,6

3
6
 

1
0

,5
6
3
 

6
7

4
 

1
,8

2
1
 

1
7

7
 

5
1

1
 

5
9

4
 

3
 

 C
o

n
o

co
P

h
il

li
p

s 
  

3
0

,0
0
0
 

1
5

2
,5

8
8
 

1
5

2
,8

4
0
 

4
,8

5
8
 

3
4

1
 

1
,9

0
6
 

1
5

3
 

8
5

0
 

6
9

2
 

4
 

 A
n
ad

ar
k
o

 P
et

ro
le

u
m

 C
o

rp
. 

  
4

,3
0

0
 

5
0

,1
2
3
 

9
,0

0
0
 

-1
0

3
 

8
8
 

8
1

7
 

6
3
 

8
1

7
 

6
3

0
 

5
 

 M
ar

at
h
o

n
 O

il
 C

o
rp

. 
  

2
8

,8
5
5
 

4
7

,0
5
2
 

5
4

,1
3
9
 

1
,4

6
3
 

9
0
 

3
5

1
 

2
3
 

1
4

6
 

1
1

5
 

6
 

 O
cc

id
en

ta
l 

P
et

ro
le

u
m

 C
o

rp
. 

  
1

0
,1

0
0
 

4
4

,2
2
9
 

1
5

,5
3
1
 

2
,9

1
5
 

1
7

9
 

3
3

8
 

9
9
 

2
3

2
 

2
6

0
 

7
 

 X
T

O
 E

n
er

g
y
 I

n
c.

  
 

3
,1

2
9
 

3
6

,2
5
5
 

9
,0

6
4
 

2
,0

1
9
 

3
2
 

8
5

5
 

3
2
 

8
5

5
 

1
,0

5
9
 

8
 

 C
h
es

ap
ea

k
e 

E
n
er

g
y
 C

o
rp

. 
  

8
,2

0
0
 

2
9

,9
1
4
 

7
,7

0
2
 

-5
,8

0
5
 

1
2
 

8
3

5
 

1
2
 

8
3

5
 

1
,0

0
3
 

9
 

 D
ev

o
n
 E

n
er

g
y
 C

o
rp

. 
  

5
,4

0
0
 

2
9

,6
8
6
 

8
,0

1
5
 

-2
,4

7
9
 

7
2
 

9
6

6
 

4
3
 

7
4

3
 

5
2

1
 

1
0
 

 H
es

s 
C

o
rp

. 
  

1
3

,3
0
0
 

2
9

,4
6
5
 

2
9

,5
6
9
 

7
4

0
 

1
0

7
 

2
7

0
 

2
6
 

3
9
 

4
8
 

1
1
 

 A
p

ac
h
e 

C
o

rp
. 

  
3

,4
5

2
 

2
8

,1
8
6
 

8
,6

1
5
 

-2
8

4
 

1
0

6
 

6
4

2
 

3
5
 

2
4

3
 

1
2

4
 

1
2
 

 E
l 

P
as

o
 C

o
rp

. 
  

4
,9

9
1
 

2
2

,5
0
5
 

4
,6

3
1
 

-5
3

9
 

6
 

2
1

9
 

6
 

2
1

5
 

1
3

4
 

1
3
 

 E
O

G
 R

es
o

u
rc

es
 I

n
c.

  
 

2
,1

0
0
 

1
8

,1
1
9
 

1
4

,7
8
7
 

5
4

7
 

2
9
 

6
1

7
 

2
6
 

4
2

2
 

6
5

2
 

1
4
 

 M
u
rp

h
y
 O

il
 C

o
rp

. 
  

8
,3

6
9
 

1
2

,7
5
6
 

1
8

,9
1
8
 

8
3

8
 

4
8
 

6
8
 

6
 

2
0
 

3
 

1
5
 

 N
o

b
le

 E
n
er

g
y
 I

n
c.

  
 

1
,6

3
0
 

1
1

,8
0
7
 

2
,3

1
3
 

-1
3

1
 

2
9
 

2
8

5
 

1
7
 

1
4

5
 

5
4

0
 

1
6
 

 W
il

li
am

s 
C

o
s.

 I
n
c.

 
4

,8
0

1
 

9
,6

8
2
 

2
,2

1
9
 

4
0

0
 

0
 

3
,4

3
5
 

0
 

3
,4

3
5
 

4
8

8
 

1
7
 

 Q
u
es

ta
r 

C
o

rp
. 

  
2

,4
6

8
 

8
,8

9
8
 

3
,0

5
4
 

3
9

3
 

4
 

1
6

9
 

4
 

1
6

9
 

1
9

4
 

1
8
 

 P
io

n
ee

r 
N

at
. 

R
es

o
u
rc

es
 C

o
. 

  
1

,8
8

8
 

8
,8

6
7
 

1
,7

1
2
 

-5
2

 
1

9
 

1
5

7
 

1
7
 

1
4

8
 

6
7
 

1
9
 

 P
la

in
s 

E
x
p

l.
 &

 P
ro

d
. 

C
o

. 
  

8
0

8
 

7
,7

3
5
 

1
,1

8
7
 

1
3

6
 

1
8
 

7
8
 

1
8
 

7
8
 

5
3
 

2
0
 

 P
et

ro
h
aw

k
 E

n
er

g
y
 C

o
rp

. 
  

4
6

9
 

6
,6

6
2
 

4
1

,0
8
4
 

-1
,0

2
5
 

2
 

1
7

4
 

2
 

1
7

4
 

1
6

2
 

S
o

u
rc

e:
 O

il
 a

n
d

 G
a

s 
Jo

u
rn

a
l.

 “
O

G
J1

5
0

 F
in

an
ci

al
 R

es
u
lt

s 
D

o
w

n
 i

n
 '0

9
; 

P
ro

d
u
ct

io
n
, 

R
es

er
v
es

 U
p

.”
 S

ep
te

m
b

er
 6

, 
2

0
1

0
. 

N
o

te
s:

 T
h
e 

so
u
rc

e 
fo

r 
em

p
lo

y
m

en
t 

fi
g

u
re

s 
is

 t
h
e 

A
m

er
ic

an
 B

u
si

n
es

s 
D

ir
ec

to
ry

. 



2-48 

Table 2-20 Top 20 Natural Gas Processing Firms (Based on Throughput), 2009 

Rank Company 
Processing 

Plants (No.) 

Natural Gas 
Capacity 

(MMcf/day) 

Natural Gas 
Throughput 
(MMcf/day) 

1 BP PLC 19 13,378 11,420 

2 DCP Midstream Inc. 64 9,292 5,586 

3 Enterprise Products Operating LP— 23 10,883 5,347

4 Targa Resources 16 4,501 2,565 

5 Enbridge Energy Partners LP— 19 3,646 2,444 

6 Williams Cos. 10 4,826 2,347 

7 Martin Midstream Partners 16 3,384 2,092 

8 Chevron Corp. 23 1,492 1,041 

9 Devon Gas Services LP 6 1,038 846 

10 ExxonMobil Corp. 6 1,238 766 

11 Occidental Petroleum Corp 7 776 750 

12 Kinder Morgan Energy Partners  9 1,318 743 

13 Enogex Products Corp. 8 863 666 

14 Hess Corp. 3 1,060 613 

15 Norcen Explorer 1 600 500 

16 Copano Energy 1 700 495 

17 Anadarko 18 816 489 

18 Oneok Field Services 10 1,751 472 

19 Shell 4 801 446 

20 DTE Energy  1 800 400 

 TOTAL FOR TOP 20 264 63,163 40,028 

  TOTAL FOR ALL COMPANIES 579 73,767 45,472 

Source: Oil and Gas Journal. “Special Report: Worldwide Gas Processing: New Plants, Data Push Global Gas 
Processing Capacity Ahead in 2009.” June 7, 2010, with additional analysis to determine ultimate ownership of 
plants. 

  

The OGJ also issues a periodic report on the economics of the U.S. pipeline industry.  

This report examines the economic status of all major and non-major natural gas pipeline 

companies, which amounts to 136 companies in 2010 (Oil and Gas Journal, November 1, 2010).  

Table 2-21 presents the pipeline mileage, volumes of natural gas transported, operating revenue, 

and net income for the top 20 U.S. natural gas pipeline companies in 2009.  Ownership of gas 

pipelines is mostly independent from ownership of oil and gas production companies, as is seen 

from the lack of overlap between the OGJ list of pipeline companies and the OGJ150.  This 

observation shows that the pipeline industry is still largely based upon firms serving regional 

market. 

The top 20 companies maintain about 63 percent of the total pipeline mileage and 

transport about 54 percent of the volume of the industry (Table 2-21).  Operating revenues of the 
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top 20 companies equaled $11.5 billion, representing 60 percent of the total operating revenues 

for major and non-major companies.  The top 20 companies also account for 64 percent of the 

net income of the industry. 

Table 2-21 Performance of Top 20 Gas Pipeline Companies (Based on Net Income), 2009

Rank Company 
Transmission 

(miles) 

Vol. trans 
for others 
(MMcf) 

Op. Rev. 
(thousand $) 

Net 
Income 

1 Natural Gas Pipeline Co of America 9,312 1,966,774 1,131,548 348,177 

2 Dominion Transmission Inc.    3,452 609,193 831,773 212,365 

3 Columbia Gas Transmission LLC   9,794 1,249,188 796,437 200,447 

4 Panhandle Eastern Pipe Line Co. LP 5,894 675,616 377,563 196,825 

5 Transcontinental Gas Pipe Line Co. LLC 9,362 2,453,295 1,158,665 192,830 

6 Texas Eastern Transmission LP   9,314 1,667,593 870,812 179,781 

7 Northern Natural Gas Co.   15,028 922,745 690,863 171,427 

8 Florida Gas Transmission Co. LLC 4,852 821,297 520,641 164,792 

9 Tennessee Gas Pipeline Co.   14,113 1,704,976 820,273 147,378 

10 Southern Natural Gas Co.   7,563 867,901 510,500 137,460 

11 El Paso Natural Gas Co. 10,235 1,493,213 592,503 126,000 

12 Gas Transmission Northwest Corp.   1,356 809,206 216,526 122,850 

13 Rockies Express Pipeline LLC   1,682 721,840 555,288 117,243 

14 CenterPoint Energy Gas Transmission Co. 6,162 1,292,931 513,315 116,979 

15 Colorado Interstate Gas Co.   4,200 839,184 384,517 108,483 

16 Kern River Gas Transmission Co. 1,680 789,858 371,951 103,430 

17 Trunkline LNG Co. LLC — — 134,150 101,920 

18 Northwest Pipeline GP 3,895 817,832 434,379 99,340 

19 Texas Gas Transmission LLC   5,881 1,006,906 361,406 91,575 

20 Algonquin Gas Transmission LLC 1,128 388,366 237,291 82,472 

 TOTAL FOR TOP 20 124,903 21,097,914 11,510,401 3,021,774 

  TOTAL FOR ALL COMPANIES 198,381 38,793,532 18,934,674 4,724,456 

Source: Oil and Gas Journal. “Natural Gas Pipelines Continue Growth Despite Lower Earnings; Oil Profits Grow.” 
November 1, 2010. 

2.6.6 Financial Performance and Condition 

From a broad industry perspective, the EIA Financial Reporting System (FRS) collects 

financial and operating information from a subset of the U.S. major energy producing 

companies.  This information is used in annual report to Congress, as well as is released to the 

public in aggregate form.  While the companies that report information to FRS each year 

changes, EIA makes an effort to retain sufficient consistency such that trends can be evaluated.  
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For 2008, there are 27 companies in the FRS4  that accounted for 41 percent of total U.S. crude 

oil and NGL production, 43 percent of natural gas production, 77 percent of U.S. refining 

capacity, and 0.2 percent of U.S. electricity net generation (U.S. EIA, 2010).  Table 2-22 shows a 

series of financial trends in 2008 dollars selected and aggregated from FRS firms’ financial 

statements.  The table shows operating revenues and expenses rising significantly from 1990 to 

2008, with operating income (the difference between operating revenues and expenses) rising as 

well.  Interest expenses remained relatively flat during this period.  Meanwhile, recent years have 

shown that other income and income taxes have played a more significant role for the industry.  

Net income has risen as well, although 2008 saw a decline from previous periods, as oil and 

natural gas prices declined significantly during the latter half of 2008. 

Table 2-22 Selected Financial Items from Income Statements (Billion 2008 Dollars)

Year 
Operating 
Revenues 

Operating 
Expenses 

Operating 
Income 

Interest 
Expense 

Other 
Income* 

Income 
Taxes Net Income 

1990 766.9 706.4 60.5 16.8 13.6 24.8 32.5 

1991 673.4 635.7 37.7 14.4 13.4 15.4 21.3 

1992 670.2 637.2 33.0 12.7 -5.6 12.2 2.5 

1993 621.4 586.6 34.8 11.0 10.3 12.7 21.5 

1994 606.5 565.6 40.9 10.8 6.8 14.4 22.5 

1995 640.8 597.5 43.3 11.1 12.9 17.0 28.1 

1996 706.8 643.3 63.6 9.1 13.4 26.1 41.8 

1997 673.6 613.8 59.9 8.2 13.4 23.9 41.2 

1998 614.2 594.1 20.1 9.2 11.0 6.0 15.9 

1999 722.9 682.6 40.3 10.9 12.7 13.6 28.6 

2000 1,114.3 1,011.8 102.5 12.9 18.4 42.9 65.1 

2001 961.8 880.3 81.5 10.8 7.6 33.1 45.2 

2002 823.0 776.9 46.2 12.7 7.9 17.2 24.3 

2003 966.9 872.9 94.0 10.1 19.5 37.2 66.2 

2004 1,188.5 1,051.1 137.4 12.4 20.1 54.2 90.9 

2005 1,447.3 1,263.8 183.5 11.6 34.6 77.1 129.3 

2006 1,459.0 1,255.0 204.0 12.4 41.2 94.8 138.0 

2007 1,475.0 1,297.7 177.3 11.1 47.5 86.3 127.4 

2008 1,818.1 1,654.0 164.1 11.4 32.6 98.5 86.9 

Source: Energy Information Administration, Form EIA-28 (Financial Reporting System). * Other Income includes 
other revenue and expense (excluding interest expense), discontinued operations, extraordinary items, and 
accounting changes.  Totals may not sum due to independent rounding.

                                                
4 Alenco, Anadarko Petroleum Corporation, Apache Corporation, BP America, Inc., Chesapeake Energy 

Corporation, Chevron Corporation, CITGO Petroleum Corporation, ConocoPhillips, Devon Energy Corporation, 
El Paso Corporation, EOG Resources, Inc., Equitable Resources, Inc., Exxon Mobil Corporation, Hess 
Corporation, Hovensa, Lyondell Chemical Corporation, Marathon Oil Corporation, Motiva Enterprises, L.L.C., 
Occidental Petroleum Corporation, Shell Oil Company, Sunoco, Inc., Tesoro Petroleum Corporation, The 
Williams Companies, Inc., Total Holdings USA, Inc., Valero Energy Corp., WRB Refining LLC, and XTO 
Energy, Inc. 
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Table 2-23 shows in percentage terms the estimated return on investments for a variety of 

business lines, in 1998, 2003, and 2008, for FRS companies.  For U.S. petroleum-related 

business activities, oil and natural gas production has remained the most profitable line of 

business relative to refining/marketing and pipelines, sustaining a return on investment greater 

than 10 percent for the three years evaluated.  Returns to foreign oil and natural gas production 

rose above domestic production in 2008.  Electric power generation and sales emerged in 2008 

as a highly profitable line of business for the FRS companies. 

Table 2-23 Return on Investment for Lines of Business (all FRS), for 1998, 2003, and 

2008 (percent)

Line of Business 1998 2003 2008 

Petroleum 10.8 13.4 12.0 

   U.S. Petroleum 10 13.7 8.2 

       Oil and Natural Gas Production 12.5 16.5 10.7 

       Refining/Marketing 6.6 9.3 2.6 

       Pipelines 6.7 11.5 2.4 

   Foreign Petroleum 11.9 13.0 17.8 

       Oil and Natural Gas Production 12.5 14.2 16.3 

       Refining/Marketing 10.6 8.0 26.3 

Downstream Natural Gas* - 8.8 5.1 

Electric Power* - 5.2 181.4 

Other Energy 7.1 2.8 -2.1 

Non-energy 10.9 2.4 -5.3 

Source: Energy Information Administration, Form EIA-28 (Financial Reporting System). Note: Return on 
investment measured as contribution to net income/net investment in place.  * The downstream natural gas and 
electric power lines of business were added to the EIA-28 survey form beginning with the 2003 reporting year. 

 The oil and natural gas industry also produces significant tax revenues for local, state, 

and federal authorities.  Table 2-24 shows income and production tax trends from 1990 to 2008 

for FRS companies.  The column with U.S. federal, state, and local taxes paid or accrued 

includes deductions for the U.S. Federal Investment Tax Credit ($198 million in 2008) and the 

effect of the Alternative Minimum Tax ($34 million in 2008). Income taxes paid to state and 

local authorizes were $3,060 million in 2008, about 13 percent of the total paid to U.S. 

authorities. 
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Table 2-24 Income and Production Taxes, 1990-2008 (Million 2008 Dollars) 

Year 

U.S. Federal, State, 
and Local Taxes Paid 

or Accrued Total Current Total Deferred 
Total Income 
Tax Expense   

Other Non-
Income 

Production 
Taxes Paid 

1990 9,568 25,056 -230 24,826  4,341 

1991 6,672 18,437 -3,027 15,410  3,467 

1992 4,994 16,345 -4,116 12,229  3,097 

1993 3,901 13,983 -1,302 12,681  2,910 

1994 3,348 13,556 887 14,443  2,513 

1995 6,817 17,474 -510 16,965  2,476 

1996 8,376 22,493 3,626 26,119  2,922 

1997 7,643 20,764 3,141 23,904  2,743 

1998 1,199 7,375 -1,401 5,974  1,552 

1999 2,626 13,410 140 13,550  2,147 

2000 14,308 36,187 6,674 42,861  3,254 

2001 10,773 28,745 4,351 33,097  3,042 

2002 814 17,108 46 17,154  2,617 

2003 9,274 30,349 6,879 37,228  3,636 

2004 19,661 50,185 4,024 54,209  3,990 

2005 29,993 72,595 4,529 77,125  5,331 

2006 29,469 85,607 9,226 94,834  5,932 

2007 28,332 84,119 2,188 86,306  7,501 

2008 23,199 95,590 2,866 98,456   12,507 

Source: Energy Information Administration, Form EIA-28 (Financial Reporting System).  

 The difference between total current taxes and U.S. federal, state, and local taxes in 

includes taxes and royalties paid to foreign countries.  As can be seen in Table 2-24, foreign 

taxes paid far exceeds domestic taxes paid.  Other non-income production taxes paid, which have 

risen almost three-fold between 1990 and 2008, include windfall profit and severance taxes, as 

well as other production-related taxes. 
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3 EMISSIONS AND ENGINEERING COSTS 

3.1 Introduction 

This section includes three sets of discussions for both the proposed NSPS and NESHAP 

amendments: 

• Emission Sources and Points 

• Emissions Control Options 

• Engineering Cost Analysis 

3.2 Emissions Points, Controls, and Engineering Costs Analysis 

 This section discusses the emissions points and pollution control options for the proposed 

NSPS and NESHAP amendments.  This discussion of emissions points and control options is 

meant to assist the reader of the RIA in better understanding the economic impact analysis.  

However, we provide reference to the detailed technical memoranda prepared by the Office of 

Air Quality Planning and Standards (OAQPS) for the reader interested in a greater level of detail.  

This section also presents the engineering cost analysis, which provides a cost basis for the 

energy system, welfare, employment, and small business analyses. 

Before going into detail on emissions points and pollution controls, it is useful to provide 

estimates of overall emissions from the crude oil and natural industry to provide context for 

estimated reductions as a result of the regulatory options evaluated.  To estimate VOC emissions 

from the oil and gas sector, we modified the emissions estimate for the crude oil and natural gas 

sector in the 2008 National Emissions Inventory (NEI).  During this review, EPA identified VOC 

emissions from natural gas sources which are likely relatively under-represented in the NEI, 

natural gas well completions primarily.  Crude oil and natural gas sector VOC emissions 

estimated in the 2008 NEI total approximately 1.76 million tons.  Of these emissions, the NEI 

identifies about 21 thousand tons emitted from natural gas well completion processes.  We 

substituted the estimates of VOC emissions from natural gas well completions estimated as part 

of the engineering analysis (510,000 tons, which is discussed in more detail in the next section), 

bringing the total estimated VOC emissions from the crude oil and natural gas sector to about 

2.24 million tons VOC. 
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The Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009 (published April 

2011) estimates 2009 methane emissions from Petroleum and Natural Gas Systems (not 

including petroleum refineries and petroleum transportation) to be 251.55 (MMtCO2-e).  It is 

important to note that the 2009 emissions estimates from well completions and recompletions 

exclude a significant number of wells completed in tight sand plays and the Marcellus Shale, due 

to availability of data when the 2009 Inventory was developed.  The estimate in this proposal 

includes an adjustment for tight sand plays and the Marcellus Shale, and such an adjustment is 

also being considered as a planned improvement in next year's Inventory. This adjustment would 

increase the 2009 Inventory estimate by about 80 MMtCO2-e to approximately 330 MMtCO2-e. 

3.2.1 Emission Points and Pollution Controls assessed in the RIA  

3.2.1.1 NSPS Emission Points and Pollution Controls 

A series of emissions controls were evaluated as part of the NSPS review.  This section provides 

a basic description of possible emissions sources and the controls evaluated for each source to 

facilitate the reader’s understanding of the economic impact and benefit analyses.  The reader 

who is interested in more technical detail on the engineering and cost basis of the analysis is 

referred to the relevant chapters within the Technical Support Document (TSD) which is 

published in the Docket.  The chapters are also referenced below.  EPA is soliciting public 

comment and data relevant to several emissions-related issues related to the proposed NSPS.   

The comments we receive during the public comment period will help inform the rule 

development process as we work toward promulgating a final action.    

Centrifugal and reciprocating compressors (TSD Chapter 6):  There are many locations 

throughout the oil and gas sector where compression of natural gas is required to move the gas 

along the pipeline.  This is accomplished by compressors powered by combustion turbines, 

reciprocating internal combustion engines, or electric motors.  Turbine-powered compressors use 

a small portion of the natural gas that they compress to fuel the turbine.  The turbine operates a 

centrifugal compressor, which compresses and pumps the natural gas through the pipeline.  

Sometimes an electric motor is used to turn a centrifugal compressor.  This type of compression 

does not require the use of any of the natural gas from the pipeline, but it does require a source of 

electricity.  Reciprocating spark ignition engines are also used to power many compressors, 
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referred to as reciprocating compressors, since they compress gas using pistons that are driven by 

the engine.  Like combustion turbines, these engines are fueled by natural gas from the pipeline.   

Both centrifugal and reciprocating compressors are sources of VOC emissions, and EPA 

evaluated compressors for coverage under the NSPS.  Centrifugal compressors require seals 

around the rotating shaft to prevent gases from escaping where the shaft exits the compressor 

casing. The seals in some compressors use oil, which is circulated under high pressure between 

three rings around the compressor shaft, forming a barrier against the compressed gas leakage. 

Very little gas escapes through the oil barrier, but considerable gas is absorbed by the oil.  Seal 

oil is purged of the absorbed gas (using heaters, flash tanks, and degassing techniques) and 

recirculated, and the gas is commonly vented to the atmosphere.  These are commonly called 

“wet” seals.  An alternative to a wet seal system is the mechanical dry seal system. This seal 

system does not use any circulating seal oil.  Dry seals operate mechanically under the opposing 

force created by hydrodynamic grooves and static pressure.  Fugitive VOC is emitted from dry 

seals around the compressor shaft.  The use of dry gas seals substantially reduces emissions.  In 

addition, they significantly reduce operating costs and enhance compressor efficiency. 

Reciprocating compressors in the natural gas industry leak natural gas during normal 

operation.  The highest volume of gas loss is associated with piston rod packing systems.  

Packing systems are used to maintain a tight seal around the piston rod, preventing the gas 

compressed to high pressure in the compressor cylinder from leaking, while allowing the rod to 

move freely.  Monitoring and replacing compressor rod packing systems on a regular basis can 

greatly reduce VOC emissions.   

Equipment leaks (TSD Chapter 8): Equipment leaks are fugitive emissions emanating from 

valves, pump seals, flanges, compressor seals, pressure relief valves, open-ended lines, and other 

process and operation components.   There are several potential reasons for equipment leak 

emissions.  Components such as pumps, valves, pressure relief valves, flanges, agitators, and 

compressors are potential sources that can leak due to seal failure.  Other sources, such as open-

ended lines, and sampling connections may leak for reasons other than faulty seals.  In addition, 

corrosion of welded connections, flanges, and valves may also be a cause of equipment leak 

emissions.  Because of the large number of valves, pumps, and other components within an oil 
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and gas production, processing, and transmission facility, equipment leaks of volatile emissions 

from these components can be significant.  Natural gas processing plants, especially those using 

refrigerated absorption, and transmission stations tend to have a large number of components.  

These types of equipment also exist at production sites and gas transmission/compressor stations.  

While the number of components at individual transmission/compressor stations is relatively 

smaller than at processing plants, collectively there are many components that can result in 

significant emissions.  Therefore, EPA evaluated NSPS for equipment leaks for facilities in the 

production segment of the industry, which includes everything from the wellhead to the point 

that the gas enters the processing plant or refinery.   

Pneumatic controllers (TSD Chapter 5): Pneumatic controllers are automated instruments used 

for maintaining a process condition such as liquid level, pressure, delta-pressure, and 

temperature.  Pneumatic controllers are widely used in the oil and natural gas sector.  In many 

situations, the pneumatic controllers used in the oil and gas sector make use of the available 

high-pressure natural gas to regulate temperature, pressure, liquid level, and flow rate across all 

areas of the industry.  In these “gas-driven” pneumatic controllers, natural gas may be released 

with every valve movement or continuously from the valve control pilot.  Not all pneumatic 

controllers are gas driven.  These “non-gas driven” pneumatic controllers use sources of power 

other than pressurized natural gas.  Examples include solar, electric, and instrument air.  At oil 

and gas locations with electrical service, non gas-driven controllers are typically used.  Gas-

driven pneumatic controllers are typically characterized as “high-bleed” or “low-bleed”, where a 

high-bleed device releases at least 6 cubic feet of gas per hour. EPA evaluated the impact of 

requiring low-bleed controllers.   

Storage vessels (TSD Chapter 7):  Crude oil, condensate, and produced water are typically 

stored in fixed-roof storage vessels.  Some vessels used for storing produced water may be open-

top tanks.  These vessels, which are operated at or near atmospheric pressure conditions, are 

typically located at tank batteries.  A tank battery refers to the collection of process equipment 

used to separate, treat, and store crude oil, condensate, natural gas, and produced water.  The 

extracted products from productions wells enter the tank battery through the production header, 

which may collect product from many wells.  Emissions from storage vessels are a result of 
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working, breathing, and flash losses.  Working losses occur due to the emptying and filling of 

storage tanks.  Breathing losses are the release of gas associated with daily temperature 

fluctuations and other equilibrium effects.  Flash losses occur when a liquid with entrained gases 

is transferred from a vessel with higher pressure to a vessel with lower pressure, thus allowing 

entrained gases or a portion of the liquid to vaporize or flash.  In the oil and natural gas 

production segment, flashing losses occur when live crude oils or condensates flow into a storage 

tank from a processing vessel operated at a higher pressure.  Typically, the larger the pressure 

drop, the more flashing emission will occur in the storage stage.  The two ways of controlling 

tanks with significant emissions would be to install a vapor recovery unit (VRU) and recover all 

the vapors from the tanks or to route the emissions from the tanks to a control device.   

Well completions (TSD Chapter 4): In the oil and natural gas sector, well completions contain 

multi-phase processes with various sources of emissions.  One specific emission source during 

completion activities is the venting of natural gas to the atmosphere during flowback.  Flowback 

emissions are short-term in nature and occur as a specific event during completion of a new well 

or during activities that involve re-drilling or re-fracturing an existing well.  Well completions 

include multiple steps after the well bore hole has reached the target depth.  These steps include 

inserting and cementing-in well casing, perforating the casing at one or more producing 

horizons, and often hydraulically fracturing one or more zones in the reservoir to stimulate 

production. 

 Hydraulic fracturing is one completion step for improving gas production where the 

reservoir rock is fractured with very high pressure fluid, typically water emulsion with proppant 

(generally sand) that “props open” the fractures after fluid pressure is reduced.  Emissions are a 

result of the backflow of the fracture fluids and reservoir gas at high velocity necessary to lift 

excess proppant to the surface.  This multi-phase mixture is often directed to a surface 

impoundment where natural gas and VOC vapors escape to the atmosphere during the collection 

of water, sand, and hydrocarbon liquids.  As the fracture fluids are depleted, the backflow 

eventually contains more volume of natural gas from the formation.  Thus, we estimate 

completions involving hydraulic fracturing vent substantially more natural gas, approximately 

230 times more, than completions not involving hydraulic fracturing.  Specifically, we estimate 
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that uncontrolled well completion emissions for a hydraulically fractured well are about 23 tons 

of VOC, where emissions for a conventional gas well completion are around 0.1 ton VOC.  Our 

data indicate that hydraulically fractured wells have higher emissions but we believe some wells 

that are not hydraulically fractured may have higher emissions than our data show, or in some 

cases, hydraulically fractured wells could have lower emissions that our data show.  

 Reduced emission completions, which are sometimes referred to as “green completions” 

or “flareless completions,” use equipment at the well site to capture and treat gas so it can be 

directed into the sales line and avoid emissions from venting.   Equipment required to conduct a 

reduced emissions completion may include tankage, special gas-liquid-sand separator traps, and 

gas dehydration.  Equipment costs associated with reduced emission completions will vary from 

well to well.  Based on information provided to the EPA Natural Gas STAR program, 90 percent 

of gas potentially vented during a completion can be recovered during a reduced emission 

completion. 

3.2.1.2 NESHAP Emission Points and Pollution Controls 

A series of emissions controls will be required under the proposed NESHAP 

Amendments.  This section provides a basic description of potential sources of emissions and the 

controls intended for each to facilitate the reader’s understanding of the economic impacts and 

subsequent benefits analysis section.  The reader who is interested in more technical detail on the 

engineering and cost basis of the analysis is referred to the relevant technical memos which are 

published in the Docket.  The memos are also referenced below. 

Glycol dehydrators5:  Once natural gas has been separated from any liquid materials or products 

(e.g., crude oil, condensate, or produced water), residual entrained water is removed from the 

natural gas by dehydration.  Dehydration is necessary because water vapor may form hydrates, 

which are ice-like structures, and can cause corrosion in or plug equipment lines.  The most 

widely used natural gas dehydration processes are glycol dehydration and solid desiccant 

                                                
5 Memorandum.  Brown, Heather, EC/R Incorporated, to Bruce Moore and Greg Nizich, EPA/OAQPS/SPPD/FIG.  

Oil and Natural Gas Production MACT and Natural Gas Transmission and Storage MACT - Glycol Dehydrators:  
Impacts of MACT Review Options. July 17,2011. 
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dehydration.  Solid desiccant dehydration, which is typically only used for lower throughputs, 

uses adsorption to remove water and is not a source of HAP emissions.  Glycol dehydration is an 

absorption process in which a liquid absorbent, glycol, directly contacts the natural gas stream 

and absorbs any entrained water vapor in a contact tower or absorption column.  The rich glycol, 

which has absorbed water vapor from the natural gas stream, leaves the bottom of the absorption 

column and is directed either to (1) a gas condensate glycol separator (GCG separator or flash 

tank) and then a reboiler or (2) directly to a reboiler where the water is boiled off of the rich 

glycol.  The regenerated glycol (lean glycol) is circulated, by pump, into the absorption tower.  

The vapor generated in the reboiler is directed to the reboiler vent.  The reboiler vent is a source 

of HAP emissions.  In the glycol contact tower, glycol not only absorbs water but also absorbs 

selected hydrocarbons, including BTEX and n-hexane.  The hydrocarbons are boiled off along 

with the water in the reboiler and vented to the atmosphere or to a control device.   

The most commonly used control device is a condenser.  Condensers not only reduce 

emissions, but also recover condensable hydrocarbon vapors that can be recovered and sold.  In 

addition, the dry non-condensable off-gas from the condenser may be used as fuel or recycled 

into the production process or directed to a flare, incinerator, or other combustion device. 

 If present, the GCG separator (flash tank) is also a potential source of HAP emissions.  

Some glycol dehydration units use flash tanks prior to the reboiler to separate entrained gases, 

primarily methane and ethane from the glycol.  The flash tank off-gases are typically recovered 

as fuel or recycled to the natural gas production header.  However, the flash tank may also be 

vented directly to the atmosphere.  Flash tanks typically enhance the reboiler condenser’s 

emission reduction efficiency by reducing the concentration of non-condensable gases present in 

the stream prior to being introduced into the condenser. 

Storage vessels:  Please see the discussion of storage vessels in the NSPS section above. 

3.2.2 Engineering Cost Analysis 

In this section, we provide an overview of the engineering cost analysis used to estimate 

the additional private expenditures industry may make in order to comply with the proposed 
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NSPS and NESHAP amendments.  A detailed discussion of the methodology used to estimate 

cost impacts is presented in series of memos published in the Docket as part of the TSD. 

3.2.2.1 NSPS Sources 

Table 3-1 shows the emissions sources, points, and controls analyzed in three NSPS 

regulatory options, which we term Option 1, Option 2, and Option 3.  Option 2 was selected for 

proposal.  The proposed Option 2 contains reduced emission completion (REC) and completion 

combustion requirements for a subset of newly drilled natural gas wells that are hydraulically 

fractured.  Option 2 also requires a subset of wells that are worked over, or recompleted, using 

hydraulic fracturing to implement RECs.  The proposed Option 2 requires emissions reductions 

from reciprocating compressors at gathering and boosting stations, processing plants, 

transmission compressor stations, and underground storage facilities.  The proposed Option 2 

also requires emissions reductions from centrifugal compressors, processing plants, and 

transmission compressor stations.  Finally, the proposed Option 2 requires emissions reductions 

from pneumatic controllers at oil and gas production facilities and natural gas transmission and 

storage and reductions from high throughput storage vessels. 
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Table 3-1 Emissions Sources, Points, and Controls Included in NSPS Options 

Emissions Sources and Points Emissions Control Option 1 
Option 2 

(proposed) 
Option 3 

Well Completions of Post-NSPS Wells      

Hydraulically Fractured Gas Wells that 
Meet Criteria for Reduced Emissions 
Completion (REC) 

REC X X X 

Hydraulically Fractured Gas Wells that 
Do Not Meet Criteria for REC 

Combustion X X X 

 Conventional Gas Wells Combustion    

 Oil Wells Combustion    

Well Recompletions    

Hydraulically Fractured Gas Wells (post-
NSPS wells) 

REC X X X 

Hydraulically Fractured Gas Wells (pre-
NSPS wells) 

REC  X X 

 Conventional Gas Wells Combustion    

 Oil Wells Combustion    

Equipment Leaks    

 Well Pads NSPS Subpart VV   X 

 Gathering and Boosting Stations NSPS Subpart VV   X 

 Processing Plants NSPS Subpart VVa  X X 

 Transmission Compressor Stations NSPS Subpart VV   X 

Reciprocating Compressors    

 Well Pads 
Annual Monitoring/ 
Maintenance (AMM) 

   

 Gathering/Boosting Stations AMM X X X 

 Processing Plants AMM X X X 

 Transmission Compressor Stations AMM X X X 

 Underground Storage Facilities AMM X X X 

Centrifugal Compressors    

 Processing Plants 
Dry Seals/Route to Process or 
Control 

X X X 

 Transmission Compressor Stations 
Dry Seals/Route to Process or 
Control 

X X X 

Pneumatic Controllers -    

  Oil and Gas Production Low Bleed/Route to Process X X X 

  Natural Gas Transmission and Storage Low Bleed/Route to Process X X X 

Storage Vessels    

 High Throughput 95% control X X X 

  Low Throughput 95% control       
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The distinction between Option 1 and the proposed Option 2 is the inclusion of 

completion combustion and REC requirements for recompletions at existing wells and an 

equipment leak standard for natural gas processing plants in Option 2.  Option 2 requires the 

implementation of completion combustion and REC for existing wells as well as wells 

completed after the implementation date of the proposed NSPS.  Option 1 applies the 

requirement only to new wells, not existing wells.  The main distinction between proposed 

Option 2 and Option 3 is the inclusion of a suite of equipment leak standards.  These equipment 

leak standards would apply at well pads, gathering and boosting stations, and transmission 

compressor stations.  Option 1 differs from Option 3 in that it does not include the combustion 

and REC requirements at existing wells or the full suite of equipment leak standards. 

Table 3-2 summarizes the unit level capital and annualized costs for the evaluated NSPS 

emissions sources and points.  The detailed description of costs estimates is provided in the 

series of technical memos included in the TSD in the document, as referenced in Section 3.2.1 of 

this RIA.  The table also includes the projected number of affected units.  Four issues are 

important to note on Table 3-2: the approach to annualizing costs, the projection of affected units 

in the baseline; that capital and annualized costs are equated for RECs; and additional natural gas 

and hydrocarbon condensates that would otherwise be emitted to the environment are recovered 

from several control options evaluated in the NSPS review. 

First, engineering capital costs were annualized using a 7 percent interest rate.  However, 

different emissions control options were annualized using expected lifetimes that were 

determined to be most appropriate for individual options.  For control options evaluated for the 

NSPS, the following lifetimes were used: 

• Reduced emissions completions and combustion devices: 1 year (more discussion of the 
selection of a one-year lifetime follows in this section momentarily) 

• Reciprocating compressors: 3 years 

• Centrifugal compressors and pneumatic controllers: 10 years 

• Storage vessels: 15 years 

• Equipment leaks: 5 to 10 years, depending on specific control 
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To estimate total annualized engineering compliance costs, we added the annualized costs 

of each item without accounting for different expected lifetimes.  An alternative approach would 

be to establish an overall, representative project time horizon and annualize costs after 

consideration of control options that would need to be replaced periodically within the given 

time horizon.  For example, a 15 year project would require replacing reciprocating compressor-

related controls five times, but only require a single installation of controls on storage vessels.  

This approach, however, is equivalent to the approach selected; that is to sum the annualized 

costs across options, without establishing a representative project time horizon. 

Second, the projected number of affected units is the number of units that our analysis 

shows would be affected in 2015, the analysis year.  The projected number of affected units 

accounts for estimates of the adoption of controls in absence of Federal regulation.  While the 

procedures used to estimate adoption in absence of Federal regulation are presented in detail 

within the TSD, because REC requirements provide a significant component of the estimated 

emissions reductions and engineering compliance costs, it is worthwhile to go into some detail 

on the projected number of RECs within the RIA.  We use EIA projections consistent with the 

Annual Energy Outlook 2011 to estimate the number of natural gas well completions with 

hydraulic fracturing in 2015, assuming that successful wells drilled in coal bed methane, shale, 

and tight sands used hydraulic fracturing.  Based on this assumption, we estimate that 11,403 

wells were successfully completed and used hydraulic fracturing.  To approximate the number of 

wells that would not be required to perform RECs because of the absence of sufficient 

infrastructure, we draw upon the distinction in EIA analysis between exploratory and 

developmental wells.  We assume exploratory wells do not have sufficient access to 

infrastructure to perform a REC and are exempt from the REC requirement.  These 446 wells are 

removed from the REC estimate and are assumed to combust emissions using pit flares. 

The number of hydraulically fractured recompletions of existing wells was approximated 

using assumptions found in Subpart W’s TSD6 and applied to well count data found in the 

proprietary HPDI® database.  The underlying assumption is that wells found in coal bed 

                                                
6 U.S. Environmental Protection Agency (U.S. EPA). 2010. Greenhouse Gas Emissions Reporting From the 

Petroleum and Natural Gas Industry: Background Technical Support Document. Climate Change Division. 
Washington, DC. 
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methane, shale, and tight sand formations require re-fracture, on average, every 10 years.  In 

other words, 10 percent of the total wells classified as being performed with hydraulic fracturing 

would perform a recompletion in any given year.  Natural gas well recompletions performed 

without hydraulic fracturing were based only on 2008 well data from HPDI®.   

The number of completions and recompletions already controlling emissions in absence 

of a Federal regulation was estimated based on existing State regulations that require applicable 

control measures for completions and workovers in specific geographic locations. Based on this 

criterion, 15 percent of natural gas completions with hydraulic fracturing and 15 percent of 

existing natural gas workovers with hydraulic fracturing are estimated to be controlled by either 

flare or REC in absence of Federal regulations.  Completions and recompletions without 

hydraulic fracturing were assumed as having no controls in absence of a Federal regulation. 

Following these procedures leads to an estimate of 9,313 completions of new wells and 12,050 

recompletions of existing wells that will require either a REC under the proposed NSPS in 2015.   

It should be noted that natural gas prices are stochastic and, historically, there have been 

periods where prices have increased or decreased rapidly.  These price changes would be 

expected to affect adoption of emission reduction technologies in absence of regulation, 

particularly control measures such as RECs that capture emission significantly over short periods 

of time. 

Third, for well completion requirements, annualized costs are set equal to capital costs.  

We chose to equate the capital and annualized cost because the completion requirements 

(combustion and RECs) are essentially one-shot events; the emissions controls are applied over 

the course of a well completion, which will typically range over a few days to a couple of weeks.  

After this relatively short period of time, there is no continuing control requirement, unless the 

well is again completed at a later date, sometimes years later.  We reasoned that the absence of a 

continuing requirement makes it appropriate to equate capital and annualized costs.  

Fourth, for annualized cost, we present two figures, the annualized costs with revenues 

from additional natural gas and condensate recovery and annualized costs without additional 

revenues this product recovery.  Several emission controls for the NSPS capture VOC emissions 
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that otherwise would be vented to the atmosphere.  Since methane is co-emitted with VOCs, a 

large proportion of the averted methane emissions can be directed into natural gas production 

streams and sold.  When including the additional natural gas recovery in the cost analysis, we 

assume that producers are paid $4 per thousand cubic feet (Mcf) for the recovered gas at the 

wellhead.  RECs also capture saleable condensates that would otherwise be lost to the 

environment.  The engineering analysis assumes a REC will capture 34 barrels of condensate per 

REC and that the value of this condensate is $70/barrel.  

The assumed price for natural gas is within the range of variation of wellhead prices for 

the 2010-11 period.  The $4/Mcf is below the 2015 EIA-forecasted wellhead price, $4.22/Mcf in 

2008 dollars.  The $4/Mcf payment rate does not reflect any taxes or tax credits that might apply 

to producers implementing the control technologies.  As natural gas prices can increase or 

decrease rapidly, the estimated engineering compliance costs can vary when revenue from 

additional natural gas recovery is included.  There is also geographic variability in wellhead 

prices, which can also influence estimated engineering costs.  A $1/Mcf change in the wellhead 

price causes a change in estimated engineering compliance costs of about $180 million in 2008 

dollars.   

As will be seen in subsequent analysis, the estimate of revenues from additional product 

recovery is critical to the economic impact analysis.  However, before discussing this assumption 

in more depth, it is important to further develop the engineering estimates to contextualize the 

discussion and to provide insight into why, if it is profitable to capture natural gas emissions that 

are otherwise vented, producers may not already be doing so. 

Table 3-3 presents the estimated nationwide compliance costs, emissions reductions, and 

VOC reduction cost-effectiveness broken down by emissions sources and points for those 

sources and points evaluated in the NSPS analysis.  The reporting and recordkeeping costs for 

the proposed NSPS Option 2 are estimated at $18,805,398 and are included in Table 3-3.  

Because of time constraints, we were unable to estimate reporting and recordkeeping costs 

customized for Options 1 and 3; for these options, we use the same $18,805,398 for reporting 

and recordkeeping costs for these options.   

As can be seen from Table 3-3 controls associated with well completions and 

recompletions of hydraulically fractured wells provide the largest potential for emissions 
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reductions from evaluated emissions sources and points, as well as present the most significant 

compliance costs if revenue from additional natural gas recovery is not included.  Emissions 

reductions from conventional natural gas wells and crude oil wells are clearly not as significant 

as the potential from hydraulically fractured wells, as was discussed in Section 3.2.1.1. 

Several evaluated emissions sources and points are estimated to have net financial 

savings when including the revenue from additional natural gas recovery.  These sources form 

the core of the three NSPS options evaluated in this RIA.  Table 3-4 presents the estimated 

engineering costs, emissions reductions, and VOC reduction cost-effectiveness for the three 

NSPS options evaluated in the RIA.  The resulting total national annualized cost impact of the 

proposed NSPS rule (Option 2) is estimated at $740 million per year without considering 

revenues from additional natural gas recovery.  Annual costs for the proposed NSPS are 

estimated at -$45 million when revenue from additional natural gas recovery is included.  All 

figures are in 2008 dollars.  
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Table 3-2 Summary of Capital and Annualized Costs per Unit for NSPS Emissions 

Points 

Sources/Emissions Point 

Projected No. of 

Affected Units 

  Per Unit Annualized Cost (2008$)

Capital Costs 

(2008$) 

Without 

Revenues from 

Additional 

Product 

Recovery 

With  

Revenues from 

Additional 

Product 

Recovery 

Well Completions     

Hydraulically Fractured Gas Wells 
that Meet Criteria for REC 9,313 $33,237 $33,237 -$2,173 

Hydraulically Fractured Gas Wells 
that Do Not Meet Criteria for REC 
(Completion Combustion) 446 $3,523 $3,523 $3,523 

Conventional Gas Wells 7,694 $3,523 $3,523 $3,523 

Oil Wells 12,193 $3,523 $3,523 $3,523 

Well Recompletions     

Hydraulically Fractured Gas Wells 
(existing wells) 12,050 $33,237 $33,237 -$2,173 

Conventional Gas Wells 42,342 $3,523 $3,523 $3,523 

Oil Wells 39,375 $3,523 $3,523 $3,523 

Equipment Leaks     

Well Pads 4,774 $68,970 $23,413 $21,871 

Gathering and Boosting Stations 275 $239,494 $57,063 $51,174 

Processing Plants 29 $7,522 $45,160 $33,884 

Transmission Compressor Stations 107 $96,542 $25,350 $25,350 

Reciprocating Compressors     

Well Pads 6,000 $6,480 $3,701 $3,664 

Gathering/Boosting Stations 210 $5,346 $2,456 $870 

Processing Plants 209 $4,050 $2,090 -$2,227 

Transmission Compressor Stations 20 $5,346 $2,456 $2,456 

Underground Storage Facilities 4 $7,290 $3,349 $3,349 

Centrifugal Compressors     

Processing Plants 16 $75,000 $10,678 -$123,730 

Transmission Compressor Stations 14 $75,000 $10,678 -$77,622 

Pneumatic Controllers -     

 Oil and Gas Production 13,632 $165 $23 -$1,519 

 Natural Gas Trans. and Storage 67 $165 $23 $23 

Storage Vessels     

High Throughput 304 $65,243 $14,528 $13,946 

Low Throughput 17,086 $65,243 $14,528 $13,946 
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Table 3-4 Estimated Engineering Compliance Costs, NSPS (2008$) 

  Option 1 

Option 2 

(Proposed) Option 3 

Capital Costs $337,803,930 $738,530,998 $1,143,984,622 

Annualized Costs    

   Without Revenues from Additional Natural 
        Gas Product Recovery 

$336,163,858 $737,982,436 $868,160,873 

With Revenues from Additional Natural Gas 
        Product Recovery 

-$19,496,449 -$44,695,374 $76,502,080 

   

VOC Reductions (tons per year) 270,695 535,201 548,449 

Methane Reduction (tons per year) 1,574,498 3,386,154 3,442,283 

HAP Reductions (tons per year) 17,442 36,645 37,142 

   

VOC Reduction Cost-Effectiveness ($/ton 
without additional product revenues) 

$1,241.86 $1,378.89 $1,582.94 

VOC Reduction Cost-Effectiveness ($/ton 
with additional product revenues) 

-$72.02 -$83.51 $139.49 

Note: the VOC reduction cost-effectiveness estimate assumes there is no benefit to reducing methane and HAP, 
which is not the case.  We however present the per ton costs of reducing the single pollutant for illustrative 
purposes.  As product prices can increase or decrease rapidly, the estimated engineering compliance costs can 
vary when revenue from additional product recovery is included.  There is also geographic variability in 
wellhead prices, which can also influence estimated engineering costs.  A $1/Mcf change in the wellhead price 
causes a change in estimated engineering compliance costs of about $180 million in 2008 dollars.  The cost 
estimates for each regulatory option also include reporting and recordkeeping costs of $18,805,398. 

 As mentioned earlier, the single difference between Option 1 and the proposed Option 2 

is the inclusion of RECs for recompletions of existing wells in Option 2.  The implication of this 

inclusion in Option 2 is clear in Table 3-4, as the estimated engineering compliance costs without 

additional product revenue more than double and VOC emissions reductions also more than 

double.  Meanwhile, the addition of equipment leaks standards in Option 3 increases engineering 

costs more than $400 million dollars in 2008 dollars, but only marginally increase estimates of 

emissions reductions of VOCs, methane, and HAPS. 

As the price assumption is very influential on estimated impacts, we performed a simple 

sensitivity analysis of the influence of the assumed wellhead price paid to natural gas producers 

on the overall engineering costs estimate of the proposed NSPS.  Figure 3-1 plots the annualized 

costs after revenues from natural gas product recovery have been incorporated (in millions of 

2008 dollars) as a function of the assumed price of natural gas paid to producers at the wellhead 
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for the recovered natural gas (represented by the sloped, dotted line).  The vertical solid lines in 

the figure represent the natural gas price assumed in the RIA ($4.00/Mcf) for 2015 and the 2015 

forecast by EIA in the 2011 Annual Energy Outlook ($4.22/Mcf) in 2008 dollars. 

Figure 3-1 Sensitivity Analysis of Proposed NSPS Annualized Costs after Revenues 

from Additional Product Recovery are Included 

As shown in Table 3-4, at the assumed $4/Mcf, the annualized costs are estimated at -$45 

million.  At $4.22/Mcf, the price forecast reported in the 2011 Annual Energy Outlook, the 

annualized costs are estimated at about -$90 million, which would approximately double the 

estimate of net cost savings of the proposed NSPS.  As indicated by this difference, EPA has 

chosen a relatively conservative assumption (leading to an estimate of few savings and higher net 

costs) for the engineering costs analysis.  The natural gas price at which the proposed NSPS 

breaks-even is around $3.77/Mcf.  As mentioned earlier, a $1/Mcf change in the wellhead natural 

gas price leads to about a $180 million change in the annualized engineering costs of the 

proposed NSPS.  Consequently, annualized engineering costs estimates would increase to about 

$140 million under a $3/Mcf price or decrease to about -$230 million under a $5/Mcf price.   
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It is additionally helpful to put the quantity of natural gas and condensate potentially 

recovered in the context of domestic production levels.  To do so, it is necessary to make two 

adjustments.  First, not all emissions reductions can be directed into production streams to be 

ultimately consumed by final consumers.  Several controls require combustion of the natural gas 

rather than capture and direction into product streams.  After adjusting estimates of national 

emissions reductions in Table 3-3 for these combustion-type controls, Options 1, 2, and 3 are 

estimated to capture about 83, 183, and 185 bcf of natural gas and 317,000, 726,000, and 

726,000 barrels of condensate, respectively.  For control options that are expected to recover 

natural gas products.  Estimates of unit-level and nation-level product recovery are presented in 

Section 3 of the RIA.  Note that completion-related requirements for new and existing wells 

generate all the condensate recovery for all NSPS regulatory options.  For natural gas recovery, 

RECs contribute 77 bcf (92 percent) for Option 1, 176 bcf (97 percent) for Option 2, and 176 bcf 

(95 percent) for Option 3.  
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A second adjustment to the natural gas quantities is necessary to account for 

nonhydrocarbon gases removed and gas that reinjected to repressurize wells, vented or flared, or 

consumed in production processes.  Generally, wellhead production is metered at or near the 

wellhead and payments to producers are based on these metered values.  In most cases, the 

natural gas is minimally processed at the meter and still contains impurities or co-products that 

must be processed out of the natural gas at processing plants.  This means that the engineering 

cost estimates of revenues from additional natural gas recovery arising from controls 

implemented at the wellhead include payment for the impurities, such as the VOC and HAP 

content of the unprocessed natural gas.  According to EIA, in 2009 the gross withdrawal of 

natural gas totaled 26,013 bcf, but 20,580 bcf was ultimately considered dry production (these 

figures exclude EIA estimates of flared and vented natural gas).  Using these numbers, we apply 

a factor of 0.79 (20,580 bcf divided by 26,013 bcf) to the adjusted sums in the previous 

paragraph to estimate the volume of gas that is captured by controls that may ultimately by 

consumed by final consumers. 

 After making these adjustments, we estimate that Option 1 will potentially recover 

approximately 66 bcf, proposed Option 2 will potentially recover about 145 bcf, and Option 3 

will potentially recover 146 bcf of natural gas that will ultimately be consumed by natural gas 

consumers.7  EIA forecasts that the domestic dry natural gas production in 2015 will be 20,080 

bcf.  Consequently, Option 1, proposed Option 2, and Option 3 may recover production 

representing about 0.29 percent, 0.64 percent and 0.65 percent of domestic dry natural gas 

production predicted in 2015, respectively.  These estimates, however, do not account for 

adjustments producers might make, once compliance costs and potential revenues from 

additional natural gas recovery factor into economic decisionmaking.  Also, as discussed in the 

previous paragraph, these estimates do not include the nonhydrocarbon gases removed, natural 

gas reinjected to repressurize wells, and natural gas consumed in production processes, and 

therefore will be lower than the estimates of the gross natural gas captured by implementing 

controls. 

                                                
7 To convert U.S. short tons of methane to a cubic foot measure, we use the conversion factor of 48.04 Mcf per U.S. 

short ton. 
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Clearly, this discussion raises the question as to why, if emissions can be reduced 

profitably using environmental controls, more producers are not adopting the controls in their 

own economic self-interest.  This question is made clear when examining simple estimates of the 

rate of return to installing emissions controls that, using the engineering compliance costs 

estimates, the estimates of natural gas product recovery, and assumed product prices (Table 3-6).  

The rates of return presented in are for evaluated controls where estimated revenues from 

additional product recovery exceed the costs.  The rate of return is calculated using the simple 

formula: product recovery, and assumed product prices (Table 3-6).  The rates of return 

presented in are for evaluated controls where estimated revenues from additional product 

recovery exceed the costs.  The rate of return is calculated using the simple formula: 

estimated revenues
rate of return 1 100

estimated costs

� �
= − ×� �
� �

. 

Table 3-6 Simple Rate of Return Estimate for NSPS Control Options 

Emission Point Control Option Rate of Return 

New Completions of Hydraulically Fractured Wells  
Reduced Emissions 
Completions 6.5% 

Re-completions of Existing Hydraulically Fractured Wells  
Reduced Emissions 
Completions 6.5% 

Reciprocating Compressors  (Processing Plants) 

Replace Packing Every 3 
Years of Operation 208.3% 

Centrifugal Compressors (Processing Plants) Convert to Dry Seals 1158.7% 

Centrifugal Compressors (Transmission Compressor 
Stations) 

Convert to Dry Seals 
726.9% 

Pneumatic Controllers (Oil and Gas Production ) Low Bleed 6467.3% 

Overall Proposed NSPS Low Bleed 6.1%

Note: The table presents only control options  where estimated revenues from natural gas product recovery exceeds 
estimated annualized engineering costs 

Recall from Table 2-23 in the Industry Profile, that EIA estimates an industry-level rate 

of return on investments for various segments of the oil and natural gas industry.  While the 

numbers varies greatly over time because of industry and economic factors, EIA estimates a 10.7 

percent rate of return on investments for oil and natural gas production in 2008. While this 

amount is higher than the 6.5 percent rate estimated for RECs, it is significantly lower than the 

rate of returns estimated for other controls anticipated to have net savings. 

Assuming financially rational producers, standard economic theory suggests that all oil 

and natural gas firms would incorporate all cost-effective improvements, which they are aware 
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of, without government intervention.  The cost analysis of this draft RIA nevertheless is based on 

the observation that emission reductions that appear to be profitable in our analysis have not 

been generally adopted.  One possible explanation may be the difference between the average 

profit margin garnered by productive capital and the environmental capital where the primary 

motivation for installing environmental capital would be to mitigate the emission of pollutants 

and confer social benefits as discussed in Chapter 4.   

Another explanation for why there appear to be negative cost control technologies that 

are not generally adopted is imperfect information.  If emissions from the oil and natural gas 

sector are not well understood, firms may underestimate the potential financial returns to 

capturing emissions.  Quantifying emissions is difficult and has been done in relatively few 

studies.  Recently, however, advances in infrared imagery have made it possible to affordably 

visualize, if not quantify, methane emissions from any source using a handheld camera.  This 

infrared camera has increased awareness within industry and among environmental groups and 

the public at large about the large number of emissions sources and possible scale of emissions 

from oil and natural gas production activities.  Since, as discussed in the TSD chapter referenced 

above, 15 percent of new natural gas well completions with hydraulic fracturing and 15 percent 

of existing natural gas well recompletions with hydraulic fracturing are estimated to be 

controlled by either flare or REC in the baseline, it is unlikely that a lack of information will be a 

significant reason for these emission points to not be addressed in the absence of Federal 

regulation in 2015.  However, for other emission points, a lack of information, or the cost 

associated with doing a feasibility study of potential emission capture technologies, may 

continue to prevent firms from adopting these improvements in the absence of regulation. 

Another explanation is the cost associated with irreversibility associated with 

implementing these environmental controls are not reflected in the engineering cost estimates 

above.  Due to the high volatility of natural gas prices, it is important to recognize the value of 

flexibility taken away from firms when requiring them to install and use a particular emissions 

capture technology.  If a firm has not adopted the technology on its own, then a regulation 

mandating its use means the firm loses the option to postpone investment in the technology in 

order to pursue alternative investments today, and the option to suspend use of the technology if 

it becomes unprofitable in the future.  Therefore, the full cost of the regulation to the firm is the 
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engineering cost and the lost option value minus the revenues from the sale of the additional 

recovered product.  In the absence of quantitative estimates of this option value for each 

emission point affected by the NSPS and NESHAP improvements, the costs presented in this 

RIA may underestimate the full costs faced by the affected firms.  With these caveats in mind, 

EPA believes it is analytically appropriate to analyze costs and economic impacts costs presented 

in Table 3-2 and Table 3-3 using the additional product recovery and associated revenues.   

3.2.2.2 NESHAP Sources 

As discussed in Section 3.2.1.2, EPA examined three emissions points as part of its 

analysis for the proposed NESHAP amendments.  Unlike the controls for the proposed NSPS, 

the controls evaluated under the proposed NESHAP amendments do not direct significant 

quantities of natural gas that would otherwise be flared or vented into the production stream.  

Table 3-7 shows the projected number of controls required, estimated unit-level capital and 

annualized costs, and estimated total annualized costs.  The table also shows estimated emissions 

reductions for HAPs, VOCs, and methane, as well as a cost-effectiveness estimate for HAP 

reduction, based upon engineering (not social) costs. 
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Table 3-7 Summary of Estimated Capital and Annual Costs, Emissions Reductions, 

and HAP Reduction Cost-Effectiveness for Proposed NESHAP Amendments 

Source/Emissions 

Point 

Projected 

No. of 

Controls 

Required 

      

Emission Reductions 

(tons per year)   

Capital 

Costs/ 

Unit 

(2008$) 

Annualized 

Cost/Unit 

(2008$) 

Total 

Annualized 

Cost 

(2008$) HAP VOC Methane 

HAP 

Reduction 

Cost-

Effectiveness 

(2008$/ton) 

Production - Small 
Glycol Dehydrators  115 65,793 30,409 3,497,001 548 893 324 6,377 
Transmission -  
Small Glycol 
Dehydrators  19 19,537 19,000 361,000 243 475 172 1,483 

Storage Vessels 674 65,243 14,528 9,791,872 589 7,812 4,364 16,618 
Reporting and 
Recordkeeping --- 196 2,933 2,369,755 --- --- --- --- 

Total 808     16,019,871 1,381 9,243 4,859 10,576 

Note: Totals may not sum due to independent rounding.

Under the Proposed NESHAP Amendments, about 800 controls will be required, costing a 

total of $16.0 million (Table 3-7).  We include reporting and recordkeeping costs as a unique line 

item showing these costs for the entire set of proposed amendments.  These controls will reduce 

HAP emissions by about 1,400 tons, VOC emissions by about 9,200 tons, and methane by about 

4,859 tons.  The cost-per-ton to reduce HAP emissions is estimated at about $11,000 per ton. All 

figures are in 2008 dollars. 
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4 BENEFITS OF EMISSIONS REDUCTIONS 

4.1 Introduction 

The proposed Oil and Natural Gas NSPS and NESHAP amendments are expected to 

result in significant reductions in existing emissions and prevent new emissions from expansions 

of the industry.  While we expect that these avoided emissions will result in improvements in air 

quality and reduce health effects associated with exposure to HAPs, ozone, and fine particulate 

matter (PM2.5), we have determined that quantification of those health benefits cannot be 

accomplished for this rule in a defensible way.  This is not to imply that there are no health 

benefits of the rules; rather, it is a reflection of the difficulties in modeling the direct and indirect 

impacts of the reductions in emissions for this industrial sector with the data currently available.  

For the proposed NSPS, the HAP and climate benefits can be considered “co-benefits”, and for 

the proposed NESHAP amendments, the ozone and PM2.5 health benefits and climate benefits 

can be considered “co-benefits”.  These co-benefits occur because the control technologies used 

to reduce VOC emissions also reduce emissions of HAPs and methane. 

The proposed NSPS is anticipated to prevent 37,000 tons of HAPs, 540,000 tons of 

VOCs, and 3.4 million tons of methane from new sources, while the proposed NESHAP 

amendments is anticipated reduce 1,400 tons of HAPs, 9,200 tons of VOCs, and 4,900 tons of 

methane from existing sources.  The specific control technologies for the proposed NSPS is also 

anticipated to have minor secondary disbenefits, including an increase of 990,000 tons of CO2, 

510 tons of NOx, 2,800 tons of CO, 7.6 tons of PM, and 1,000 tons of THC, and proposed 

NESHAP is anticipated to have minor secondary disbenefits, including an increase of 5,500 tons 

of CO2, 2.9 tons of NOx, 16 tons of CO, and 6.0 tons of THC.  Both rules would have additional 

emission changes associated with the energy system impacts.  The net CO2-equivalent emission 

reductions are 62 million metric tons for the proposed NSPS and 93 thousand metric tons for the 

proposed NESHAP.  As described in the subsequent sections, these pollutants are associated 

with substantial health effects, welfare effects, and climate effects.  With the data available, we 

are not able to provide a credible benefits estimates for any of these pollutants for these rules, 

due to the differences in the locations of oil and natural gas emission points relative to existing 

information, and the highly localized nature of air quality responses associated with HAP and 

VOC reductions.  In addition, we do not yet have interagency agreed upon valuation estimates 
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for greenhouse gases other than CO2 that could be used to value the climate co-benefits 

associated with avoiding methane emissions.  Instead, we provide a qualitative assessment of the 

benefits and co-benefits as well as a break-even analysis in Chapter 6 of this RIA.  A break-even 

analysis answers the question, “What would the benefits need to be for the benefits to exceed the 

costs.” While a break-even approach is not equivalent to a benefits analysis, we feel the results 

are illustrative, particularly in the context of previous benefit per ton estimates. 

4.2 Direct Emission Reductions from the Oil and Natural Gas Rules 

As described in Section 2 of this RIA, oil and natural gas operations in the U.S. include a 

variety of emission points for VOCs and HAPs including wells, processing plants, compressor 

stations, storage equipment, and transmission and distribution lines.  These emission points are 

located throughout much of the country with significant concentrations in particular regions.  For 

example, wells and processing plants are largely concentrated in the South Central, Midwest, and 

Southern California regions of the U.S., whereas gas compression stations are located all over 

the country.  Distribution lines to customers are frequently located within areas of high 

population density.   

In implementing these rules, emission controls may lead to reductions in ambient PM2.5 

and ozone below the National Ambient Air Quality Standards (NAAQS) in some areas and assist 

other areas with attaining the NAAQS. Due to the high degree of variability in the 

responsiveness of ozone and PM2.5 formation to VOC emission reductions, we are unable to 

determine how these rules might affect attainment status without air quality modeling data.8  

Because the NAAQS RIAs also calculate ozone and PM benefits, there are important differences 

worth noting in the design and analytical objectives of each RIA. The NAAQS RIAs illustrate 

the potential costs and benefits of attaining a new air quality standard nationwide based on an 

array of emission control strategies for different sources. In short, NAAQS RIAs hypothesize, 

but do not predict, the control strategies that States may choose to enact when implementing a 

NAAQS. The setting of a NAAQS does not directly result in costs or benefits, and as such, the 

NAAQS RIAs are merely illustrative and are not intended to be added to the costs and benefits 

of other regulations that result in specific costs of control and emission reductions. However, 

                                                
8 The responsiveness of ozone and PM2.5 formation is discussed in greater detail in sections 4.4.1 and 4.5.1 of this 

RIA.   
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some costs and benefits estimated in this RIA account for the same air quality improvements as 

estimated in an illustrative NAAQS RIA.  

By contrast, the emission reductions for this rule are from a specific class of well-

characterized sources. In general, EPA is more confident in the magnitude and location of the 

emission reductions for these rules. It is important to note that emission reductions anticipated 

from these rules do not result in emission increases elsewhere (other than potential energy 

disbenefits). Emission reductions achieved under these and other promulgated rules will 

ultimately be reflected in the baseline of future NAAQS analyses, which would reduce the 

incremental costs and benefits associated with attaining the NAAQS. EPA remains forward 

looking towards the next iteration of the 5-year review cycle for the NAAQS, and as a result 

does not issue updated RIAs for existing NAAQS that retroactively update the baseline for 

NAAQS implementation. For more information on the relationship between the NAAQS and 

rules such as analyzed here, please see Section 1.2.4 of the SO2 NAAQS RIA (U.S. EPA, 

2010d).  Table 4-1 shows the direct emission reductions anticipated for these rules by option.  It 

is important to note that these benefits accrue at different spatial scales.  HAP emission 

reductions reduce exposure to carcinogens and other toxic pollutants primarily near the emission 

source.  Reducing VOC emissions would reduce precursors to secondary formation of PM2.5 and 

ozone, which reduces exposure to these pollutants on a regional scale.  Climate effects associated 

with long-lived greenhouse gases like methane are primarily at a global scale, but methane is 

also a precursor to ozone, a short-lived climate forcer that exhibits spatial and temporal 

variability.   

Table 4-1 Direct Emission Reductions Associated with Options for the Oil and Natural 

Gas NSPS and NESHAP amendments in 2015 (short tons per year)  

Pollutant 
NESHAP 

Amendments 

NSPS 

Option 1 

NSPS 

Option 2 (Proposed) 

NSPS 

Option 3 

HAPs 1,381 17,442 36,645 37,142 

VOCs 9,243 270,695 535,201 548,449 

Methane 4,859 1,574,498 3,386,154 3,442,283 
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4.3 Secondary Impacts Analysis for Oil and Gas Rules 

The control techniques to avert leaks and vents of VOCs and HAPs are associated with 

several types of secondary impacts, which may partially offset the direct benefits of this rule.  In 

this RIA, we refer to the secondary impacts associated with the specific control techniques as 

“producer-side” impacts.9  For example, by combusting VOCs and HAPs, combustion increases 

emissions of carbon monoxide, NOx, particulate matter and other pollutants.  In addition to 

“producer-side” impacts, these control techniques would also allow additional natural gas 

recovery, which would contribute to additional combustion of the recovered natural gas and 

ultimately a shift in the national fuel mix.  We refer to the secondary impacts associated with the 

combustion of the recovered natural gas as “consumer-side” secondary impacts.  We provide a 

conceptual diagram of both categories of secondary impacts in Figure 4-1. 

                                                
9 In previous RIAs, we have also referred to these impacts as energy disbenefits. 
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Figure 4-1 Conceptual Diagram of Secondary Impacts from Oil and Gas NSPS and 

NESHAP Amendments 

Table 4-2  shows the estimated secondary impacts for the selected option for the 

“producer-side” impacts.  Relative to the direct emission reductions anticipated from these rules, 

the magnitude of these secondary air pollutant impacts is small.  Because the geographic 

distribution of these emissions from the oil and gas sector is not consistent with emissions 

modeled in Fann, Fulcher, and Hubbell (2009), we are unable to monetize the PM2.5 disbenefits 

associated with the producer-side secondary impacts.  In addition, it is not appropriate to 

monetize the disbenefits associated with the increased CO2 emissions without monetizing the 

averted methane emissions because the overall global warming potential (GWP) is actually 
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lower.  Through the combustion process, methane emissions are converted to CO2 emissions, 

which have 21 times less global warming potential compared to methane (IPCC, 2007).10  �

Table 4-2 Secondary Air Pollutant Impacts Associated with Control Techniques by 

Emissions Category (“Producer-Side”) (tons per year) 

Emissions Category CO2 NOx PM CO THC 

Completions of New Wells (NSPS) 587,991 302 5 1,644 622 

Recompletions of Existing Wells (NSPS) 398,341 205 - 1,114 422 

Pneumatic Controllers (NSPS) 22 1.0 2.6 - - 

Storage Vessels (NSPS) 856 0.5 0.0 2.4 0.9 

Total NSPS 987,210 508 7.6 2,760 1,045 

Total NESHAP (Storage Vessels) 5,543 2.9 0.1 16 6 

For the “consumer-side” impacts associated with the NSPS, we modeled the impact of 

the regulatory options on the national fuel mix and associated CO2-equivalent emissions (Table 

4-3).11  We provide the modeled results of the “consumer-side” CO2-equivalent emissions in 

Table 7-12�������������	
������
��	�����	��   

The modeled results indicate that through a slight shift in the national fuel mix, the CO2-

equivalent emissions across the energy sector would increase by 1.6 million metric tons for the 

proposed NSPS option in 2015.  This is in addition to the other secondary impacts and directly 

avoided emissions, for a total 62 million metric tons of CO2-equivalent emissions averted as 

shown in Table 4-4.  Due to time limitations under the court-ordered schedule, we did not 

estimate the other emissions (e.g., NOx, PM, SOx) associated with the additional national gas 

consumption or the change in the national fuel mix. � �

                                                
10 This issue is discussed in more detail in Section 4.7 of this RIA. 
11 A full discussion of the energy modeling is available in Section 7 of this RIA.   
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Table 4-3 Modeled Changes in Energy-related CO2-equivalent Emissions by Fuel Type 

for the Proposed Oil and Gas NSPS in 2015 (million metric tons) ("Consumer-Side")
1

Fuel Type 
NSPS Option 1 (million 

metric tons change in 
CO2-e) 

NSPS Option 2 (million metric 
tons change in CO2-e) 

(Proposed) 

NSPS Option 3 (million 
metric tons change in 

CO2-e) 

Petroleum -0.51 -0.14 -0.18 

Natural Gas 2.63 1.35 1.03 

Coal -3.04 0.36 0.42 

Other 0.00 0.00 0.00 

Total modeled Change 

in CO2-e  Emissions 
-0.92 1.57 1.27 

1 These estimates reflect the modeled change in CO2-e emissions using NEMS shown in Table 7-12. Totals may not 

sum due to independent rounding. 

Table 4-4 Total Change in CO2-equivalent Emissions including Secondary Impacts for 

the Proposed Oil and Gas NSPS in 2015 (million metric tons) 

Emissions Source 
NSPS 

Option 1  

NSPS Option 2 

(Proposed) 

NSPS 

Option 3 

NESHAP 

Amendments 

Averted CO2-e Emissions from New Sources1 -30.00 -64.51 -65.58 -0.09 

Additional CO2-e Emissions from Combustion and 
Supplemental Energy (Producer-side)2 0.90 0.90 0.90 0.01 

Total Modeled Change in Energy-related CO2-e  
Emissions (Consumer-side)3 -0.92 1.57 1.27 -- 

Total Change in CO2-e Emissions after 

Adjustment for Secondary Impacts 
-30.02 -62.04 -63.41 -0.09 

1 This estimate reflects the GWP of the avoided methane emissions from new sources shown in Table 4-1 and has 
been converted from short tons to metric tons. 

2 This estimate represents the secondary producer-side impacts associated with additional CO2 emissions from 

combustion and from additional electricity requirements shown in Table 4-2 and has been converted from short tons 
to metric tons. We use the producer-side secondary impacts associated with the proposed NSPS option as a 
surrogate for the impacts of the other options. 

3This estimate reflects the modeled change in the energy–related consumer-side impacts shown in Table 4-3.  

Totals may not sum due to independent rounding. 

Based on these analyses, the net impact of both the direct and secondary impacts of these 

rules would be an improvement in ambient air quality, which would reduce exposure to various 

harmful pollutants, improve visibility impairment, reduce vegetation damage, and reduce 

potency of greenhouse gas emissions.  Table 4-5 provides a summary of the direct and secondary 

emissions changes for each option. 
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Table 4-5 Summary of Emissions Changes for the Proposed Oil and Gas NSPS and 

NESHAP in 2015 (short tons per year) 

  Pollutant 
NSPS Option 

1  
NSPS Option 2 

(Proposed) 
NSPS Option 

3 
NESHAP 

Change in Direct Emissions 

VOC -270,000 -540,000 -550,000 -9,200 

Methane -1,600,000 -3,400,000 -3,400,000 -4,900 

HAP  -17,000 -37,000 -37,000 -1,400 

Change in Secondary 

Emissions (Producer-Side) 
1

CO2 990,000 990,000 990,000 5,500 

NOx 510 510 510 2.9 

PM 7.6 7.6 7.6 0.1 

CO 2,800 2,800 2,800 16 

THC 1,000 1,000 1,000 6.0 

Change in Secondary 

Emissions (Consumer-Side)  
CO2-e -1,000,000 1,700,000 1,400,000 N/A 

Net Change in CO2-equivalent 

Emissions  
CO2-e -33,000,000 -68,000,000 -70,000,000 -96,000 

1 We use the producer-side secondary impacts associated with the proposed option as a surrogate for the impacts of 
the other options. Totals may not sum due to independent rounding. 

4.4 Hazardous Air Pollutant (HAP) Benefits 

Even though emissions of air toxics from all sources in the U.S. declined by approximately 

42 percent since 1990, the 2005 National-Scale Air Toxics Assessment (NATA) predicts that 

most Americans are exposed to ambient concentrations of air toxics at levels that have the 

potential to cause adverse health effects (U.S. EPA, 2011d).12  The levels of air toxics to which 

people are exposed vary depending on where people live and work and the kinds of activities in 

which they engage.  In order to identify and prioritize air toxics, emission source types and 

locations that are of greatest potential concern, U.S. EPA conducts the NATA. 13  The most 

recent NATA was conducted for calendar year 2005 and was released in March 2011.  NATA 

includes four steps: 

                                                
12 The 2005 NATA is available on the Internet at http://www.epa.gov/ttn/atw/nata2005/.
13 The NATA modeling framework has a number of limitations that prevent its use as the sole basis for setting 

regulatory standards.  These limitations and uncertainties are discussed on the 2005 NATA website.  Even so, 
this modeling framework is very useful in identifying air toxic pollutants and sources of greatest concern, setting 
regulatory priorities, and informing the decision making process.  U.S. EPA.  (2011) 2005 National-Scale Air 
Toxics Assessment.  http://www.epa.gov/ttn/atw/nata2005/
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1) Compiling a national emissions inventory of air toxics emissions from outdoor sources 

2) Estimating ambient and exposure concentrations of air toxics across the United States 

3) Estimating population exposures across the United States 

4) Characterizing potential public health risk due to inhalation of air toxics including both 

cancer and noncancer effects 

Based on the 2005 NATA, EPA estimates that about 5 percent of census tracts 

nationwide have increased cancer risks greater than 100 in a million.  The average national 

cancer risk is about 50 in a million.  Nationwide, the key pollutants that contribute most to the 

overall cancer risks are formaldehyde and benzene. 14,15  Secondary formation (e.g., formaldehyde 

forming from other emitted pollutants) was the largest contributor to cancer risks, while 

stationary, mobile and background sources contribute almost equal portions of the remaining 

cancer risk. 

Noncancer health effects can result from chronic,16 subchronic,17 or acute18 inhalation 

exposures to air toxics, and include neurological, cardiovascular, liver, kidney, and respiratory 

effects as well as effects on the immune and reproductive systems.  According to the 2005 

NATA, about three-fourths of the U.S. population was exposed to an average chronic 

concentration of air toxics that has the potential for adverse noncancer respiratory health effects.

Results from the 2005 NATA indicate that acrolein is the primary driver for noncancer 

respiratory risk.   

                                                
14 Details on EPA’s approach to characterization of cancer risks and uncertainties associated with the 2005 NATA 

risk estimates can be found at http://www.epa.gov/ttn/atw/nata1999/riskbg.html#Z2. 
15 Details about the overall confidence of certainty ranking of the individual pieces of NATA assessments including 

both quantitative (e.g., model-to-monitor ratios) and qualitative (e.g., quality of data, review of emission 
inventories) judgments can be found at http://www.epa.gov/ttn/atw/nata/roy/page16.html. 

16 Chronic exposure is defined in the glossary of the Integrated Risk Information (IRIS) database 
(http://www.epa.gov/iris) as repeated exposure by the oral, dermal, or inhalation route for more than 
approximately 10% of the life span in humans (more than approximately 90 days to 2 years in typically used 
laboratory animal species).

17 Defined in the IRIS database as repeated exposure by the oral, dermal, or inhalation route for more than 30 days, 
up to approximately 10% of the life span in humans (more than 30 days up to approximately 90 days in typically 
used laboratory animal species).

18 Defined in the IRIS database as exposure by the oral, dermal, or inhalation route for 24 hours or less. 
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Figure 4-2 and Figure 4-3 depict the estimated census tract-level carcinogenic risk and 

noncancer respiratory hazard from the assessment.  It is important to note that large reductions in 

HAP emissions may not necessarily translate into significant reductions in health risk because 

toxicity varies by pollutant, and exposures may or may not exceed levels of concern.  For 

example, acetaldehyde mass emissions are more than double acrolein emissions on a national 

basis, according to EPA’s 2005 National Emissions Inventory (NEI).  However, the Integrated 

Risk Information System (IRIS) reference concentration (RfC) for acrolein is considerably lower 

than that for acetaldehyde, suggesting that acrolein could be potentially more toxic than 

acetaldehyde. 19  Thus, it is important to account for the toxicity and exposure, as well as the mass 

of the targeted emissions.  

Figure 4-2 Estimated Chronic Census Tract Carcinogenic Risk from HAP exposure 

from outdoor sources (2005 NATA) 

  

                                                
19 Details on the derivation of  IRIS values and available supporting documentation for individual chemicals (as well 

as chemical values comparisons) can be found at http://cfpub.epa.gov/ncea/iris/compare.cfm. 
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Figure 4-3 Estimated Chronic Census Tract Noncancer (Respiratory) Risk from HAP 

exposure from outdoor sources (2005 NATA) 

�

Due to methodology and data limitations, we were unable to estimate the benefits 

associated with the hazardous air pollutants that would be reduced as a result of these rules.. In a 

few previous analyses of the benefits of reductions in HAPs, EPA has quantified the benefits of 

potential reductions in the incidences of cancer and non-cancer risk (e.g., U.S. EPA, 1995). In 

those analyses, EPA relied on unit risk factors (URF) developed through risk assessment 

procedures.20 These URFs are designed to be conservative, and as such, are more likely to 

represent the high end of the distribution of risk rather than a best or most likely estimate of risk. 

As the purpose of a benefit analysis is to describe the benefits most likely to occur from a 

reduction in pollution, use of high-end, conservative risk estimates would overestimate the 

                                                
20The unit risk factor is a quantitative estimate of the carcinogenic potency of a pollutant, often expressed as the 

probability of contracting cancer from a 70-year lifetime continuous exposure to a concentration of one µg/m3 of 
a pollutant. 
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benefits of the regulation. While we used high-end risk estimates in past analyses, advice from 

the EPA’s Science Advisory Board (SAB) recommended that we avoid using high-end estimates 

in benefit analyses (U.S. EPA-SAB, 2002). Since this time, EPA has continued to develop better 

methods for analyzing the benefits of reductions in HAPs. 

As part of the second prospective analysis of the benefits and costs of the Clean Air Act 

(U.S. EPA, 2011a), EPA conducted a case study analysis of the health effects associated with 

reducing exposure to benzene in Houston from implementation of the Clean Air Act (IEc, 2009). 

While reviewing the draft report, EPA’s Advisory Council on Clean Air Compliance Analysis 

concluded that “the challenges for assessing progress in health improvement as a result of 

reductions in emissions of hazardous air pollutants (HAPs) are daunting...due to a lack of 

exposure-response functions, uncertainties in emissions inventories and background levels, the 

difficulty of extrapolating risk estimates to low doses and the challenges of tracking health 

progress for diseases, such as cancer, that have long latency periods” (U.S. EPA-SAB, 2008). 

In 2009, EPA convened a workshop to address the inherent complexities, limitations, and 

uncertainties in current methods to quantify the benefits of reducing HAPs. Recommendations 

from this workshop included identifying research priorities, focusing on susceptible and 

vulnerable populations, and improving dose-response relationships (Gwinn et al., 2011).  

In summary, monetization of the benefits of reductions in cancer incidences requires 

several important inputs, including central estimates of cancer risks, estimates of exposure to 

carcinogenic HAPs, and estimates of the value of an avoided case of cancer (fatal and non-fatal). 

Due to methodology and data limitations, we did not attempt to monetize the health benefits of 

reductions in HAPs in this analysis. Instead, we provide a qualitative analysis of the health 

effects associated with the HAPs anticipated to be reduced by these rules and we summarize the 

results of the residual risk assessment for the Risk and Technology Review (RTR).  EPA remains 

committed to improving methods for estimating HAP benefits by continuing to explore 

additional concepts of benefits, including changes in the distribution of risk.  

Available emissions data show that several different HAPs are emitted from oil and 

natural gas operations, either from equipment leaks, processing, compressing, transmission and 

distribution, or storage tanks.  Emissions of eight HAPs make up a large percentage the total 
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HAP emissions by mass from the oil and gas sector: toluene, hexane, benzene, xylenes (mixed), 

ethylene glycol, methanol, ethyl benzene, and 2,2,4-trimethylpentane (U.S. EPA, 2011a).  In the 

subsequent sections, we describe the health effects associated with the main HAPs of concern 

from the oil and natural gas sector: benzene, toluene,  carbonyl sulfide, ethyl benzene, mixed 

xylenes, and n-hexane.  These rules combined are anticipated to avoid or reduce 58,000 tons of 

HAPs per year.  With the data available, it was not possible to estimate the tons of each 

individual HAP that would be reduced.   

EPA conducted a residual risk assessment for the NESHAP rule (U.S. EPA, 2011c).  The 

results for oil and gas production indicate that maximum lifetime individual cancer risks could be 

30 in-a-million for existing sources before and after controls with a cancer incidence of 0.02 

before and after controls.  For existing natural gas transmission and storage, the maximum 

individual cancer risk decreases from 90-in-a-million before controls to 20-in-a-million after 

controls with a cancer incidence that decreases from 0.001 before controls to 0.0002 after 

controls.  Benzene is the primary cancer risk driver.  The results also indicate that significant 

noncancer impacts from existing sources are unlikely, especially after controls.  EPA did not 

conduct a risk assessment for new sources affected by the NSPS.  However, it is important to 

note that the magnitude of the HAP emissions avoided by new sources with the NSPS are more 

than an order of magnitude higher than the HAP emissions reduced from existing sources with 

the NESHAP. 

4.4.1 Benzene 

The EPA’s IRIS database lists benzene as a known human carcinogen (causing leukemia) 

by all routes of exposure, and concludes that exposure is associated with additional health 

effects, including genetic changes in both humans and animals and increased proliferation of 

bone marrow cells in mice.21,22,23  EPA states in its IRIS database that data indicate a causal 

                                                
21  U.S. Environmental Protection Agency (U.S. EPA). 2000. Integrated Risk Information System File for Benzene.  

Research and Development, National Center for Environmental Assessment, Washington, DC.  This material is 
available electronically at: http://www.epa.gov/iris/subst/0276.htm.

22 International Agency for Research on Cancer, IARC monographs on the evaluation of carcinogenic risk of 
chemicals to humans, Volume 29, Some industrial chemicals and dyestuffs, International Agency for Research 
on Cancer, World Health Organization, Lyon, France, p. 345-389, 1982. 

23 Irons, R.D.; Stillman, W.S.; Colagiovanni, D.B.; Henry, V.A. (1992) Synergistic action of the benzene metabolite 
hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro, 
Proc. Natl. Acad. Sci. 89:3691-3695. 
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relationship between benzene exposure and acute lymphocytic leukemia and suggest a 

relationship between benzene exposure and chronic non-lymphocytic leukemia and chronic 

lymphocytic leukemia.  The International Agency for Research on Carcinogens (IARC) has 

determined that benzene is a human carcinogen and the U.S. Department of Health and Human 

Services (DHHS) has characterized benzene as a known human carcinogen.24,25  A number of 

adverse noncancer health effects including blood disorders, such as preleukemia and aplastic 

anemia, have also been associated with long-term exposure to benzene.26,27   The most sensitive 

noncancer effect observed in humans, based on current data, is the depression of the absolute 

lymphocyte count in blood.28,29   In addition, recent work, including studies sponsored by the 

Health Effects Institute (HEI), provides evidence that biochemical responses are occurring at 

lower levels of benzene exposure than previously known.30,31,32,33   EPA’s IRIS program has not 

yet evaluated these new data. 

                                                
24 International Agency for Research on Cancer (IARC).  1987. Monographs on the evaluation of carcinogenic risk 

of chemicals to humans, Volume 29, Supplement 7, Some industrial chemicals and dyestuffs, World Health 
Organization, Lyon, France. 

25 U.S. Department of Health and Human Services National Toxicology Program 11th Report on Carcinogens 
available at: http://ntp.niehs.nih.gov/go/16183. 

26 Aksoy, M.  (1989).  Hematotoxicity and carcinogenicity of benzene.  Environ. Health Perspect.  82: 193-197. 
27 Goldstein, B.D.  (1988).  Benzene toxicity.  Occupational medicine.  State of the Art Reviews.  3: 541-554.
28 Rothman, N., G.L. Li, M. Dosemeci, W.E. Bechtold, G.E. Marti, Y.Z. Wang, M. Linet, L.Q. Xi, W. Lu, M.T. 

Smith, N. Titenko-Holland, L.P. Zhang, W. Blot, S.N. Yin, and R.B. Hayes (1996) Hematotoxicity among 
Chinese workers heavily exposed to benzene. Am. J. Ind. Med. 29: 236-246. 

29 U.S. Environmental Protection Agency (U.S. EPA). 2000. Integrated Risk Information System File for Benzene 
(Noncancer Effects).  Research and Development, National Center for Environmental Assessment, Washington, 
DC.  This material is available electronically at: http://www.epa.gov/iris/subst/0276.htm. 

30 Qu, O.; Shore, R.; Li, G.; Jin, X.; Chen, C.L.; Cohen, B.; Melikian, A.; Eastmond, D.; Rappaport, S.; Li, H.; Rupa, 
D.; Suramaya, R.;  Songnian, W.;  Huifant,  Y.;  Meng, M.;  Winnik, M.; Kwok, E.; Li, Y.; Mu, R.; Xu, B.; 
Zhang, X.; Li, K. (2003).  HEI Report 115, Validation & Evaluation of Biomarkers in Workers Exposed to 
Benzene in China.  

31 Qu, Q., R. Shore, G. Li, X. Jin, L.C. Chen, B. Cohen, et al. (2002).  Hematological changes among Chinese 
workers with a broad range of benzene exposures.  Am. J. Industr. Med. 42: 275-285. 

32 Lan, Qing, Zhang, L., Li, G., Vermeulen, R., et al. (2004).  Hematotoxically in Workers Exposed to Low Levels 
of Benzene.  Science 306: 1774-1776. 

33 Turtletaub, K.W. and Mani, C.  (2003). Benzene metabolism in rodents at doses relevant to human exposure from 
Urban Air.  Research Reports Health Effect Inst. Report No.113.
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4.4.2 Toluene
34

Under the 2005 Guidelines for Carcinogen Risk Assessment, there is inadequate 

information to assess the carcinogenic potential of toluene because studies of humans chronically 

exposed to toluene are inconclusive, toluene was not carcinogenic in adequate inhalation cancer 

bioassays of rats and mice exposed for life, and increased incidences of mammary cancer and 

leukemia were reported in a lifetime rat oral bioassay. 

The central nervous system (CNS) is the primary target for toluene toxicity in both 

humans and animals for acute and chronic exposures.  CNS dysfunction (which is often 

reversible) and narcosis have been frequently observed in humans acutely exposed to low or 

moderate levels of toluene by inhalation: symptoms include fatigue, sleepiness, headaches, and 

nausea.  Central nervous system depression has been reported to occur in chronic abusers 

exposed to high levels of toluene.  Symptoms include ataxia, tremors, cerebral atrophy, 

nystagmus (involuntary eye movements), and impaired speech, hearing, and vision.  Chronic 

inhalation exposure of humans to toluene also causes irritation of the upper respiratory tract, eye 

irritation, dizziness, headaches, and difficulty with sleep. 

Human studies have also reported developmental effects, such as CNS dysfunction, 

attention deficits, and minor craniofacial and limb anomalies, in the children of women who 

abused toluene during pregnancy.  A substantial database examining the effects of toluene in 

subchronic and chronic occupationally exposed humans exists.  The weight of evidence from 

these studies indicates neurological effects (i.e., impaired color vision, impaired hearing, 

decreased performance in neurobehavioral analysis, changes in motor and sensory nerve 

conduction velocity, headache, and dizziness) as the most sensitive endpoint. 

4.4.3 Carbonyl sulfide 

Limited information is available on the health effects of carbonyl sulfide.  Acute (short-

term) inhalation of high concentrations of carbonyl sulfide may cause narcotic effects and irritate 

                                                
34 All health effects language for this section came from: U.S. EPA. 2005. “Full IRIS Summary for Toluene 

(CASRN 108-88-3)” Environmental Protection Agency, Integrated Risk Information System (IRIS), Office of 
Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. 
Available on the Internet at <http://www.epa.gov/iris/subst/0118.htm>.
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the eyes and skin in humans.35 No information is available on the chronic (long-term), 

reproductive, developmental, or carcinogenic effects of carbonyl sulfide in humans.  Carbonyl 

sulfide has not undergone a complete evaluation and determination under U.S. EPA's IRIS 

program for evidence of human carcinogenic potential.36

4.4.4 Ethylbenzene 

Ethylbenzene is a major industrial chemical produced by alkylation of benzene. The pure 

chemical is used almost exclusively for styrene production.  It is also a constituent of crude 

petroleum and is found in gasoline and diesel fuels.  Acute (short-term) exposure to ethylbenzene 

in humans results in respiratory effects such as throat irritation and chest constriction, and 

irritation of the eyes, and neurological effects such as dizziness.  Chronic (long-term) exposure 

of humans to ethylbenzene may cause eye and lung irritation, with possible adverse effects on 

the blood.  Animal studies have reported effects on the blood, liver, and kidneys and endocrine 

system from chronic inhalation exposure to ethylbenzene.  No information is available on the 

developmental or reproductive effects of ethylbenzene in humans, but animal studies have 

reported developmental effects, including birth defects in animals exposed via inhalation.  

Studies in rodents reported increases in the percentage of animals with tumors of the nasal and 

oral cavities in male and female rats exposed to ethylbenzene via the oral route.37,38 The reports of 

these studies lacked detailed information on the incidence of specific tumors, statistical analysis, 

survival data, and information on historical controls, thus the results of these studies were 

considered inconclusive by the International Agency for Research on Cancer (IARC, 2000) and 

the National Toxicology Program (NTP).39,40  The NTP (1999) carried out a chronic inhalation 

                                                
35 Hazardous Substances Data Bank (HSDB), online database). US National Library of Medicine, Toxicology Data 

Network, available online at http://toxnet.nlm.nih.gov/. Carbonyl health effects summary available at 
http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@rn+@rel+463-58-1.

36 U.S. Environmental Protection Agency (U.S. EPA). 2000. Integrated Risk Information System File for Carbonyl 
Sulfide.  Research and Development, National Center for Environmental Assessment, Washington, DC.  This 
material is available electronically at http://www.epa.gov/iris/subst/0617.htm.

37 Maltoni C, Conti B, Giuliano C and Belpoggi F, 1985. Experimental studies on benzene carcinogenicity at the 
Bologna Institute of Oncology: Current results and ongoing research. Am J Ind Med 7:415-446.

38 Maltoni C, Ciliberti A, Pinto C, Soffritti M, Belpoggi F and Menarini L, 1997. Results of long-term experimental 
carcinogenicity studies of the effects of gasoline, correlated fuels, and major gasoline aromatics on rats. Annals 
NY Acad Sci 837:15-52.

39International Agency for Research on Cancer (IARC), 2000. Monographs on the Evaluation of Carcinogenic Risks 
to Humans. Some Industrial Chemicals. Vol. 77, p. 227-266. IARC, Lyon, France.
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bioassay in mice and rats and found clear evidence of carcinogenic activity in male rats and some 

evidence in female rats, based on increased incidences of renal tubule adenoma or carcinoma in 

male rats and renal tubule adenoma in females. NTP (1999) also noted increases in the incidence 

of testicular adenoma in male rats. Increased incidences of lung alveolar/bronchiolar adenoma or 

carcinoma were observed in male mice and liver hepatocellular adenoma or carcinoma in female 

mice, which provided some evidence of carcinogenic activity in male and female mice (NTP, 

1999). IARC (2000) classified ethylbenzene as Group 2B, possibly carcinogenic to humans, 

based on the NTP studies. 

4.4.5 Mixed xylenes  

Short-term inhalation of mixed xylenes (a mixture of three closely-related compounds) in 

humans may cause irritation of the nose and throat, nausea, vomiting, gastric irritation, mild 

transient eye irritation, and neurological effects.41  Other reported effects include labored 

breathing, heart palpitation, impaired function of the lungs, and possible effects in the liver and 

kidneys.42  Long-term inhalation exposure to xylenes in humans has been associated with a 

number of effects in the nervous system including headaches, dizziness, fatigue, tremors, and 

impaired motor coordination.43 EPA has classified mixed xylenes in Category D, not classifiable 

with respect to human carcinogenicity. 

4.4.6 n-Hexane 

The studies available in both humans and animals indicate that the nervous system is the 

primary target of toxicity upon exposure of n-hexane via inhalation. There are no data in humans 

and very limited information in animals about the potential effects of n-hexane via the oral route.  

Acute (short-term) inhalation exposure of humans to high levels of hexane causes mild central 

                                                                                                                                                            
40 National Toxicology Program (NTP), 1999. Toxicology and Carcinogenesis Studies of Ethylbenzene (CAS No. 

100-41-4) in F344/N Rats and in B6C3F1 Mice (Inhalation Studies). Technical Report Series No. 466. NIH 
Publication No. 99-3956. U.S. Department of Health and Human Services, Public Health Service, National 
Institutes of Health. NTP, Research Triangle Park, NC.

41 U.S. Environmental Protection Agency (U.S. EPA). 2003. Integrated Risk Information System File for Mixed 
Xylenes.  Research and Development, National Center for Environmental Assessment, Washington, DC.  This 
material is available electronically at http://www.epa.gov/iris/subst/0270.htm.

42 Agency for Toxic Substances and Disease Registry (ATSDR), 2007. The Toxicological Profile for xylene is 
available electronically at http://www.atsdr.cdc.gov/ToxProfiles/TP.asp?id=296&tid=53.

43 Agency for Toxic Substances and Disease Registry (ATSDR), 2007. The Toxicological Profile for xylene is 
available electronically at http://www.atsdr.cdc.gov/ToxProfiles/TP.asp?id=296&tid=53.
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nervous system effects, including dizziness, giddiness, slight nausea, and headache.  Chronic 

(long-term) exposure to hexane in air causes numbness in the extremities, muscular weakness, 

blurred vision, headache, and fatigue.  Inhalation studies in rodents have reported behavioral 

effects, neurophysiological changes and neuropathological effects upon inhalation exposure to n-

hexane.  Under the Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005), the database 

for n-hexane is considered inadequate to assess human carcinogenic potential, therefore the EPA 

has classified hexane in Group D, not classifiable as to human carcinogenicity.44

4.4.7 Other Air Toxics 

In addition to the compounds described above, other toxic compounds might be affected 

by these rules, including hydrogen sulfide (H2S).  Information regarding the health effects of 

those compounds can be found in EPA’s IRIS database.45

4.5 VOCs 

4.5.1 VOCs as a PM2.5 precursor 

This rulemaking would reduce emissions of VOCs, which are a precursor to PM2.5.  Most 

VOCs emitted are oxidized to carbon dioxide (CO2) rather than to PM, but a portion of VOC 

emission contributes to ambient PM2.5 levels as organic carbon aerosols (U.S. EPA, 2009a).  

Therefore, reducing these emissions would reduce PM2.5 formation, human exposure to PM2.5, 

and the incidence of PM2.5-related health effects.  However, we have not quantified the PM2.5-

related benefits in this analysis.  Analysis of organic carbon measurements suggest only a 

fraction of secondarily formed organic carbon aerosols are of anthropogenic origin.  The current 

state of the science of secondary organic carbon aerosol formation indicates that anthropogenic 

VOC contribution to secondary organic carbon aerosol is often lower than the biogenic (natural) 

contribution.  Given that a fraction of secondarily formed organic carbon aerosols is from 

anthropogenic VOC emissions and the extremely small amount of VOC emissions from this 

sector relative to the entire VOC inventory it is unlikely this sector has a large contribution to 

                                                
44 U.S. EPA. 2005. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001B.  Risk Assessment Forum, 

Washington, DC.  March. Available on the Internet at <http://www.epa.gov/ttn/atw/cancer_guidelines_final_3-
25-05.pdf>. 

45 U.S. EPA Integrated Risk Information System (IRIS) database is available at: www.epa.gov/iris 
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ambient secondary organic carbon aerosols.  Photochemical models typically estimate secondary 

organic carbon from anthropogenic VOC emissions to be less than 0.1 µg/m3.  

Due to time limitations under the court-ordered schedule, we were unable to perform air 

quality modeling for this rule.  Due to the high degree of variability in the responsiveness of 

PM2.5 formation to VOC emission reductions, we are unable to estimate the effect that reducing 

VOCs will have on ambient PM2.5 levels without air quality modeling.   

4.5.2 PM2.5 health effects and valuation 

Reducing VOC emissions would reduce PM2.5 formation, human exposure, and the 

incidence of PM2.5-related health effects.  Reducing exposure to PM2.5 is associated with 

significant human health benefits, including avoiding mortality and respiratory morbidity.  

Researchers have associated PM2.5- exposure with adverse health effects in numerous 

toxicological, clinical and epidemiological studies (U.S. EPA, 2009a).  When adequate data and 

resources are available, EPA generally quantifies several health effects associated with exposure 

to PM2.5 (e.g., U.S. EPA (2010c)).  These health effects include premature mortality for adults 

and infants, cardiovascular morbidity such as heart attacks, hospital admissions, and respiratory 

morbidity such as asthma attacks, acute and chronic bronchitis, hospital and ER visits, work loss 

days, restricted activity days, and respiratory symptoms.  Although EPA has not quantified these 

effects in previous benefits analyses, the scientific literature suggests that exposure to PM2.5 is 

also associated with adverse effects on birth weight, pre-term births, pulmonary function, other 

cardiovascular effects, and other respiratory effects (U.S. EPA, 2009a).   

EPA assumes that all fine particles, regardless of their chemical composition, are equally 

potent in causing premature mortality because the scientific evidence is not yet sufficient to 

allow differentiation of effect estimates by particle type (U.S. EPA, 2009a).  Based on our 

review of the current body of scientific literature, EPA estimates PM-related mortality without 

applying an assumed concentration threshold.  This decision is supported by the data, which are 

quite consistent in showing effects down to the lowest measured levels of PM2.5 in the underlying 

epidemiology studies.   
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Previous studies have estimated the monetized benefits-per-ton of reducing VOC 

emissions associated with effect that those emissions have on ambient PM2.5 levels and the health 

effects associated with PM2.5 exposure (Fann, Fulcher, and Hubbell, 2009).  Using the estimates 

in Fann, Fulcher, and Hubbell (2009), the monetized benefit-per-ton of reducing VOC emissions 

in nine urban areas of the U.S. ranges from $560 in Seattle, WA to $5,700 in San Joaquin, CA, 

with a national average of $2,400.  These estimates assume a 50 percent reduction in VOCs, the 

Laden et al. (2006) mortality function (based on the Harvard Six City Study, a large cohort 

epidemiology study in the Eastern U.S.), an analysis year of 2015, and a 3 percent discount rate.   

Based on the methodology from Fann, Fulcher, and Hubbell (2009), we converted their 

estimates to 2008$ and applied EPA’s current VSL estimate.46  After these adjustments, the range 

of values increases to $680 to $7,000 per ton of VOC reduced for Laden et al. (2006).  Using 

alternate assumptions regarding the relationship between PM2.5 exposure and premature mortality 

from empirical studies and supplied by experts (Pope et al., 2002; Laden et al., 2006; Roman et 

al., 2008), additional benefit-per-ton estimates are available from this dataset, as shown in Table 

4-6.  EPA generally presents a range of benefits estimates derived from Pope et al. (2002) to 

Laden et al. (2006) because they are both well-designed and peer reviewed studies, and EPA 

provides the benefit estimates derived from expert opinions in Roman et al. (2008) as a 

characterization of uncertainty.  In addition to the range of benefits based on epidemiology 

studies, this study also provided a range of benefits associated with reducing emissions in eight 

specific urban areas.  The range of VOC benefits that reflects the adjustments as well as the 

range of epidemiology studies and the range of the urban areas is $280 to $7,000 per ton of VOC 

reduced. 

While these ranges of benefit-per-ton estimates provide useful context for the break-even 

analysis, the geographic distribution of VOC emissions from the oil and gas sector are not 

consistent with emissions modeled in Fann, Fulcher, and Hubbell (2009).  In addition, the 

benefit-per-ton estimates for VOC emission reductions in that study are derived from total VOC 

emissions across all sectors.  Coupled with the larger uncertainties about the relationship 

                                                
46 For more information regarding EPA’s current VSL estimate, please see Section 5.4.4.1 of the RIA for the 

proposed Federal Transport Rule (U.S. EPA, 2010a).  EPA continues to work to update its guidance on valuing 
mortality risk reductions.   



4-21 

between VOC emissions and PM2.5, these factors lead us to conclude that the available VOC 

benefit per ton estimates are not appropriate to calculate monetized benefits of these rules, even 

as a bounding exercise.   
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4.5.3 Organic PM welfare effects 

According to the residual risk assessment for this sector (U.S. EPA, 2011a), persistent 

and bioaccumulative HAP reported as emissions from oil and gas operations include polycyclic 

organic matter (POM).  POM defines a broad class of compounds that includes the polycyclic 

aromatic hydrocarbon compounds (PAHs).  Several significant ecological effects are associated 

with deposition of organic particles, including persistent organic pollutants, and PAHs (U.S. 

EPA, 2009a).   

PAHs can accumulate in sediments and bioaccumulate in freshwater, flora, and fauna.  

The uptake of organics depends on the plant species, site of deposition, physical and chemical 

properties of the organic compound and prevailing environmental conditions (U.S. EPA, 2009a). 

PAHs can accumulate to high enough concentrations in some coastal environments to pose an 

environmental health threat that includes cancer in fish populations, toxicity to organisms living 

in the sediment and risks to those (e.g., migratory birds) that consume these organisms. 

Atmospheric deposition of particles is thought to be the major source of PAHs to the sediments 

of coastal areas of the U.S.  Deposition of PM to surfaces in urban settings increases the metal 

and organic component of storm water runoff.  This atmospherically-associated pollutant burden 

can then be toxic to aquatic biota.  The contribution of atmospherically deposited PAHs to 

aquatic food webs was demonstrated in high elevation mountain lakes with no other 

anthropogenic contaminant sources. 

The recently completed Western Airborne Contaminants Assessment Project (WACAP) 

is the most comprehensive database on contaminant transport and PM depositional effects on 

sensitive ecosystems in the Western U.S. (Landers et al., 2008).  In this project, the transport, 

fate, and ecological impacts of anthropogenic contaminants from atmospheric sources were 

assessed from 2002 to 2007 in seven ecosystem components (air, snow, water, sediment, lichen, 

conifer needles, and fish) in eight core national parks.  The study concluded that bioaccumulation 

of semi-volatile organic compounds occurred throughout park ecosystems, an elevational 

gradient in PM deposition exists with greater accumulation in higher altitude areas, and 

contaminants accumulate in proximity to individual agriculture and industry sources, which is 
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counter to the original working hypothesis that most of the contaminants would originate from 

Eastern Europe and Asia.   

4.5.4 Visibility Effects 

Reducing secondary formation of PM2.5 would improve visibility throughout the U.S. 

Fine particles with significant light-extinction efficiencies include sulfates, nitrates, organic 

carbon, elemental carbon, and soil (Sisler, 1996). Suspended particles and gases degrade 

visibility by scattering and absorbing light. Higher visibility impairment levels in the East are 

due to generally higher concentrations of fine particles, particularly sulfates, and higher average 

relative humidity levels.  Visibility has direct significance to people’s enjoyment of daily 

activities and their overall sense of wellbeing.  Good visibility increases the quality of life where 

individuals live and work, and where they engage in recreational activities. Previous analyses 

(U.S. EPA, 2006b; U.S. EPA, 2010c; U.S. EPA, 2011a) show that visibility benefits are a 

significant welfare benefit category.  Without air quality modeling, we are unable to estimate 

visibility related benefits, nor are we able to determine whether VOC emission reductions would 

be likely to have a significant impact on visibility in urban areas or Class I areas. 

4.6 VOCs as an Ozone Precursor 

This rulemaking would reduce emissions of VOCs, which are also precursors to 

secondary formation of ozone.  Ozone is not emitted directly into the air, but is created when its 

two primary components, volatile organic compounds (VOC) and oxides of nitrogen (NOx), 

combine in the presence of sunlight.  In urban areas, compounds representing all classes of 

VOCs and CO are important compounds for ozone formation, but biogenic VOCs emitted from 

vegetation tend to be more important compounds in non-urban vegetated areas (U.S. EPA, 

2006a).  Therefore, reducing these emissions would reduce ozone formation, human exposure to 

ozone, and the incidence of ozone-related health effects.  However, we have not quantified the 

ozone-related benefits in this analysis for several reasons.  First, previous rules have shown that 

the monetized benefits associated with reducing ozone exposure are generally smaller than PM-

related benefits, even when ozone is the pollutant targeted for control (U.S. EPA, 2010a).  

Second, the complex non-linear chemistry of ozone formation introduces uncertainty to the 

development and application of a benefit-per-ton estimate.  Third, the impact of reducing VOC 
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emissions is spatially heterogeneous depending on local air chemistry.  Urban areas with a high 

population concentration are often VOC-limited, which means that ozone is most effectively 

reduced by lowering VOCs.  Rural areas and downwind suburban areas are often NOx-limited, 

which means that ozone concentrations are most effectively reduced by lowering NOx 

emissions, rather than lowering emissions of VOCs.  Between these areas, ozone is relatively 

insensitive to marginal changes in both NOx and VOC.   

Due to time limitations under the court-ordered schedule, we were unable to perform air 

quality modeling for this rule.  Due to the high degree of variability in the responsiveness of 

ozone formation to VOC emission reductions, we are unable to estimate the effect that reducing 

VOCs will have on ambient ozone concentrations without air quality modeling.   

4.6.1 Ozone health effects and valuation 

Reducing ambient ozone concentrations is associated with significant human health 

benefits, including mortality and respiratory morbidity (U.S. EPA, 2010a).  Epidemiological 

researchers have associated ozone exposure with adverse health effects in numerous 

toxicological, clinical and epidemiological studies (U.S. EPA, 2006c).  When adequate data and 

resources are available, EPA generally quantifies several health effects associated with exposure 

to ozone (e.g., U.S. EPA, 2010a; U.S. EPA, 2011a).  These health effects include respiratory 

morbidity such as asthma attacks, hospital and emergency department visits, school loss days, as 

well as premature mortality. Although EPA has not quantified these effects in benefits analyses 

previously, the scientific literature is suggestive that exposure to ozone is also associated with 

chronic respiratory damage and premature aging of the lungs.   

In a recent EPA analysis, EPA estimated that reducing 15,000 tons of VOCs from 

industrial boilers resulted in $3.6 to $15 million of monetized benefits from reduced ozone 

exposure (U.S. EPA, 2011b).47  This implies a benefit-per-ton for ozone reductions of $240 to 

$1,000 per ton of VOCs reduced.  While these ranges of benefit-per-ton estimates provide useful 

context, the geographic distribution of VOC emissions from the oil and gas sector are not 

consistent with emissions modeled in the boiler analysis.  Therefore, we do not believe that those 

                                                
47 While EPA has estimated the ozone benefits for many scenarios, most of these scenarios also reduce NOx 

emissions, which make it difficult to isolate the benefits attributable to VOC reductions.   
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estimates to provide useful estimates of the monetized benefits of these rules, even as a bounding 

exercise.   

4.6.2 Ozone vegetation effects 

Exposure to ozone has been associated with a wide array of vegetation and ecosystem 

effects in the published literature (U.S. EPA, 2006a).  Sensitivity to ozone is highly variable 

across species, with over 65 plan species identified as “ozone-sensitive”, many of which occur in 

state and national parks and forests.  These effects include those that damage or impair the 

intended use of the plant or ecosystem.  Such effects are considered adverse to the public welfare 

and can include reduced growth and/or biomass production in sensitive plant species, including 

forest trees, reduced crop yields, visible foliar injury, reduced plant vigor (e.g., increased 

susceptibility to harsh weather, disease, insect pest infestation, and competition), species 

composition shift, and changes in ecosystems and associated ecosystem services.   

4.6.3 Ozone climate effects 

Ozone is a well-known short-lived climate forcing (SLCF) greenhouse gas (GHG) (U.S. 

EPA, 2006a).  Stratospheric ozone (the upper ozone layer) is beneficial because it protects life on 

Earth from the sun’s harmful ultraviolet (UV) radiation.  In contrast, tropospheric ozone (ozone 

in the lower atmosphere) is a harmful air pollutant that adversely affects human health and the 

environment and contributes significantly to regional and global climate change.  Due to its short 

atmospheric lifetime, tropospheric ozone concentrations exhibit large spatial and temporal 

variability (U.S. EPA, 2009b). A recent United Nations Environment Programme (UNEP) study 

reports that the threefold increase in ground level ozone during the past 100 years makes it the 

third most important contributor to human contributed climate change behind CO2 and methane.  

This discernable influence of ground level ozone on climate leads to increases in global surface 

temperature and changes in hydrological cycles. This study provides the most comprehensive 

analysis to date of the benefits of measures to reduce SLCF gases including methane, ozone, and 

black carbon assessing the health, climate, and agricultural benefits of a suite of mitigation 

technologies. The report concludes that the climate is changing now, and these changes have the 

potential to “trigger abrupt transitions such as the release of carbon from thawing permafrost and 

biodiversity loss” (UNEP 2011).  While reducing long-lived GHGs such as CO2 is necessary to 
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protect against long-term climate change, reducing SLCF gases including ozone is beneficial and 

will slow the rate of climate change within the first half of this century (UNEP 2011). 

4.7 Methane (CH4) 

4.7.1 Methane as an ozone precursor 

This rulemaking would reduce emissions of methane, a long-lived GHG and also a 

precursor to ozone.  In remote areas, methane is a dominant precursor to tropospheric ozone 

formation (U.S. EPA, 2006a).  Unlike NOx and VOCs, which affect ozone concentrations 

regionally and at hourly time scales, methane emission reductions require several decades for the 

ozone response to be fully realized, given methane’s relatively long atmospheric lifetime (HTAP, 

2010).  Studies have shown that reducing methane can reduce global background ozone 

concentrations over several decades, which would benefit both urban and rural areas (West et al., 

2006).  Therefore, reducing these emissions would reduce ozone formation, human exposure to 

ozone, and the incidence of ozone-related health effects.  The health, welfare, and climate effects 

associated with ozone are described in the preceding sections.  Without air quality modeling, we 

are unable to estimate the effect that reducing methane will have on ozone concentrations at 

particular locations.  

4.7.2 Methane climate effects and valuation 

Methane is the principal component of natural gas.  Methane is also a potent greenhouse 

gas (GHG) that once emitted into the atmosphere absorbs terrestrial infrared radiation which 

contributes to increased global warming and continuing climate change.  Methane reacts in the 

atmosphere to form ozone and ozone also impacts global temperatures.  According to the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007), in 2004 

the cumulative changes in methane concentrations since preindustrial times contributed about 14 

percent to global warming due to anthropogenic GHG sources, making methane the second 

leading long-lived climate forcer after CO2 globally.  Methane, in addition to other GHG 

emissions, contributes to warming of the atmosphere which over time leads to increased air and 

ocean temperatures, changes in precipitation patterns, melting and thawing of global glaciers and 

ice, increasingly severe weather events, such as hurricanes of greater intensity, and sea level rise, 

among other impacts.     
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Processes in the oil and gas category emit significant amounts of methane. The Inventory 

of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009 (published April 2011) estimates 2009 

methane emissions from Petroleum and Natural Gas Systems (not including petroleum refineries 

and petroleum transportation) to be 251.55 (MMtCO2-e).  In 2009, total methane emissions from 

the oil and gas industry represented nearly 40 percent of the total methane emissions from all 

sources and account for about 5 percent of all CO2-equivalent (CO2-e) emissions in the U.S., 

with natural gas systems being the single largest contributor to U.S. anthropogenic methane  

emissions (U.S. EPA, 2011b, Table ES-2).  It is important to note that the 2009 emissions 

estimates from well completions and recompletions exclude a significant number of wells 

completed in tight sand plays and the Marcellus Shale, due to availability of data when the 2009 

Inventory was developed.  The estimate in this proposal includes an adjustment for tight sand 

plays and the Marcellus Shale, and such an adjustment is also being considered as a planned 

improvement in next year's Inventory. This adjustment would increase the 2009 Inventory 

estimate by about 80 MMtCO2-e. The total methane emissions from Petroleum and Natural Gas 

Systems based on the 2009 Inventory, adjusted for tight sand plays and the Marcellus Shale, is 

approximately 330 MMtCO2-e. 

This rulemaking proposes emission control technologies and regulatory alternatives that 

will significantly decrease methane emissions from the oil and natural gas sector in the United 

States.  The regulatory alternative proposed for this rule is expected to reduce methane emissions 

annually by about 3.4 million short tons or approximately 65 million metric tons CO2-e.  These 

reductions represent about 26 percent of the GHG emissions for this sector reported in the 1990-

2009 U.S. GHG Inventory (251.55 MMTCO2-e).  This annual CO2-e reduction becomes about 

62 million metric tons when the secondary impacts associated with increased combustion and 

supplemental energy use on the producer side and CO2-e emissions from changes in 

consumption patterns previously discussed are considered.  However, it is important to note the 

emissions reductions are based upon predicted activities in 2015; EPA did not forecast sector-

level emissions to 2015 for this rulemaking.  The climate co-benefit from these reductions are 
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equivalent of taking approximately 11 million typical passenger cars off the road or eliminating 

electricity use from about 7 million typical homes each year.48   

EPA estimates the social benefits of regulatory actions that have a small or “marginal” 

impact on cumulative global CO2 emissions using the “social cost of carbon” (SCC).  The SCC 

is an estimate of the net present value of the flow of monetized damages from a one metric ton 

increase in CO2 emissions in a given year (or from the alternative perspective, the benefit to 

society of reducing CO2 emissions by one ton). The SCC includes (but is not limited to) climate 

damages due to changes in net agricultural productivity, human health, property damages from 

flood risk, and ecosystem services due to climate change. The SCC estimates currently used by 

the Agency were developed through an interagency process that included EPA and other 

executive branch entities, and concluded in February 2010. The Technical Support Document: 

Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 for the 

final joint EPA/Department of Transportation Rulemaking to establish Light-Duty Vehicle 

Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards provides 

a complete discussion of the methods used to develop the SCC estimates (Interagency Working 

Group on Social Cost of Carbon, 2010).   

 To estimate global social benefits of reduced CO2 emissions, the interagency group 

selected four SCC values for use in regulatory analyses: $6, $25, $40, and $76 per metric ton of 

CO2 emissions in 2015, in 2008 dollars. The first three values are based on the average SCC 

estimated using three integrated assessment models (IAMs), at discount rates of 5.0, 3.0, and 2.5 

percent, respectively.  When valuing the impacts of climate change, IAMs couple economic and 

climate systems into a single model to capture important interactions between the components. 

SCCs estimated using different discount rates are included because the literature shows that the 

SCC is quite sensitive to assumptions about the discount rate, and because no consensus exists 

on the appropriate rate to use in an intergenerational context. The fourth value is the 95th 

percentile of the distribution of SCC estimates from all three models at a 3.0 percent discount 

rate. It is included to represent higher-than-expected damages from temperature change further 

out in the tails of the SCC distribution.  

                                                
48 US Environmental Protection Agency.  Greenhouse Gas Equivalency Calculator available at: 

http://www.epa.gov/cleanenergy/energy-resources/calculator.html accessed 07/19/11. 
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Although there are relatively few region- or country-specific estimates of SCC in the 

literature, the results from one model suggest the ratio of domestic to global benefits of emission 

reductions varies with key parameter assumptions. For example, with a 2.5 or 3 percent discount 

rate, the U.S. benefit is about 7-10 percent of the global benefit, on average, across the scenarios 

analyzed. Alternatively, if the fraction of GDP lost due to climate change is assumed to be 

similar across countries, the domestic benefit would be proportional to the U.S. share of global 

GDP, which is currently about 23 percent. On the basis of this evidence, values from 7 to 23 

percent should be used to adjust the global SCC to calculate domestic effects.  It is recognized 

that these values are approximate, provisional, and highly speculative. There is no a priori reason 

why domestic benefits should be a constant fraction of net global damages over time. 

(Interagency Working Group on Social Cost of Carbon, 2010). 

The interagency group noted a number of limitations to the SCC analysis, including the 

incomplete way in which the integrated assessment models capture catastrophic and non-

catastrophic impacts, their incomplete treatment of adaptation and technological change, 

uncertainty in the extrapolation of damages to high temperatures, and assumptions regarding risk 

aversion. The limited amount of research linking climate impacts to economic damages makes 

estimating damages from climate change even more difficult.  The interagency group hopes that 

over time researchers and modelers will work to fill these gaps and that the SCC estimates used 

for regulatory analysis by the Federal government will continue to evolve with improvements in 

modeling. Additional details on these limitations are discussed in the SCC TSD.   

A significant limitation of the aforementioned interagency process particularly relevant to 

this rulemaking is that the social costs of non-CO2 GHG emissions were not estimated.  

Specifically, the interagency group did not directly estimate the social cost of non-CO2 GHGs 

using the three models.  Moreover, the group determined that it would not transform the CO2

estimates into estimates for non-CO2 GHGs using global warming potentials (GWPs), which 

measure the ability of different gases to trap heat in the atmosphere (i.e., radiative forcing per 

unit of mass) over a particular timeframe relative to CO2.  One potential method for 

approximating the value of marginal non-CO2 GHG emission reductions is to convert the 

reductions to CO2-equivalents which may then be valued using the SCC.  Conversion to CO2-e is 
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typically done using the GWPs for the non-CO2 gas.  The GWP is an aggregate measure that 

approximates the additional energy trapped in the atmosphere over a given timeframe from a 

perturbation of a non-CO2 gas relative to CO2.  The time horizon most commonly used is 100 

years.  One potential problem with utilizing temporally aggregated statistics, such as the GWPs, 

is that the additional radiative forcing from the GHG perturbation is not constant over time and 

any differences in temporal dynamics between gases will be lost.  This is a potentially 

confounding issue given that the social cost of GHGs is based on a discounted stream of 

damages that are non-linear in temperature. For example, methane has an expected adjusted 

atmospheric lifetime of about 12 years and associated GWP of 21 (IPCC Second Assessment 

Report (SAR) 100-year GWP estimate).  Gases with a shorter lifetime, such as methane, have 

impacts that occur primarily in the near term and thus are not discounted as heavily as those 

caused by the longer-lived gases, while the GWP treats additional forcing the same independent 

of when it occurs in time.  Furthermore, the baseline temperature change is lower in the near 

term and therefore the additional warming from relatively short lived gases will have a lower 

marginal impact relative to longer lived gases that have an impact further out in the future when 

baseline warming is higher.  The GWP also relies on an arbitrary time horizon and constant 

concentration scenario.  Both of which are inconsistent with the assumptions used by the SCC 

interagency workgroup. Finally, impacts other than temperature change also vary across gases in 

ways that are not captured by GWP.  For instance, CO2 emissions, unlike methane will result in 

CO2 passive fertilization to plants.     

  In light of these limitations, and the significant contributions of non-CO2 emissions to 

climate change, further analysis is required to link non-CO2 emissions to economic impacts and 

to develop social cost estimates for methane specifically. Such work would feed into efforts to 

develop a monetized value of reductions in methane greenhouse gas emissions in assessing the 

co-benefits of this rulemaking.  As part of ongoing work to further improve the SCC estimates, 

the interagency group hopes to develop methods to value greenhouse gases other than CO2, such 

as methane, by the time SCC estimates for CO2 emissions are revised.   

 The EPA recognizes that the methane reductions proposed in this rule will provide 

significant economic climate co-benefits to society.  However, EPA finds itself in the position of 
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having no interagency accepted monetary values to place on these co-benefits.  The ‘GWP 

approach’ of converting methane to CO2-e using the GWP of methane, as previously described, 

is one approximation method for estimating the monetized value of the methane reductions 

anticipated from this rule.  This calculation uses the GWP of the non-CO2 gas to estimate CO2

equivalents and then multiplies these CO2 equivalent emission reductions by the SCC to generate 

monetized estimates of the co-benefits.  If one makes these calculations for the proposed Option 

2 (including expected methane emission reductions from the NESHAP amendments and NSPS 

and considers secondary impacts) of the oil and gas rule, the 2015 co-benefits vary by discount 

rate and range from about $373 million to over $4.7 billion; the SCC at the 3 percent discount 

rate ($25 per metric ton) results in an estimate of $1.6 billion in 2015. These co-benefits equate 

to a range of approximately $110 to $1,400 per short ton of methane reduced depending upon the 

discount rate assumed with a per ton estimate of $480 at the 3 percent discount rate  

 As previously stated, these co-benefit estimates are not the same as would be derived 

using a directly computed social cost of methane (using the integrated assessment models 

employed to develop the SCC estimates) for a variety of reasons including the shorter 

atmospheric lifetime of methane relative to CO2 (about 12 years compared to CO2 whose 

concentrations in the atmosphere decay on timescales of decades to millennia).  The climate 

impacts also differ between the pollutants for reasons other than the radiative forcing profiles and 

atmospheric lifetimes of these gases.  Methane is a precursor to ozone and ozone is a short-lived 

climate forcer as previously discussed. This use of the SAR GWP to approximate benefits may 

underestimate the direct radiative forcing benefits of reduced ozone levels, and does not capture 

any secondary climate co-benefits involved with ozone-ecosystem interactions.  In addition, a 

recent NCEE working paper suggests that this quick ‘GWP approach’ to benefits estimation will 

likely understate the climate benefits of methane reductions in most cases (Marten and Newbold, 

2011).  This conclusion is reached using the 100 year GWP for methane of 25 as put forth in the 

IPCC Fourth Assessment Report as opposed to the lower value of 21 used in this analysis. Using 

the higher GWP estimate of 25 would increase these reported methane climate co-benefit 

estimates by about 19 percent.  Although the IPCC Fourth Assessment Report suggested a GWP 

of 25, EPA has used GWP of 21 consistent with the IPCC SAR to estimate the methane climate 

co-benefits for this oil and gas proposal.  The use of the SAR GWP values allows comparability 
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of data collected in this proposed rule to the national GHG inventory that EPA compiles annually 

to meet U.S. commitments to the United Nations Framework Convention on Climate Change

(UNFCCC). To comply with international reporting standards under the UNFCCC, official 

emission estimates are to be reported by the U.S. and other countries using SAR GWP values. 

The UNFCCC reporting guidelines for national inventories were updated in 2002 but continue to 

require the use of GWPs from the SAR. The parties to the UNFCCC have also agreed to use 

GWPs based upon a 100-year time horizon although other time horizon values are available.  

The SAR GWP value for methane is also currently used to establish GHG reporting requirements 

as mandated by the GHG Reporting Rule (2010e) and is used by the EPA to determine Title V 

and Prevention of Significant Deterioration GHG permitting requirements as modified by the 

GHG Tailoring Rule (2010f). 

 EPA also undertook a literature search for estimates of the marginal social cost of 

methane.  A range of marginal social cost of methane benefit estimates are available in published 

literature (Fankhauser (1994), Kandlikar (1995), Hammitt et al. (1996), Tol et al. (2003), Tol, et 

al. (2006), Hope (2005) and Hope and Newberry (2006).  Most of these estimates are based upon 

modeling assumptions that are dated and inconsistent with the current SCC estimates.  Some of 

these studies focused on marginal methane reductions in the 1990s and early 2000s and report 

estimates for only the single year of interest specific to the study.  The assumptions underlying 

the social cost of methane estimates available in the literature differ from those agreed upon by 

the SCC interagency group and in many cases use older versions of the IAMs.  Without 

additional analysis, the methane climate benefit estimates available in the current literature are 

not acceptable to use to value the methane reductions proposed in this rulemaking. 

 Due to the uncertainties involved with ‘GWP approach’ estimates presented and  

estimates available in the literature, EPA chooses not to compare these co-benefit estimates to 

the costs of the rule for this proposal.  Rather, the EPA presents the ‘GWP approach’ climate co-

benefit estimates as an interim method to produce lower-bound estimates until the interagency 

group develops values for non-CO2 GHGs.  EPA requests comments from interested parties and 

the public about this interim approach specifically and more broadly about appropriate methods 

to monetize the climate co-benefits of methane reductions.  In particular, EPA seeks public 

comments to this proposed rulemaking regarding social cost of methane estimates that may be 
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used to value the co-benefits of methane emission reductions anticipated for the oil and gas 

industry from this rule.  Comments specific to whether GWP is an acceptable method for 

generating a placeholder value for the social cost of methane until interagency modeled estimates 

become available are welcome. Public comments may be provided in the official docket for this 

proposed rulemaking in accordance with the process outlined in the preamble for the rule.  These 

comments will be considered in developing the final rule for this rulemaking. 
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5 STATUTORY AND EXECUTIVE ORDER REVIEWS 

5.1 Executive Order 12866, Regulatory Planning and Review and Executive Order 

13563, Improving Regulation and Regulatory Review 

Under Executive Order 12866 (58 FR 51735, October 4, 1993), this action is an 

“economically significant regulatory action” because it is likely to have an annual effect on the 

economy of $100 million or more. Accordingly, the EPA submitted this action to OMB for 

review under Executive Orders 12866 and 13563 (76 FR 3821, January 21, 2011) and any 

changes made in response to OMB recommendations have been documented in the docket for 

this action. 

In addition, the EPA prepared a RIA of the potential costs and benefits associated with 

this action. The RIA available in the docket describes in detail the empirical basis for the EPA’s 

assumptions and characterizes the various sources of uncertainties affecting the estimates below. 

Table 5-1 shows the results of the cost and benefits analysis for these proposed rules.  
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Table 5-1 Summary of the Monetized Benefits, Costs, and Net Benefits for the 

Proposed Oil and Natural Gas NSPS and NESHAP Amendments in 2015 (millions of 

2008$)
1 

�� Proposed NSPS 
Proposed NESHAP 

Amendments 

Proposed NSPS and 

NESHAP Amendments 

Combined 

Total Monetized Benefits2 N/A N/A N/A 

Total Costs3 -$45 million $16 million -$29 million 

Net Benefits N/A N/A N/A 

Non-monetized Benefits 37,000 tons of HAPs  1,400 tons of HAPs 38,000 tons of HAPs 

 540,000 tons of VOCs 9,200 tons of VOCs  540,000 tons of VOCs 

 3.4 million tons of methane 4,900 tons of methane 3.4 million tons of methane 

Health effects of HAP 
exposure5

Health effects of HAP 
exposure5

Health effects of HAP 
exposure5

Health effects of PM2.5 and 
ozone exposure 

Health effects of PM2.5 and 
ozone exposure 

Health effects of PM2.5 and 
ozone exposure 

 Visibility impairment Visibility impairment Visibility impairment 

 Vegetation effects Vegetation effects Vegetation effects 

  Climate effects5 Climate effects5 Climate effects5

   
1 All estimates are for the implementation year (2015) and include estimated revenue from additional natural gas 
recovery as a result of the NSPS. 

2 While we expect that these avoided emissions will result in improvements in air quality and reductions in health 
effects associated with HAPs, ozone, and particulate matter (PM) as well as climate effects associated with methane, we 
have determined that quantification of those benefits and co-benefits cannot be accomplished for this rule in a 
defensible way.  This is not to imply that there are no benefits or co-benefits of the rules; rather, it is a reflection of the 
difficulties in modeling the direct and indirect impacts of the reductions in emissions for this industrial sector with the 
data currently available.  The specific control technologies for the proposed NSPS are anticipated to have minor 
secondary disbenefits, including an increase of 990,000 tons of CO2, 510 tons of NOx, 7.6 tons of PM, 2,800 tons of 
CO, and 1,000 tons of total hydrocarbons (THC) as well as emission reductions associated with the energy system 
impacts.  The net CO2-equivalent emission reductions are 62 million metric tons.   

3 The engineering compliance costs are annualized using a 7 percent discount rate.   

4 The negative cost for the NSPS Options 1 and 2 reflects the inclusion of revenues from additional natural gas and 
hydrocarbon condensate recovery that are estimated as a result of the proposed NSPS.  Possible explanations for why 
there appear to be negative cost control technologies are discussed in the engineering costs analysis section in the RIA.  

5 Reduced exposure to HAPs and climate effects are co-benefits. 
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5.2 Paperwork Reduction Act 

The information collection requirements in this proposed action have been submitted for 

approval to OMB under the PRA, 44 U.S.C. 3501, et seq. The ICR document prepared by the 

EPA has been assigned EPA ICR Numbers 1716.07 (40 CFR part 60, subpart OOOO), 1788.10 

(40 CFR part 63, subpart HH), 1789.07 (40 CFR part 63, subpart HHH), and 1086.10 (40 CFR 

part 60, subparts KKK and subpart LLL). 

The information to be collected for the proposed NSPS and the proposed NESHAP 

amendments are based on notification, recordkeeping, and reporting requirements in the 

NESHAP General Provisions (40 CFR part 63, subpart A), which are mandatory for all operators 

subject to national emission standards. These recordkeeping and reporting requirements are 

specifically authorized by section 114 of the CAA (42 U.S.C. 7414). All information submitted 

to the EPA pursuant to the recordkeeping and reporting requirements for which a claim of 

confidentiality is made is safeguarded according to Agency policies set forth in 40 CFR part 2, 

subpart B. 

These proposed rules would require maintenance inspections of the control devices, but 

would not require any notifications or reports beyond those required by the General Provisions. 

The recordkeeping requirements require only the specific information needed to determine 

compliance. 

For sources subject to the proposed NSPS, the burden represents labor hours and costs 

associated from annual reporting and recordkeeping for each affected facility. The estimated 

burden is based on the annual expected number of affected operators for the first three years 

following the effective date of the standards.  The burden is estimated to be 560,000 labor hours 

at a cost of around$18 million per year. This includes the labor and cost estimates previously 

estimated for sources subject to 40 CFR part 60, subpart KKK and subpart LLL (which is being 

incorporated into 40 CFR part 60, subpart OOOO). The average hours and cost per regulated 

entity, which is assumed to be on a per operator basis except for natural gas processing plants 

(which are estimated on a per facility basis) subject to the NSPS for oil and natural gas 

production and natural gas transmissions and distribution facilities would be 110 hours per 

response and $3,693 per response based on an average of 1,459 operators responding per year 
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and 16 responses per year. The majority of responses are expected to be notifications of 

construction. One annual report is required that may include all affected facilities owned per 

each operator.  Burden by for the proposed NSPS was based on EPA ICR Number 1716.07. 

The estimated recordkeeping and reporting burden after the effective date of the proposed 

amendments is estimated for all affected major and area sources subject to the oil and natural gas 

production NESHAP (40 CFR 63, subpart HH) to be approximately 63,000 labor hours per year 

at a cost of $2.1 million per year. For the natural gas transmission and storage NESHAP, the 

recordkeeping and reporting burden is estimated to be 2,500 labor hours per year at a cost of 

$86,800 per year. This estimate includes the cost of reporting, including reading instructions, and 

information gathering. Recordkeeping cost estimates include reading instructions, planning 

activities, and conducting compliance monitoring. The average hours and cost per regulated 

entity subject to the oil and natural gas production NESHAP would be 72 hours per year and 

$2,500 per year based on an average of 846 facilities per year and three responses per facility. 

For the natural gas transmission and storage NESHAP, the average hours and cost per regulated 

entity would be 50 hours per year and $1,600 per year based on an average of 53 facilities per 

year and three responses per facility. Burden is defined at 5 CFR 1320.3(b). Burden for the oil 

and natural gas production NESHAP is estimated under EPA ICR Number 1788.10. Burden for 

the natural gas transmission and storage NESHAP is estimated under EPA ICR Number 1789.07. 

5.3 Regulatory Flexibility Act 

The Regulatory Flexibility Act as amended by the Small Business Regulatory 

Enforcement Fairness Act (SBREFA) generally requires an agency to prepare a regulatory 

flexibility analysis of any rule subject to notice and comment rulemaking requirements under the 

Administrative Procedure Act or any other statute, unless the agency certifies that the rule will 

not have a significant economic impact on a substantial number of small entities. Small entities 

include small businesses, small governmental jurisdictions, and small not-for-profit enterprises.  

For purposes of assessing the impact of this rule on small entities, a small entity is defined as: (1) 

a small business whose parent company has no more than 500 employees (or revenues of less 

than $7 million for firms that transport natural gas via pipeline);  (2) a small governmental 

jurisdiction that is a government of a city, county, town, school district, or special district with a 
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population of less than 50,000; and (3) a small organization that is any not-for-profit enterprise 

which is independently owned and operated and is not dominant in its field. 

5.3.1 Proposed NSPS 

After considering the economic impact of the Proposed NSPS on small entities, I certify 

that this action will not have a significant economic impact on a substantial number of small 

entities (SISNOSE).  EPA performed a screening analysis for impacts on a sample of expected 

affected small entities by comparing compliance costs to entity revenues.  Based upon the 

analysis in Section 7.4 in this RIA, EPA recognizes that a subset of small firms is likely to be 

significantly impacted by the proposed NSPS.  However, the number of significantly impacted 

small businesses is unlikely to be sufficiently large to declare a SISNOSE.   Our judgment in this 

determination is informed by the fact that the firm-level compliance cost estimates used in the 

small business impacts analysis are likely over-estimates of the compliance costs faced by firms 

under the Proposed NSPS; these estimates do not include the revenues that producers are 

expected receive from the additional natural gas recovery engendered by the implementation of 

the controls evaluated in this RIA.  As much of the additional natural gas recovery is estimated to 

arise from well completion-related activities, we expect the impact on well-related compliance 

costs to be significantly mitigated, if not fully offset.  Although this final rule will not have a 

significant economic impact on a substantial number of small entities, EPA nonetheless has tried 

to reduce the impact of this rule on small entities by the selection of highly cost-effective 

controls and specifying monitoring requirements that are the minimum to insure compliance.   

5.3.2 Proposed NESHAP Amendments 

After considering the economic impact of the Proposed NESHAP Amendments on small 

entities, I certify that this action will not have a significant economic impact on a substantial 

number of small entities.  Based upon the analysis in Section 7.4 in this RIA, we estimate that 62 

of the 118 firms (53 percent) that own potentially affected facilities are small entities.  EPA 

performed a screening analysis for impacts on all expected affected small entities by comparing 

compliance costs to entity revenues. Among the small firms, 52 of the 62 (84 percent) are likely 

to have impacts of less than 1 percent in terms of the ratio of annualized compliance costs to 
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revenues.  Meanwhile 10 firms (16 percent) are likely to have impacts greater than 1 percent.  

Four of these 10 firms are likely to have impacts greater than 3 percent.  While these 10 firms 

might receive significant impacts from the proposed NESHAP amendments, they represent a 

very small slice of the oil and gas industry in its entirety, less than 0.2 percent of the estimated 

6,427 small firms in NAICS 211.  Although this final rule will not impact a substantial number 

of small entities, EPA nonetheless has tried to reduce the impact of this rule on small entities by 

setting the final emissions limits at the MACT floor, the least stringent level allowed by law.  

5.4 Unfunded Mandates Reform Act 

This proposed rule does not contain a federal mandate that may result in expenditures of 

$100 million or more for state, local, and tribal governments, in the aggregate, or to the private 

sector in any one year. Thus, this proposed rule is not subject to the requirements of sections 202 

or 205 of UMRA. 

This proposed rule is also not subject to the requirements of section 203 of UMRA 

because it contains no regulatory requirements that might significantly or uniquely affect small 

governments because it contains no requirements that apply to such governments nor does it 

impose obligations upon them. 

5.5 Executive Order 13132:  Federalism 

This proposed rule does not have federalism implications. It will not have substantial 

direct effects on the states, on the relationship between the national government and the states, or 

on the distribution of power and responsibilities among the various levels of government, as 

specified in Executive Order 13132. Thus, Executive Order 13132 does not apply to this 

proposed rule.   

5.6 Executive Order 13175:  Consultation and Coordination with Indian Tribal 

Governments 

Subject to the Executive Order 13175 (65 FR 67249, November 9, 2000) the EPA may 

not issue a regulation that has tribal implications, that imposes substantial direct compliance 
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costs, and that is not required by statute, unless the federal government provides the funds 

necessary to pay the direct compliance costs incurred by tribal governments, or the EPA consults 

with tribal officials early in the process of developing the proposed regulation and develops a 

tribal summary impact statement. The EPA has concluded that this proposed rule will not have 

tribal implications, as specified in Executive Order 13175. It will not have substantial direct 

effect on tribal governments, on the relationship between the federal government and Indian 

tribes, or on the distribution of power and responsibilities between the federal government and 

Indian tribes, as specified in Executive Order 13175.  Thus, Executive Order 13175 does not 

apply to this action. 

5.7 Executive Order 13045:  Protection of Children from Environmental Health Risks 

and Safety Risks 

This proposed rule is subject to Executive Order 13045 (62 FR 19885, April 23, 1997) 

because it is economically significant as defined in Executive Order 12866.  However, EPA does 

not believe the environmental health or safety risks addressed by this action present a 

disproportionate risk to children.  This action would not relax the control measures on existing 

regulated sources.  EPA’s risk assessments (included in the docket for this proposed rule) 

demonstrate that the existing regulations are associated with an acceptable level of risk and 

provide an ample margin of safety to protect public health.   

5.8 Executive Order 13211:  Actions Concerning Regulations That Significantly Affect 

Energy Supply, Distribution, or Use 

 Executive Order 13211, (66 FR 28,355, May 22, 2001), provides that agencies shall 

prepare and submit to the Administrator of the Office of Information and Regulatory Affairs, 

OMB, a Statement of Energy Effects for certain actions identified as significant energy actions. 

Section 4(b) of Executive Order 13211 defines “significant energy actions” as “any action by an 

agency (normally published in the Federal Register) that promulgates or is expected to lead to 

the promulgation of a final rule or regulation, including notices of inquiry, advance notices of 

proposed rulemaking, and notices of proposed rulemaking: 1)(i) that is a significant regulatory 

action under Executive Order 12866 or any successor order, and (ii) is likely to have a significant 
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adverse effect on the supply, distribution, or use of energy; or 2) that is designated by the 

Administrator of the Office of Information and Regulatory Affairs as a significant energy 

action.”  

 The proposed rules will result in the addition of control equipment and monitoring 

systems for existing and new sources within the oil and natural gas industry. The proposed 

NESHAP amendments are unlikely to have a significant adverse effect on the supply, 

distribution, or use of energy. As such, the proposed NESHAP amendments are not “significant 

energy actions” as defined in Executive Order 13211, (66 FR 28355, May 22, 2001).   

 The proposed NSPS is also unlikely to have a significant adverse effect on the supply, 

distribution, or use of energy. As such, the proposed NSPS is not a “significant energy action” as 

defined in Executive Order 13211 (66 FR 28355, May 22, 2001). The basis for the determination 

is as follows. 

 We use the NEMS to estimate the impacts of the proposed NSPS on the United States 

energy system. The NEMS is a publically available model of the United States energy economy 

developed and maintained by the Energy Information Administration of the U.S. DOE and is 

used to produce the Annual Energy Outlook, a reference publication that provides detailed 

forecasts of the United States energy economy.  

 Proposed emission controls for the NSPS capture VOC emissions that otherwise would 

be vented to the atmosphere. Since methane is co-emitted with VOC, a large proportion of the 

averted methane emissions can be directed into natural gas production streams and sold. One 

pollution control requirement of the proposed NSPS also captures saleable condensates.  The 

revenues from additional natural gas and condensate recovery are expected to offset the costs of 

implementing the proposed NSPS.  

 The analysis of energy impacts for the proposed NSPS that includes the additional 

product recovery shows that domestic natural gas production is estimated to increase (20 billion 

cubic feet or 0.1 percent) and natural gas prices to decrease ($0.04/Mcf or 0.9 percent at the 

wellhead for producers in the lower 48 states) in 2015, the year of analysis. Domestic crude oil 

production is not estimated to change, while crude oil prices are estimated to decrease slightly 

($0.02/barrel or less than 0.1 percent at the wellhead for producers in the lower 48 states) in 

2015, the year of analysis. All prices are in 2008 dollars. 
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 Additionally, the NSPS establishes several performance standards that give regulated 

entities flexibility in determining how to best comply with the regulation. In an industry that is 

geographically and economically heterogeneous, this flexibility is an important factor in 

reducing regulatory burden. 

5.9 National Technology Transfer and Advancement Act 

 Section 12(d) of the National Technology Transfer and Advancement Act of 1995 

(“NTTAA”), Public Law No. 104-113 (15 U.S.C. 272 note) directs the EPA to use VCS in its 

regulatory activities unless to do so would be inconsistent with applicable law or otherwise 

impractical. Voluntary consensus standards are technical standards (e.g., materials specifications, 

test methods, sampling procedures, and business practices) that are developed or adopted by 

VCS. The NTTAA directs the EPA to provide Congress, through OMB, explanations when the 

Agency decides not to use available and applicable VCS. 

 The proposed rule involves technical standards. Therefore, the requirements of the 

NTTAA apply to this action. We are proposing to revise 40 CFR part 63, subparts HH and HHH 

to allow ANSI/ASME PTC 19.10–1981, Flue and Exhaust Gas Analyses (Part 10, Instruments 

and Apparatus) to be used in lieu of EPA Methods 3B, 6 and 16A. This standard is available 

from the American Society of Mechanical Engineers (ASME), Three Park Avenue, New York, 

NY 10016-5990. Also, we are proposing to revise 40 CFR part 63, subpart HHH, to allow 

ASTM D6420-99(2004), “Test Method for Determination of Gaseous Organic Compounds by 

Direct Interface Gas Chromatography/Mass Spectrometry” to be used in lieu of EPA Method 18. 

For a detailed discussion of this VCS, and its appropriateness as a substitute for Method 18, see 

the final oil and natural gas production NESHAP (Area Sources) (72 FR 36, January 3, 2007). 

 As a result, the EPA is proposing ASTM D6420-99 for use in 40 CFR part 63, subpart 

HHH. The EPA also proposes to allow Method 18 as an option in addition to ASTM D6420-

99(2004). This would allow the continued use of GC configurations other than GC/MS.  

 The EPA welcomes comments on this aspect of the proposed rulemaking and, 

specifically, invites the public to identify potentially-applicable VCS and to explain why such 

standards should be used in this regulation. 
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5.10 Executive Order 12898:  Federal Actions to Address Environmental Justice in 

Minority Populations and Low-Income Populations 

Executive Order 12898 (59 FR 7629, February 16, 1994) establishes federal executive 

policy on Environmental Justice (EJ). Its main provision directs federal agencies, to the greatest 

extent practicable and permitted by law, to make EJ part of their mission by identifying and 

addressing, as appropriate, disproportionately high and adverse human health or environmental 

effects of their programs, policies, and activities on minority populations and low-income 

populations in the United States.  

To examine the potential for any EJ issues that might be associated with each source 

category, we evaluated the distributions of HAP-related cancer and noncancer risks across 

different social, demographic, and economic groups within the populations living near the 

facilities where these source categories are located. The methods used to conduct demographic 

analyses for this rule are described in section VII.D of the preamble for this rule. The 

development of demographic analyses to inform the consideration of EJ issues in EPA 

rulemakings is an evolving science. The EPA offers the demographic analyses in this proposed 

rulemaking as examples of how such analyses might be developed to inform such consideration, 

and invites public comment on the approaches used and the interpretations made from the 

results, with the hope that this will support the refinement and improve utility of such analyses 

for future rulemakings. 

For the demographic analyses, we focused on the populations within 50 km of any 

facility estimated to have exposures to HAP which result in cancer risks of 1-in-1 million or 

greater, or noncancer HI of 1 or greater (based on the emissions of the source category or the 

facility, respectively). We examined the distributions of those risks across various demographic 

groups, comparing the percentages of particular demographic groups to the total number of 

people in those demographic groups nationwide. The results, including other risk metrics, such 

as average risks for the exposed populations, are documented in source category-specific 

technical reports in the docket for both source categories covered in this proposal. 

 As described in the preamble, our risk assessments demonstrate that the regulations for 

the oil and natural gas production and natural gas transmission and storage source categories, are 
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associated with an acceptable level of risk and that the proposed additional requirements will 

provide an ample margin of safety to protect public health.   

 Our analyses also show that, for these source categories, there is no potential for an 

adverse environmental effect or human health multi-pathway effects, and that acute and chronic 

noncancer health impacts are unlikely. The EPA has determined that although there may be an 

existing disparity in HAP risks from these sources between some demographic groups, no 

demographic group is exposed to an unacceptable level of risk.
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6 COMPARISON OF BENEFITS AND COSTS 

Because we are unable to estimate the monetary value of the emissions reductions from 

the proposed rule, we have chosen to rely upon a break-even analysis to estimate what the 

monetary value benefits would need to attain in order to equal the costs estimated to be imposed 

by the rule.  A break-even analysis answers the question, “What would the benefits need to be 

for the benefits to exceed the costs.”  While a break-even approach is not equivalent to a benefits 

analysis or even a net benefits analysis, we feel the results are illustrative, particularly in the 

context of previously modeled benefits. 

The total cost of the proposed NSPS in the analysis year of 2015 when the additional 

natural gas and condensate recovery is included in the analysis is estimated at -$45 million for 

domestic producers and consumers.  EPA anticipates that this rule would prevent 540,000 tons of 

VOC, 3.4 million tons of methane, and 37,000 tons of HAPs in 2015 from new sources.  In 2015, 

EPA estimates the costs for the NESHAP amendments floor option to be $16 million.49  EPA 

anticipates that this rule would reduce 9,200 tons of VOC, 4,900 tons of methane, and 1,400 tons 

of HAPs in 2015 from existing sources.  For the NESHAP amendments, a break-even analysis 

suggests that HAP emissions would need to be valued at $12,000 per ton for the benefits to 

exceed the costs if the health benefits, and ecosystem and climate co-benefits from the reductions 

in VOC and methane emissions are assumed to be zero.  If we assume the health benefits from 

HAP emission reductions are zero, the VOC emissions would need to be valued at $1,700 per ton 

or the methane emissions would need to be valued at $3,300 per ton for the benefits to exceed 

the costs.  All estimates are in 2008 dollars.  

For the proposed NSPS, the revenue from additional natural gas recovery already exceeds 

the costs, which renders a break-even analysis unnecessary.  However, as discussed in Section 

3.2.2., estimates of the annualized engineering costs that include revenues from natural gas 

product recovery depend heavily upon assumptions about the price of natural gas and 

hydrocarbon condensates in analysis year 2015. Therefore, we have also conducted a break-even 

analysis for the price of natural gas.  For the NSPS, a break-even analysis suggests that the price 

                                                
49 See Section 3 of this RIA for more information regarding the cost estimates for the NESHAP.  
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of natural gas would need to be at least $3.77 per Mcf in 2015 for the revenue from product 

recovery to exceed the annualized costs.  EIA forecasts that the price of natural gas would be 

$4.26 per Mcf in 2015.  In addition to the revenue from product recovery, the NSPS would avert 

emissions of VOCs, HAPs, and methane, which all have value that could be incorporated into the 

break-even analysis.  Figure 6-1 illustrates one method of analyzing the break-even point with 

alternate natural gas prices and VOC benefits.  If, as an illustrative example, the price of natural 

gas was only $3.00 per Mcf, VOCs would need to be valued at $260 per ton for the benefits to 

exceed the costs. All estimates are in 2008 dollars. 

Figure 6-1 Illustrative Break-Even Diagram for Alternate Natural Gas Prices for the 

NSPS 

With the data available, we are not able to provide a credible benefit-per-ton estimate for 

any of the pollutant reductions for these rules to compare to the break-even estimates.  Based on 

the methodology from Fann, Fulcher, and Hubbell (2009), average PM2.5 health-related benefits 
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of VOC emissions are valued at $280 to $7,000 per ton across a range of eight urban areas.50  In 

addition, ozone benefits have been previously valued at $240 to $1,000 per ton of VOC reduced.  

Using the GWP approach, the climate co-benefits range from approximately $110 to $1,400 per 

short ton of methane reduced depending upon the discount rate assumed with a per ton estimate 

of $760 at the 3 percent discount rate. 

These break-even benefit-per-ton estimates assume that all other pollutants have zero 

value.  Of course, it is inappropriate to assume that the value of reducing any of these pollutants 

is zero.  Thus, the real break-even estimate is actually lower than the estimates provided above 

because the other pollutants each have non-zero benefits that should be considered.  

Furthermore, a single pollutant can have multiple effects (e.g., VOCs contribute to both ozone 

and PM2.5 formation that each have health and welfare effects) that would need to be summed in 

order to develop a comprehensive estimate of the monetized benefits associated with reducing 

that pollutant.   

As previously described, the revenue from additional natural gas recovery already 

exceeds the costs of the NSPS, but even if the price of natural gas was only $3.00 per Mcf, it is 

likely that the VOC benefits would exceed the costs,  As a result, even if VOC emissions from 

oil and natural gas operations result in monetized benefits that are substantially below the 

average modeled benefits, there is a reasonable chance that the benefits of these rules would 

exceed the costs, especially if we were able to monetize all of the benefits associated with ozone 

formation, visibility, HAPs, and methane.   

Table 6-1 and Table 6-2 present the summary of the benefits, costs, and net benefits for 

the NSPS and NESHAP amendment options, respectively.  Table 6-3 provides a summary of the 

direct and secondary emissions changes for each option. 

  

                                                
50 See Section 4.5 of this RIA for more information regarding PM2.5 benefits and Section 4.6 for more information 

regarding ozone benefits. 



6-4 

Table 6-1 Summary of the Monetized Benefits, Costs, and Net Benefits for the 

Proposed Oil and Natural Gas NSPS in 2015 (millions of 2008$)
1

�� Option 1: Alternative Option 2: Proposed
4
 Option 3: Alternative 

Total Monetized Benefits2 N/A N/A N/A 

Total Costs3 -$19 million -$45 million $77 million 

Net Benefits N/A N/A N/A 

Non-monetized Benefits 17,000 tons of HAPs5 37,000 tons of HAPs5 37,000 tons of HAPs5

 270,000 tons of VOCs  540,000 tons of VOCs  550,000 tons of VOCs 

 1.6 million tons of methane 3.4 million tons of methane 3.4 million tons of methane 

Health effects of HAP 
exposure5

Health effects of HAP 
exposure5

Health effects of HAP 
exposure5

Health effects of PM2.5 and 
ozone exposure 

Health effects of PM2.5 and 
ozone exposure 

Health effects of PM2.5 and 
ozone exposure 

 Visibility impairment Visibility impairment Visibility impairment 

 Vegetation effects Vegetation effects Vegetation effects 

  Climate effects5 Climate effects5 Climate effects5

   
1 All estimates are for the implementation year (2015) and include estimated revenue from additional natural gas 
recovery as a result of the NSPS. 

2 While we expect that these avoided emissions will result in improvements in air quality and reductions in health 
effects associated with HAPs, ozone, and particulate matter (PM) as well as climate effects associated with methane, we 
have determined that quantification of those benefits and co-benefits cannot be accomplished for this rule in a 
defensible way.  This is not to imply that there are no benefits or co-benefits of the rules; rather, it is a reflection of the 
difficulties in modeling the direct and indirect impacts of the reductions in emissions for this industrial sector with the 
data currently available.  The specific control technologies for the proposed NSPS are anticipated to have minor 
secondary disbenefits, including an increase of 990,000 tons of CO2, 510 tons of NOx, 7.6 tons of PM, 2,800 tons of 
CO, and 1,000 tons of total hydrocarbons (THC) as well as emission reductions associated with the energy system 
impacts.  The net CO2-equivalent emission reductions are 62 million metric tons.   

3 The engineering compliance costs are annualized using a 7 percent discount rate.   

4 The negative cost for the NSPS Options 1 and 2 reflects the inclusion of revenues from additional natural gas and 
hydrocarbon condensate recovery that are estimated as a result of the proposed NSPS.  Possible explanations for why 
there appear to be negative cost control technologies are discussed in the engineering costs analysis section in the RIA.  

5 Reduced exposure to HAPs and climate effects are co-benefits. 
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Table 6-2 Summary of the Monetized Benefits, Costs, and Net Benefits for the 

Proposed Oil and Natural Gas NESHAP amendments in 2015 (millions of 2008$)
1 

�� Option 1: Proposed (Floor) 

Total Monetized Benefits2 N/A 

Total Costs3 $16 million 

Net Benefits N/A 

Non-monetized Benefits  1,400 tons of HAPs 

9,200  tons of VOCs4

4,900  tons of methane4

Health effects of HAP exposure 

Health effects of PM2.5 and ozone exposure4

Visibility impairment4

Vegetation effects4

  Climate effects4

1 All estimates are for the implementation year (2015). 

2 While we expect that these avoided emissions will result in improvements in air quality and reductions in health 
effects associated with HAPs, ozone, and PM as well as climate effects associated with methane, we have 
determined that quantification of those benefits and co-benefits cannot be accomplished for this rule in a defensible 
way.  This is not to imply that there are no benefits or co-benefits of the rules; rather, it is a reflection of the 
difficulties in modeling the direct and indirect impacts of the reductions in emissions for this industrial sector with 
the data currently available.  The specific control technologies for the proposed NESHAP are anticipated to have 
minor secondary disbenefits, including an increase of 5,500 tons of CO2, 2.9 tons of NOx, 16 tons of CO, and 6.0 
tons of THC as well as emission reductions associated with the energy system impacts.  The net CO2-equivalent 
emission reductions are 93 thousand metric tons.   

3 The cost estimates are assumed to be equivalent to the engineering cost estimates.  The engineering compliance 
costs are annualized using a 7 percent discount rate. 

4 Reduced exposure to VOC emissions, PM2.5 and ozone exposure, visibility and vegetation effects, and climate 
effects are co-benefits. 
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Table 6-3 Summary of Emissions Changes for the Proposed Oil and Gas NSPS and 

NESHAP in 2015 (short tons per year) 

  Pollutant 
NSPS 

Option 1  

NSPS Option 2 

(Proposed) 

NSPS Option 

3 
NESHAP 

Change in Direct Emissions 

VOC -270,000 -540,000 -550,000 -9,200 

Methane -1,600,000 -3,400,000 -3,400,000 -4,900 

HAP  -17,000 -37,000 -37,000 -1,400 

Change in Secondary 

Emissions (Producer-Side) 
1

CO2 990,000 990,000 990,000 5,500 

NOx 510 510 510 2.9 

PM 7.6 7.6 7.6 0.1 

CO 2,800 2,800 2,800 16 

THC 1,000 1,000 1,000 6.0 

Change in Secondary 

Emissions (Consumer-Side)  
CO2-e -1,000,000 1,700,000 1,400,000 N/A 

Net Change in CO2-equivalent 

Emissions  
CO2-e -33,000,000 -68,000,000 -70,000,000 -96,000 

1 We use the producer-side secondary impacts associated with the proposed NSPS option as a surrogate for the 
impacts of the other options. 
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7 ECONOMIC IMPACT ANALYSIS AND DISTRIBUTIONAL ASSESSMENTS 

7.1 Introduction 

This section includes three sets of analyses for both the NSPS and NESHAP 

amendments: 

• Energy System Impacts 

• Employment Impacts 

• Small Business Impacts Analysis 

7.2 Energy System Impacts Analysis of Proposed NSPS 

We use the National Energy Modeling System (NEMS) to estimate the impacts of the 

proposed NSPS on the U.S. energy system.  The impacts we estimate include changes in drilling 

activity, price and quantity changes in the production and consumption of crude oil and natural 

gas, and changes in international trade of crude oil and natural gas.  We evaluate whether and to 

what extent the increased production costs imposed by the NSPS might alter the mix of fuels 

consumed at a national level.  With this information we estimate how the changed fuel mix 

affects national level CO2-equivalent greenhouse gas emissions from energy sources.  We 

additionally combine these estimates of changes in CO2-equivalent greenhouse gas emissions 

from energy sources and emissions co-reductions of methane from the engineering analysis with 

NEMS analysis to estimate the net change in CO2-equivalent greenhouse gas emissions from 

energy-related sources, but this analysis is reserved for the secondary environmental impacts 

analysis within Section 4. 

A brief conceptual discussion about our energy system impacts modeling approach is 

necessary before going into detail on NEMS, how we implemented the regulatory impacts, and 

results.  Economically, it is possible to view the recovered natural gas as an explicit output or as 

contributing to an efficiency gain at the producer level.  For example, the analysis for the 

proposed NSPS shows that about 97 percent of the natural gas captured by emissions controls 

suggested by the rule is captured by performing RECs on new and existing wells that are 
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completed after being hydraulically fractured.  The assumed $4/Mcf price for natural gas is the 

price paid to producers at the wellhead.  In the natural gas industry, production is metered at or 

very near to the wellhead, and producers are paid based upon this metered production.  

Depending on the situation, the gas captured by RECs is sent through a temporary or permanent 

meter.  Payments for the gas are typically made within 30 days. 

To preview the energy systems modeling using NEMS, results show that after economic 

adjustments to the new regulations are made by producers, the captured natural gas represents 

both increased output (a slight increment in aggregate production) and increased efficiency 

(producing slightly more for less).  However, because of differing objectives for the regulatory 

analysis we treat the associated savings differently in the engineering cost analysis (as an explicit 

output) and in NEMS (as an efficiency gain). 

In the engineering cost analysis, it is necessary to estimate the expected costs and 

revenues from implementing emissions controls at the unit level.  Because of this, we estimate 

the net costs as expected costs minus expected revenues for representative units.  On the other 

hand, NEMS models the profit maximizing behavior of representative project developers at a 

drilling project level. The net costs of the regulation alter the expected discounted cash flow of 

drilling and implementing oil and gas projects, and the behavior of the representative drillers 

adjusts accordingly.  While in the regulatory case natural gas drilling has become more efficient 

because of the gas recovery, project developers still interact with markets for which supply and 

demand are simultaneously adjusting.  Consequently, project development adjusts to a new 

equilibrium.  While we believe the cost savings as measured by revenues from selling recovered 

gas (engineering costs) and measured by cost savings from averted production through efficiency 

gains (energy economic modeling)  are approximately the same, it is important to note that the 

engineering cost analysis and the national-level cost estimates do not incorporate economic 

feedbacks such as supply and demand adjustments. 

7.2.1 Description of the Department of Energy National Energy Modeling System 

NEMS is a model of U.S. energy economy developed and maintained by the Energy 

Information Administration of the U.S. Department of Energy.  NEMS is used to produce the 

Annual Energy Outlook, a reference publication that provides detailed forecasts of the energy 
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economy from the current year to 2035.  DOE first developed NEMS in the 1980s, and the 

model has been undergone frequent updates and expansion since.  DOE uses the modeling 

system extensively to produce issue reports, legislative analyses, and respond to Congressional 

inquiries.  

EIA is legally required to make the NEMS system source code available and fully 

documented for the public.  The source code and accompanying documentation is released 

annually when a new Annual Energy Outlook is produced.  Because of the availability of the 

NEMS model, numerous agencies, national laboratories, research institutes, and academic and 

private-sector researchers have used NEMS to analyze a variety of issues. 

NEMS models the dynamics of energy markets and their interactions with the broader 

U.S. economy.  The system projects the production of energy resources such as oil, natural gas, 

coal, and renewable fuels, the conversion of resources through processes such as refining and 

electricity generation, and the quantity and prices for final consumption across sectors and 

regions.  The dynamics of the energy system are governed by assumptions about energy and 

environmental policies, technological developments, resource supplies, demography, and 

macroeconomic conditions.  An overview of the model and complete documentation of NEMS 

can be found at <http://www.eia.doe.gov/oiaf/aeo/overview/index.html>. 
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Figure 7-1 Organization of NEMS Modules (source: U.S. Energy Information 

Administration) 

NEMS is a large-scale, deterministic mathematical programming model.  NEMS 

iteratively solves multiple models, linear and non-linear, using nonlinear Gauss-Seidel methods 

(Gabriel et al. 2001).  What this means is that NEMS solves a single module, holding all else 

constant at provisional solutions, then moves to the next model after establishing an updated 

provisional solution.   

NEMS provides what EIA refers to as “mid-term” projections to the year 2035.  

However, as this RIA is concerned with estimating regulatory impacts in the first year of full 

implementation, our analysis focuses upon estimated impacts in the year 2015, with regulatory 

costs first imposed in 2011.  For this RIA, we draw upon the same assumptions and model used 

in the Annual Energy Outlook 2011.51   The RIA baseline is consistent with that of the Annual 

Energy Outlook 2011 which is used extensively in Section 2 in the Industry Profile.   

                                                
51 Assumptions for the 2011 Annual Energy Outlook can be found at 

<http://www.eia.gov/forecasts/aeo/assumptions/index.cfm>.   
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7.2.2 Inputs to National Energy Modeling System 

To model potential impacts associated with the NSPS, we modified oil and gas 

production costs within the Oil and Gas Supply Module (OGSM) of NEMS and domestic and 

Canadian natural gas production within the Natural Gas Transmission and Distribution Module 

(NGTDM).  The OGSM projects domestic oil and gas production from onshore, offshore, 

Alaskan wells, as well as having a smaller-scale treatment of Canadian oil and gas production 

(U.S. EIA, 2010).  The treatment of oil and gas resources is detailed in that oil, shale oil, 

conventional gas, shale gas, tight sands gas, and coalbed methane (CBM) are explicitly modeled.  

New exploration and development is pursued in the OGSM if the expected net present value of 

extracted resources exceeds expected costs, including costs associated with capital, exploration, 

development, production, and taxes.  Detailed technology and reservoir-level production 

economics govern finding and success rates and costs.  

The structure of the OGSM is amenable to analyzing potential impacts of the Oil and 

Natural Gas NSPS.  We are able to target additional expenditures for environmental controls 

expected to be required by the NSPS on new exploratory and developmental oil and gas 

production activities, as well as add additional costs to existing projects.  We model the impacts 

of additional environmental costs, as well as the impacts of additional product recovery.  We 

explicitly model the additional natural gas recovered when implementing the NSPS regulatory 

options.  However, we are unable to explicitly model the additional production of condensates 

expected to be recovered by reduced emissions completions, although we incorporate expected 

revenues from the condensate recovery in the economic evaluation of new drilling projects. 

While the oil production simulated by the OGSM is sent to the refining module (the 

Petroleum Market Module), simulated natural gas production is sent to a transmission and 

distribution network captured in the NGTDM.  The NGTDM balances gas supplies and prices 

and “negotiates” supply and consumption to determine a regional equilibrium between supply, 

demand and prices, including imports and exports via pipeline or LNG.  Natural gas transmitted 

through a simplified arc-node representation of pipeline infrastructure based upon pipeline 

economics. 
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7.2.2.1 Compliance Costs for Oil and Gas Exploration and Production 

As the NSPS affects new emissions sources, we chose to estimate impacts on new 

exploration and development projects by adding costs of environmental regulation to the 

algorithm that evaluates the profitability of new projects.  Additional NSPS costs associated with 

reduced emission completions and future recompletions for new wells are added to drilling, 

completion, and stimulation costs, as these are, in effect, associated with activities that occur 

within a single time period, although they may be repeated periodically, as in the case of 

recompletions.  Costs required for reduced emissions recompletions on existing wells are added 

to stimulation expenses for existing wells exclusively.  Other costs are operations and 

maintenance-type costs and are added to fixed operation and maintenance (O&M) expenses 

associated with new projects.  The one-shot and continuing O&M expenses are estimated and 

entered on a per well basis, depending on whether the costs would apply to oil wells, natural gas 

wells, both oil and natural gas wells, or a subset of either.  We base the per well cost estimates on 

the engineering costs including revenues from additional product recovery.  This approach is 

appropriate given the structure of the NEMS algorithm that estimates the net present value of 

drilling projects.  

One concern in basing the regulatory costs inputs into NEMS on the net cost of the 

compliance activity (estimated annualized cost of compliance minus estimated revenue from 

product recovery) is that potential barriers to obtaining capital may not be adequately 

incorporated in the model.  However, in general, potential barriers to obtaining additional capital 

should be reflected in the annualized cost via these barriers increasing the cost of capital.  With 

this in mind, assuming the estimates of capital costs and product recovery are valid, the NEMS 

results will reflect barriers to obtaining the retired capital.  A caveat to this is that the estimated 

unit-level capital costs of controls which are newly required at a national-level as a result of the 

proposed regulation—RECs, for example—may not incorporate potential additional transitional 

costs as the supply of control equipment adjusts to new demand. 

 Table 7-1 shows the incremental O&M expenses that accrue to new drilling projects as a 

result of producers having to comply with the relevant NSPS option.  We estimate those costs as 

a function of new wells expected to be drilled in a representative year.  To arrive at estimates of 
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the per well costs, we first identify which emissions reductions will apply primarily to crude oil 

wells, to natural gas wells, or to both crude oil and natural gas wells.  Based on the baseline 

projections of successful completions in 2015, we used 19,097 new natural gas wells and 12,193 

new oil wells as the basis of these calculations.  We then divide the estimated compliance costs 

for the given emissions point (from Table 3-3) by the appropriate number of expected new wells 

in the year of analysis.  The result yields an approximation of a per well compliance costs.  We 

assume this approximation is representative of the incremental cost faced by a producer when 

evaluating a prospective drilling project. 

Like the engineering analysis, we assume that hydraulically fractured well completions 

and recompletions will be required of wells drilled into tight sand, shale gas, and coalbed 

methane formations.  While costs for well recompletions reflect the cost of a single 

recompletion, the engineering cost analysis assumed that one in ten new wells drilled after the 

implementation of the promulgation and implementation of the NSPS are completed using 

hydraulic fracturing will receive a recompletion in any given year using hydraulic fracturing.  

Meanwhile, within NEMS, wells are assumed to be stimulated every five years.  We assume 

these more frequent stimulations are less intensive than stimulation using hydraulic fracturing 

but add costs such that the recompletions costs reflect the same assumptions as the engineering 

analysis.  In entering compliance costs into NEMS, we also account for reduced emissions 

completions, completion combustion, and recompletions performed in absence of the regulation, 

using the same assumptions as the engineering costs analysis (Table 7-2).   
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Table 7-1 Summary of Additional Annualized O&M Costs (on a Per New Well Basis) 

for Environmental Controls Entered into NEMS 

  

Emissions 

Sources/Points 

Emissions 

Control 

Per Well Costs (2008$) Wells 

Applied 

To in 

NEMS Option 1 

Option 2 

(Proposed) Option 3 

Equipment Leaks     

 Well Pads Subpart VV 
Not in Option Not in Option $3,552 

Oil and 
Gas 

 Gathering and Boosting 
Stations 

Subpart VV 
Not in Option Not in Option $806 Gas 

 Processing Plants Subpart VVa Not in Option $56 $56 None 

 Transmission 
Compressor Stations 

Subpart VV 
Not in Option Not in Option $320 Gas 

Reciprocating 

Compressors 
    

 Well Pads Annual 
Monitoring/ 
Maintenance 

Not in Option Not in Option Not in Option None 

 Gathering/Boosting 
Stations 

AMM 
$17 $17 $17 Gas 

 Processing Plants AMM $12 $12 $12 Gas 

 Transmission 
Compressor Stations 

AMM 
$19 $19 $19 Gas 

 Underground Storage 
Facilities 

AMM 
$1 $1 $1 Gas 

Centrifugal Compressors     

 Processing Plants Dry Seals/Route 
to Process or 
Control 

-$113 -$113 -$113 Gas 

 Transmission 
Compressor Stations 

Dry Seals/Route 
to Process or 
Control 

-$62 -$62 -$62 Gas 

Pneumatic Controllers -     

  Oil and Gas Production Low 
Bleed/Route to 
Process 

-$698 -$698 -$698 
Oil and 

Gas 

  Natural Gas 
Transmission and 
Storage 

Low 
Bleed/Route to 
Process 

$0.10 $0.10 $0.10 Gas 

Storage Vessels     

 High Throughput 95% control 
$143 $143 $143 

Oil and 
Gas 

  Low Throughput 95% control Not in Option Not in Option Not in Option None 
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Table 7-2 Summary of Additional Per Completion/Recompletion Costs (2008$) for 

Environmental Controls Entered into NEMS 

  

Emissions 

Sources/Points 

Emissions 

Control 

Per Completion/Recompletion Costs (2008$) 

Wells Applied To 

in NEMS Option 1 

Option 2 

(proposed) Option 3 

Well Completions     

 Hydraulically Fractured 
Gas Wells REC -$1,275 -$1,275 -$1,275 

New Tight Sand/ 
Shale Gas/CBM 

 Conventional Gas Wells Combustion Not in Option Not in Option Not in Option None 

 Oil Wells Combustion Not in Option Not in Option Not in Option None 

Well Recompletions     

 Hydraulically Fractured 
Gas Wells (post-NSPS 
wells) 

REC -$1,535 -$1,535 -$1,535 
Existing Tight 

Sand/ Shale Gas 
/Coalbed Methane 

 Hydraulically Fractured 
Gas Wells (existing 
wells) 

REC Not in Option -$1,535 -$1,535 
Existing Tight 

Sand/ Shale Gas 
/Coalbed Methane 

 Conventional Gas Wells Combustion Not in Option Not in Option Not in Option None 

   Oil Wells  Combustion Not in Option Not in Option Not in Option  None  

7.2.2.2 Adding Averted Methane Emissions into Natural Gas Production 

 A significant benefit of controlling VOC emissions from oil and natural gas production is 

that methane that would otherwise be lost to the atmosphere can be directed into the natural gas 

production stream.  We chose to model methane capture in NEMS as an increase in natural gas 

industry productivity, ensuring that, within the model, natural gas reservoirs are not decremented 

by production gains from methane capture.  We add estimates of the quantities of methane 

captured (or otherwise not vented or combusted) to the base quantities that the OGSM model 

supplies to the NGTDM model.  We subdivide the estimates of commercially valuable averted 

emissions by region and well type in order to more accurately portray the economics of 

implementing the environmental technology.  Adding the averted methane emissions in this 

manner has the effect of moving the natural gas supply curve to the right an increment consistent 

with the technically achievable emissions transferred into the production stream as a result of the 

proposed NSPS. 

 For all control options, with the exception of recompletions on existing wells, we enter 

the increased natural gas recovery into NEMS on a per-well basis for new wells, following an 
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estimation procedure similar to that of entering compliance costs into NEMS on a per well basis 

for new wells.  Because each NSPS Option is composed of a different suite of emissions 

controls, the per-well natural gas recovery value for new wells is different across wells.  For 

Option 1, we estimate that natural gas recovery is 5,739 Mcf per well.  For Option 2 and Option 

3, we estimate that natural gas recovery is 5,743 Mcf per well.  We make a simplifying 

assumption that natural gas recovery accruing to new wells accrues to new wells in shale gas, 

tight sands, and CBM fields.  We make these assumptions because new wells in these fields are 

more likely to satisfy criteria such that RECs are required, which contributed that large majority 

of potential natural gas recovery.  Note that these per well natural gas recovery is lower than the 

per well estimate when RECs are implemented.  The estimate is lower because we account for 

emissions that are combusted, RECs that are implemented absent Federal regulation, as well as 

the likelihood that natural gas is used during processing and transmission or reinjected. 

 We treat the potential natural gas recovery associated with recompletions of existing 

wells (in proposed Option 2 and Option 3) differently in that we estimated the natural gas 

recovery by natural gas resource type and NSPS Option based on a combination of the 

engineering analysis and production patterns from the 2011 Annual Energy Outlook.  We 

estimate that additional natural gas product recovered by recompleting existing wells in proposed 

Option 2 and Option 3 to be 78.7 bcf, with 38.4 bcf accruing to shale gas, 31.4 bcf accruing to 

tight sands, and 8.9 bcf accruing to CBM, respectively.  This quantity is distributed within the 

NGTDM to reflect regional production by resource type. 

7.2.2.3 Fixing Canadian Drilling Costs to Baseline Path 

Domestic drilling costs serve as a proxy for Canadian drilling costs in the Canadian oil 

and natural gas sub-model within the NGTDM.  This implies that, without additional 

modification, additional costs imposed by a U.S. regulation will also impact drilling decisions in 

Canada.   Changes in international oil and gas trade are important in the analysis, as a large 

majority of natural gas imported into the U.S. originates in Canada.  To avoid this problem, we 

fixed Canadian drilling costs using U.S. drilling costs from the baseline scenario.  This solution 

enables a more accurate analysis of U.S.-Canada energy trade, as increased drilling costs in the 

U.S. as a result of environmental regulation serve to increase Canada’s comparative advantage. 
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7.2.3 Energy System Impacts 

As mentioned earlier, we estimate impacts to drilling activity, reserves, price and quantity 

changes in the production and consumption of crude oil and natural gas, and changes in 

international trade of crude oil and natural gas, as well as whether and to what extent the NSPS 

might alter the mix of fuels consumed at a national level.  In each of these estimates, we present 

estimates for the baseline year of 2015 and results for the three NSPS options.  For context, we 

provide estimates of production activities in 2011.

7.2.3.1 Impacts on Drilling Activities 

Because the potential costs of the NSPS options are concentrated in production activities, 

we first report estimates of impacts on crude oil and natural gas drilling activities and production 

and price changes at the wellhead.  Table 7-3 presents estimates of successful wells drilled in the 

U.S. in 2015, the analysis year, for the three NSPS options and in the baseline. 

Table 7-3 Successful Oil and Gas Wells Drilled, NSPS Options 

                             Future NSPS Scenario, 2015 

  2011 Baseline Option 1 

Option 2 

(Proposed) Option 3 

       

Successful Wells Drilled      

 Natural Gas 16,373 19,097 19,191 18,935 18,872 

 Crude Oil 10,352 11,025 11,025 11,025 11,028 

Total 26,725 30,122 30,216 29,960 29,900 

       

% Change in Successful Wells Drilled from Baseline 

 Natural Gas   0.49% -0.85% -1.18% 

 Crude Oil   0.00% 0.00% 0.03% 

  Total     0.31% -0.54% -0.74%

We estimate that the number of successful natural gas wells drilled increases slightly for Option 

1, while the number of successful crude oil wells drilled does not change.  In Options 2, where 

costs of the natural gas processing plants equipment leaks standard and REC requirements for 

existing wells apply, natural gas wells drilling is forecast to decrease less than 1 percent, while 

crude oil drilling does not change.  For Option 3, where the addition of an additional equipment 
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leak standards add to the incremental costs, natural gas well drilling is estimated to decrease 

about 1.2%.  The number of successful crude oil wells drilled under Option 3 increases very 

slightly.  While it may seem counter-intuitive that the number of successful crude wells 

increased as costs increase, it is important to note that crude oil and natural gas drilling compete 

with each other for factors of production, such as labor and material.  The environmental 

compliance costs of the NSPS options predominantly affect natural gas drilling.  As natural gas 

drilling declines, for example, as a result of increased compliance costs, crude oil drilling may 

increase because of the increased availability of labor and material, as well as the likelihood that 

crude oil can substitute for natural gas to some extent. 

 Table 7-4 presents the forecast of successful wells by well type, for onshore drilling in 

the lower 48 states.  The results show that conventional well drilling is unaffected by the 

regulatory options, as reduced emission completion and completion combustion requirements are 

directed not toward wells in conventional reserves but toward wells that are hydraulically 

fractured, the wells in so-called unconventional reserves.  The impacts on drilling tight sands, 

shale gas, and coalbed methane vary by option. 

Table 7-4 Successful Wells Drilled by Well Type (Onshore, Lower 48 States), NSPS 

Options 

                               Future NSPS Scenario, 2015

  2011 Baseline Option 1 

Option 2 

(Proposed) Option 3 

       

Successful Wells Drilled      

 Conventional Gas Wells 7,267 7,607 7,607 7,607 7,607 

 Tight Sands 2,441 2,772 2,791 2,816 2,780 

 Shale Gas 5,007 7,022 7,074 6,763 6,771 

 Coalbed Methane 1,593 1,609 1,632 1,662 1,627 

 Total 16,308 19,010 19,104 18,849 18,785 

       

% Change in Successful Wells Drilled from Baseline 

 Conventional Gas Wells   0.00% 0.00% 0.00% 

 Tight Sands   0.70% 1.60% 0.29% 

 Shale Gas   0.74% -3.68% -3.57% 

 Coalbed Methane   1.44% 3.28% 1.09% 

  Total     0.50% -0.85% -1.18%
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Well drilling in tight sands is estimated to increase slightly from the baseline under all three 

options, 0.70 percent, 1.60 percent, and 0.29% for Options 1, 2, and 3, respectively.  Wells in 

CBM reserves are also estimated to increase from the baseline under all three options, or 1.44 

percent, 3.28 percent, and 1.09 percent for Options 1, 2, and 3, respectively.  However, drilling 

in shale gas is forecast to decline from the baseline under Options 2 and 3, by 3.68 percent and 

3.57 percent, respectively.   

7.2.3.2 Impacts on Production, Prices, and Consumption 

Table 7-5 shows estimates of the changes in the domestic production of natural gas and 

crude oil under the NSPS options, as of 2015.  Domestic crude oil production is not forecast to 

change under any of the three regulatory options, again because impacts on crude oil drilling of 

the NSPS are expected to be negligible.   

Table 7-5 Annual Domestic Natural Gas and Crude Oil Production, NSPS Options 

                           Future NSPS Scenario, 2015 

  2011 Baseline Option 1 

Option 2 

(Proposed) Option 3 

Domestic Production 

 Natural Gas (trillion cubic feet) 21.05 22.43 22.47 22.45 22.44 

 Crude Oil (million barrels/day) 5.46 5.81 5.81 5.81 5.81 

       

% Change in Domestic Production from Baseline 

 Natural Gas   0.18% 0.09% 0.04% 

  Crude Oil     0.00% 0.00% 0.00% 

Natural gas production, on the other hand, increases under all three regulatory options for the 

NSPS from the baseline.  A main driver for these increases is the additional natural gas recovery 

engendered by the control requirements. Another driver for the increases under Option 1 is the 

increase in natural gas well drilling.  While we showed earlier that natural gas drilling is 

estimated to decline under Options 2 and 3, the increased natural gas recovery is sufficient to 

offset the production loss from relatively fewer producing wells.   

 For the proposed option, the NEMS analysis shown in Table 7-5 estimates a 20 bcf 

increase in domestic natural gas production.  This amount is less than the amount estimated in 

the engineering analysis to be captured by emissions controls implemented as a result of the 
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proposed NSPS (approximately 180 bcf).  This difference is because NEMS models the 

adjustment of energy markets to the now relatively more efficient natural gas production sector.  

At the new natural gas supply and demand equilibrium in 2015, the modeling estimates 20 bcf 

more gas is produced at a relatively lower wellhead price (which will be presented momentarily).  

However, at the new equilibrium, producers implementing emissions controls still capture and 

sell approximately 180 bcf of natural gas.  For example, as shown in Table 7-4, about 11,200 

new unconventional natural gas wells are completed under the proposed NSPS; using 

assumptions from the engineering cost analysis about RECs required under State regulations and 

exploratory wells exempted from REC requirements, about 9,000 NSPS-required RECs would 

be performed on new natural gas well completions, according to the NEMS analysis.  This 

recovered natural gas substitutes for natural gas that would be produced from the ground absent 

the rule.  In effect, then, about 160 bcf of natural gas that would have been extracted and emitted 

into the atmosphere is left in the formation for future extraction. 

As we showed for natural gas drilling, Table 7-6 shows natural gas production from 

onshore wells in the lower 48 states by type of well, predicted for 2015, the analysis year.  

Production from conventional natural gas wells and CBM wells are estimated to increase under 

all NSPS regulatory options.  Production from shale gas reserves is estimated to decrease under 

Options 2 and 3, however, from the baseline projection.  Production from tight sands is forecast 

to decline slightly under Option 1. 
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Table 7-6 Natural Gas Production by Well Type (Onshore, Lower 48 States), NSPS 

Options 

                           Future NSPS Scenario, 2015 

  2011 Baseline Option 1 

Option 2 

(Proposed) Option 3 

Natural Gas Production by Well Type (trillion cubic feet) 

 Conventional Gas Wells 4.06 3.74 3.75 3.76 3.76 

 Tight Sands 5.96 5.89 5.87 6.00 6.00 

 Shale Gas 5.21 7.20 7.26 7.06 7.06 

 Coalbed Methane 1.72 1.67 1.69 1.72 1.71 

 Total 16.95 18.51 18.57 18.54 18.53 

       

% Change in Natural Gas Production by Well Type from Baseline 

 Conventional Gas Wells   0.32% 0.42% 0.48% 

 Tight Sands   -0.43% 1.82% 1.72% 

 Shale Gas   0.73% -1.97% -1.93% 

 Coalbed Methane   1.07% 2.86% 2.60% 

  Total     0.31% 0.16% 0.13% 

Note: Totals may not sum due to independent rounding. 

Overall, of the regulatory options, the proposed Option 2 is estimated to have the highest natural 

gas production from onshore wells in the lower 48 states, showing a 1.2% increase over the 

baseline projection. 

Table 7-7 presents estimates of national average wellhead natural gas and crude oil prices 

for onshore production in the lower 48 states, estimated for 2015, the year of analysis.  All NSPS 

options show a decrease in wellhead natural gas and crude oil prices.  The decrease in wellhead 

natural gas price form the baseline is attributable largely to the increased productivity of natural 

gas wells as a result of capturing a portion of completion emissions (in Options 1, 2, and 3) and 

in capturing recompletion emissions (in Options 2 and 3).
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Table 7-7 Lower 48 Average Natural Gas and Crude Oil Wellhead Price, NSPS 

Options 

      Future NSPS Scenario, 2015 

  2011 Baseline Option 1 

Option 2 

(Proposed) Option 3 

Lower 48 Average Wellhead Price 

 Natural Gas (2008$ per Mcf) 4.07 4.22 4.18 4.18 4.19

 Crude Oil (2008$ per barrel) 83.65 94.60 94.59 94.58 94.58

       

% Change in Lower 48 Average Wellhead Price from Baseline 

 Natural Gas   -0.94% -0.94% -0.71%

  Crude Oil     -0.01% -0.02% -0.02%

��

Table 7-8 presents estimates of the price of natural gas to final consumers in 2008 dollars per 

million BTU.  The production price decreases estimated across NSPS are largely passed on to 

consumers but distributed unequally across consuming sectors.  Electric power sector consumers 

of natural gas are estimated to receive the largest price decrease while the transportation and 

residential sectors are forecast to receive the smallest price decreases.  �

Table 7-8 Delivered Natural Gas Prices by Sector (2008$ per million BTU), 2015, NSPS 

Options 

      Future NSPS Scenario, 2015 

  2011 Baseline Option 1 

Option 2 

(Proposed) Option 3 

Delivered Prices (2008$ per million BTU)     

 Residential 10.52 10.35 10.32 10.32 10.33 

 Commercial 9.26 8.56 8.52 8.53 8.54 

 Industrial 4.97 5.08 5.05 5.05 5.06 

 Electric Power 4.81 4.77 4.73 4.74 4.75 

 Transportation 12.30 12.24 12.20 12.22 12.22 

 Average 6.76 6.59 6.55 6.57 6.57 

       

% Change in Delivered Prices from Baseline 

 Residential   -0.29% -0.29% -0.19%

 Commercial   -0.47% -0.35% -0.23%

 Industrial   -0.59% -0.59% -0.39%

 Electric Power   -0.84% -0.63% -0.42%

 Transportation   -0.33% -0.16% -0.16%

  Average     -0.60% -0.41% -0.30%
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Final consumption of natural gas is also estimated to increase in 2015 from the baseline 

under all NSPS options, as is shown on Table 7-9.  Like delivered price, the consumption shifts 

are distributed differently across sectors.    

Table 7-9 Natural Gas Consumption by Sector, NSPS Options 

                           Future NSPS Scenario, 2015 

  2011 Baseline Option 1 

Option 2 

(Proposed) Option 3 

Consumption (trillion cubic feet)      

 Residential 4.76 4.81 4.81 4.81 4.81 

 Commercial 3.22 3.38 3.38 3.38 3.38 

 Industrial 6.95 8.05 8.06 8.06 8.06 

 Electric Power 7.00 6.98 7.00 6.98 6.97 

 Transportation 0.03 0.04 0.04 0.04 0.04 

 Pipeline Fuel 0.64 0.65 0.65 0.66 0.66 

 Lease and Plant Fuel 1.27 1.20 1.21 1.21 1.21 

 Total 23.86 25.11 25.15 25.14 25.13 

     

% Change in Consumption from Baseline 

 Residential   0.00% 0.00% 0.00% 

 Commercial   0.00% 0.00% 0.00% 

 Industrial   0.12% 0.12% 0.12% 

 Electric Power   0.29% 0.00% -0.14% 

 Transportation   0.00% 0.00% 0.00% 

 Pipeline Fuel   0.00% 1.54% 1.54% 

 Lease and Plant Fuel   0.83% 0.83% 0.83% 

  Total     0.16% 0.12% 0.08%

Note: Totals may not sum due to independent rounding. 

7.2.3.3 Impacts on Imports and National Fuel Mix 

The NEMS modeling shows that impacts from all NSPS options are not sufficiently large 

to affect the trade balance of natural gas.  As shown in Table 7-10, estimates of crude oil and 

natural gas imports do not vary from the baseline in 2015 for each regulatory option.   

  



7-18 

Table 7-10 Net Imports of Natural Gas and Crude Oil, NSPS Options 

                             Future NSPS Scenario, 2015 

  2011 Baseline Option 1 

Option 2 

(Proposed) Option 3 

Net Imports 

 Natural Gas (trillion cubic feet) 2.75 2.69 2.69 2.69 2.69 

 Crude Oil (million barrels/day) 9.13 8.70 8.70 8.70 8.70 

       

% Change in Net Imports 

 Natural Gas   0.00% 0.00% 0.00% 

  Crude Oil     0.00% 0.00% 0.00% 

Table 7-11 evaluates estimates of energy consumption by energy type at the national 

level for 2015, the year of analysis.  All three NSPS options are estimated to have small effects at 

the national level.  For Option 1, we estimate an increase in 0.02 quadrillion BTU in 2015, a 0.02 

percent increase.  The percent contribution of natural gas and biomass is projected to increase, 

while the percent contribution of liquid fuels and coal is expected to decrease under Option 1.  

Meanwhile, under the proposed Options 2, total energy consumption is also forecast to rise 0.02 

quadrillion BTU, with increase coming from natural gas primarily, with an additional small 

increase in coal consumption.  Under Option 3, total energy consumption is forecast to rise 0.01 

quadrillion BTU, or 0.01%, with a slight decrease in liquid fuel consumption from the baseline, 

but increases in natural gas and coal consumption. 
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Table 7-11 Total Energy Consumption by Energy Type (Quadrillion BTU), NSPS 

Options 

                              Future NSPS Scenario, 2015 

  2011 Baseline Option 1 

Option 2 

(Proposed) Option 3 

Consumption (quadrillion BTU)      

 Liquid Fuels 37.41 39.10 39.09 39.10 39.09 

 Natural gas 24.49 25.77 25.82 25.79 25.79 

 Coal 20.42 19.73 19.71 19.74 19.74 

 Nuclear Power 8.40 8.77 8.77 8.77 8.77 

 Hydropower 2.58 2.92 2.92 2.92 2.92 

 Biomass 2.98 3.27 3.28 3.27 3.27 

 Other Renewable Energy 1.72 2.14 2.14 2.14 2.14 

 Other 0.30 0.31 0.31 0.31 0.31 

 Total 98.29 102.02 102.04 102.04 102.03 

     

% Change in Consumption from Baseline 

 Liquid Fuels   -0.03% 0.00% -0.03% 

 Natural Gas   0.19% 0.08% 0.08% 

 Coal   -0.10% 0.05% 0.05% 

 Nuclear Power   0.00% 0.00% 0.00% 

 Hydropower   0.00% 0.00% 0.00% 

 Biomass   0.31% 0.00% 0.00% 

 Other Renewable Energy   0.00% 0.00% 0.00% 

 Other   0.00% 0.00% 0.00% 

  Total     0.02% 0.02% 0.01%

Note: Totals may not sum due to independent rounding. 

 With the national profile of energy consumption estimated to change slightly under the 

regulatory options in 2015, the year of analysis, it is important to examine whether aggregate 

energy-related CO2-equivalent greenhouse gas (GHG) emissions also shift.  A more detailed 

discussion of changes in CO2-equivalent GHG emissions from a baseline is presented within the 

benefits analysis in Section 4.  Here, we present a single NEMS-based table showing estimated 

changes in energy-related “consumer-side” GHG emissions.  We use the terms “consumer-side” 

emissions to distinguish emissions from the consumption of fuel from emissions specifically 

associated with the extraction, processing, and transportation of fuels in the oil and natural gas 

sector under examination in this RIA.  We term the emissions associated with extraction, 

processing, and transportation of fuels “producer-side” emissions.    
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Table 7-12 Modeled Change in Energy-related "Consumer-Side" CO2-equivalent GHG 

Emissions 

                               Future NSPS Scenario, 2015

  2011 Baseline Option 1 

Option 2 

(Proposed) Option 3 

Energy-related CO2-equivalent GHG Emissions (million metric tons CO2-equivalent)  

 Petroleum 2,359.59 2,433.60 2,433.12 2,433.49 2,433.45 

 Natural Gas 1,283.78 1,352.20 1,354.47 1,353.19 1,352.87 

 Coal 1,946.02 1,882.08 1,879.84 1,883.24 1,883.30 

 Other 11.99 11.99 11.99 11.99 11.99 

 Total 5,601.39 5,679.87 5,679.42 5,681.91 5,681.61

     

% Change in Energy-related CO2-equivalent GHG Emissions from Baseline   

 Petroleum   -0.02% 0.00% -0.01% 

 Natural Gas   0.17% 0.07% 0.05% 

 Coal   -0.12% 0.06% 0.06% 

 Other   0.00% 0.00% 0.00% 

  Total     -0.01% 0.04% 0.03%

  
Note: Excludes “producer-side” emissions and emissions reductions estimated to result from NSPS alternatives. 
Totals may not sum due to independent rounding. 

As is shown in Table 7-12, NSPS Option 1 is predicted to slightly decrease aggregate 

consumer-side energy-related CO2-equivalent GHG emissions, by about 0.01 percent, while the 

mix of emissions shifts slightly away from coal and petroleum toward natural gas.  Proposed 

Options 2 and 3 are estimated to increase consumer-side aggregate energy-related CO2-

equivalent GHG emissions by about 0.04 and 0.03 percent, respectively, mainly because 

consumer-side emissions from natural gas and coal combustion increase slightly. 

7.3 Employment Impact Analysis 

While a standalone analysis of employment impacts is not included in a standard cost-

benefit analysis, such an analysis is of particular concern in the current economic climate of 

sustained high unemployment. Executive Order 13563, states, “Our regulatory system must 

protect public health, welfare, safety, and our environment while promoting economic growth, 

innovation, competitiveness, and job creation” (emphasis added).  Therefore, we seek to inform 

the discussion of labor demand and job impacts by providing an estimate of the employment 

impacts of the proposed regulations using labor requirements for the installation, operation, and 
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maintenance of control requirements, as well as reporting and recordkeeping requirements.  

Unlike several recent RIAs, however, we do not provide employment impacts estimates based on 

the study by Morgenstern et al. (2002); we discuss this decision after presenting estimates of the 

labor requirements associated with reporting and recordkeeping and the installation, operation, 

and maintenance of control requirements. 

7.3.1 Employment Impacts from Pollution Control Requirements 

Regulations set in motion new orders for pollution control equipment and services. New 

categories of employment have been created in the process of implementing regulations to make 

our air safer to breathe. When a new regulation is promulgated, a response of industry is to order 

pollution control equipment and services in order to comply with the regulation when it becomes 

effective.  Revenue and employment in the environmental technology industry have grown 

steadily between 2000 and 2008, reaching an industry total of approximately $300 billion in 

revenues and 1.7 million employees in 2008.52  While these revenues and employment figures 

represent gains for the environmental technologies industry, they are costs to the regulated 

industries required to install the equipment.  Moreover, it is not clear the 1.7 million employees 

in 2008 represent new employment as opposed to workers being shifted from the production of 

goods and services to environmental compliance activities.   

Once the equipment is installed, regulated firms hire workers to operate and maintain the 

pollution control equipment – much like they hire workers to produce more output. Morgenstern 

et al. (2002) examined how regulated industries respond to regulation.  The authors found that, 

on average for the industries they studied, employment increases in regulated firms. Of course, 

these firms may also reassign existing employees to perform these activities. 

                                                
52 In 2008, the industry totaled approximately $315 billion in revenues and 1.9 million employees including indirect 

employment effects, pollution abatement equipment production employed approximately 4.2 million workers in 
2008. These indirect employment effects are based on a multiplier for indirect employment = 2.24 (1982 value 
from Nestor and Pasurka - approximate middle of range of multipliers 1977-1991). Environmental Business 
International (EBI), Inc., San Diego, CA.  Environmental Business Journal, monthly (copyright).  
http://www.ebiusa.com/   EBI data taken from the Department of Commerce International Trade Administration 
Environmental Industries Fact Sheet from April 2010: 
http://web.ita.doc.gov/ete/eteinfo.nsf/068f3801d047f26e85256883006ffa54/4878b7e2fc08ac6d85256883006c45
2c?OpenDocument
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Environmental regulations support employment in many basic industries. In addition to 

the increase in employment in the environmental protection industry (via increased orders for 

pollution control equipment), environmental regulations also support employment in industries 

that provide intermediate goods to the environmental protection industry.  The equipment 

manufacturers, in turn, order steel, tanks, vessels, blowers, pumps, and chemicals to manufacture 

and install the equipment.  Bezdek et al. (2008) found that investments in environmental 

protection industries create jobs and displace jobs, but the net effect on employment is positive. 

The focus of this part of the analysis is on labor requirements related to the compliance 

actions of the affected entities within the affected sector.  We do not estimate any potential 

changes in labor outside of the oil and natural gas sector.  This analysis estimates the 

employment impacts due to the installation, operation, and maintenance of control equipment, as 

well as employment associated with new reporting and recordkeeping requirements.   

It is important to highlight that unlike the typical case where to reduce a bad output (i.e., 

emissions) a firm often has to reduce production of the good output, many of the emission 

controls required by the proposed NSPS will simultaneously increase production of the good 

output and reduce production of bad outputs. That is, these controls jointly produce 

environmental improvements and increase output in the regulated sector.  New labor associated 

with implementing these controls to comply with the new regulations can also be viewed as 

additional labor increasing output while reducing undesirable emissions.  

No estimates of the labor used to manufacture or assemble pollution control equipment or 

to supply the materials for manufacture or assembly are included because U.S. EPA does not 

currently have this information.  The employment analysis uses a bottom-up engineering-based 

methodology to estimate employment impacts.  The engineering cost analysis summarized in this 

RIA includes estimates of the labor requirements associated with implementing the proposed 

regulations.  Each of these labor changes may either be required as part of an initial effort to 

comply with the new regulation or required as a continuous or annual effort to maintain 

compliance.  We estimate up-front and continual, annual labor requirements by estimating hours 

of labor required and converting this number to full-time equivalents (FTEs) by dividing by 

2,080 (40 hours per week multiplied by 52 weeks).  We note that this type of FTE estimate 
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cannot be used to make assumptions about the specific number of people involved or whether 

new jobs are created for new employees.  

 In other employment analyses U.S. EPA distinguished between employment changes 

within the regulated industry and those changes outside the regulated industry (e.g. a contractor 

from outside the regulated facility is employed to install a control device).  For this regulation 

however, the structure of the industry makes this difficult.  The mix of in-house versus 

contracting services used by firms is very case-specific in the oil and natural gas industry.  For 

example, sometimes the owner of the well, processing plant, or transmission pipelines uses in–

house employees extensively in daily operations, while in other cases the owner relies on outside 

contractors for many of these services.  For this reason, we make no distinction in the 

quantitative estimates between labor changes within and outside of the regulated sector. 

 The results of this employment estimate are presented in Table 7-13 for the proposed 

NSPS and in Table 7-14 for the proposed NESHAP amendments.  The tables breaks down the 

installation, operation, and maintenance estimates by type of pollution control evaluated in the 

RIA and present both the estimated hours required and the conversion of this estimate to FTE.  

For both the proposed NSPS and NESHAP amendments, reporting and recordkeeping 

requirements were estimated for the entire rules rather than by anticipated control requirements; 

the reporting and recordkeeping estimates are consistent with estimates EPA submitted as part of 

its Information Collection Request (ICR).   

The up-front labor requirement is estimated at 230 FTEs for the proposed NSPS and 

about 120 FTEs for the proposed NESHAP amendments.  These up-front FTE labor 

requirements can be viewed as short-term labor requirements required for affected entities to 

comply with the new regulation.  Ongoing requirements are estimated at about 2,400 FTEs for 

the proposed NSPS and about 102 FTEs for the proposed NESHAP amendments.  These 

ongoing FTE labor requirements can be viewed as sustained labor requirements required for 

affected entities to continuously comply with the new regulation  

Two main categories contain the majority of the labor requirements for the proposed 

rules: implementing reduced emissions completions (RECs) and reporting and recordkeeping 
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requirements for the proposed NSPS.  Also, note that pneumatic controllers have no up-front or 

continuing labor requirements.  While the controls do require labor for installation, operation, 

and maintenance, the required labor is less than that of the controllers that would be used absent 

the regulation.  In this instance, we assume the incremental labor requirements are zero. 

Implementing RECs are estimated to require about 2,230 FTE, over 90 percent of the 

total continuing labor requirements for the proposed NSPS.53  We denote REC-related 

requirements as continuing, or annual, as the REC requirements will in fact recur annually, albeit 

at different wells each year.  The REC requirements are associated with certain new well 

completions or existing well recompletions, which while individual completions occur over a 

short period of time (days to a few weeks), new wells and other existing wells are completed or 

recompleted annually.  Because of these reasons, we assume the REC-related labor requirements 

are annual. 

7.3.2 Employment Impacts Primarily on the Regulated Industry 

In previous RIAs, we transferred parameters from a study by Morgenstern et al. (2002) to 

estimate employment effects of new regulations.  (See, for example, the Regulatory Impact 

Analysis for the recently finalized Industrial Boilers and CISWI rulemakings, promulgated on 

February 21, 2011).  The fundamental insight of Morgenstern, et al. is that environmental 

regulations can be understood as requiring regulated firms to add a new output (environmental 

quality) to their product mixes. Although legally compelled to satisfy this new demand, regulated 

firms have to finance this additional production with the proceeds of sales of their other (market) 

products. Satisfying this new demand requires additional inputs, including labor, and may alter 

the relative proportions of labor and capital used by regulated firms in their production 

processes.  

Morgenstern et al. concluded that increased abatement expenditures in these industries 

generally do not cause a significant change in employment.  Using plant-level Census 

                                                
53 As shown on  earlier in this section, we project that the number of successful natural gas wells drilled in 2015 will 

decline slightly from the baseline projection.  Therefore, there may be small employment losses in drilling-
related employment that partly offset gains in employment from compliance-related activities. 
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information between the years 1979 and 1991, Morgenstern et al. estimate the size of each effect 

for four polluting and regulated industries (petroleum refining, plastic material, pulp and paper, 

and steel). On average across the four industries, each additional $1 million (1987$) spending on 

pollution abatement results in a (statistically insignificant) net increase of 1.55 (+/- 2.24) jobs. As 

a result, the authors conclude that increases in pollution abatement expenditures do not 

necessarily cause economically significant employment changes. 

For this version of RIA for the proposed NSPS and NESHAP amendments, however, we 

chose not to quantitatively estimate employment impacts using Morgenstern et al. because of 

reasons specific to the oil and natural gas industry and proposed rules.  We believe the transfer of 

parameter estimates from the Morgenstern et al. study to the proposed NSPS and NESHAP 

amendments is beyond the range of the study for two reasons.  
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First, the possibility that the revenues producers are estimated to receive from additional natural 

gas recovery as a result of the proposed NSPS might offset the costs of complying with the rule 

presents challenges to estimating employment effects (see Section 3.2.2.1 of the RIA for a 

detailed discussion of the natural gas recovery).  The Morgenstern et al. paper, for example, is 

intended to analyze the impact of environmental compliance expenditures on industry 

employment levels, and it may not be appropriate to draw on their demand and net effects when 

compliance costs are expected to be negative.   

Second, the proposed regulations primarily affect the natural gas production, processing, 

and transmission segments of the industry.  While the natural gas processing segment of the oil 

and natural gas industry is similar to petroleum refining, which is examined in Morgenstern et 

al., the production side of the oil and natural gas (drilling and extraction, primarily) and natural 

gas pipeline transmission are not similar to petroleum refining.  Because of the likelihood of 

negative compliance costs for the proposed NSPS and the segments of the oil and natural gas 

industry affected by the proposals are not examined by Morgenstern et al., we decided not to use 

the parameters estimated by Morgenstern et al. to estimate within-industry employment effects 

for the proposed oil and natural gas NESHAP amendments and NSPS.   

That said, the likelihood of additional natural gas recovery is an important component of 

the market response to the rule, as it is expected that this additional natural gas recovery will 

reduce the price of natural gas.  Because of the estimated fall in prices in the natural gas sector 

due to the proposed NSPS, prices in other sectors that consume natural gas are likely drop 

slightly due to the decrease in energy prices.  This small production increase and price decrease 

may have a slight stimulative effect on employment in industries that consume natural gas. 

7.4 Small Business Impacts Analysis 

The Regulatory Flexibility Act as amended by the Small Business Regulatory Enforcement 

Fairness Act (SBREFA) generally requires an agency to prepare a regulatory flexibility analysis 

of any rule subject to notice and comment rulemaking requirements under the Administrative 

Procedure Act or any other statute, unless the agency certifies that the rule will not have a 
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significant economic impact on a substantial number of small entities. Small entities include 

small businesses, small governmental jurisdictions, and small not-for-profit enterprises. 

After considering the economic impact of the proposed rules on small entities for both the 

NESHAP and NSPS, the screening analysis indicates that these proposed rules will not have a 

significant economic impact on a substantial number of small entities (or “SISNOSE”).  The 

supporting analyses for these determinations are presented in this section of the RIA. 

As discussed in previous sections of the economic impact analysis, under the proposed 

NSPS, some affected producers are likely to be able to recover natural gas that would otherwise 

be vented to the atmosphere, as well as recover saleable condensates that would otherwise be 

emitted.  EPA estimates that the revenues from this additional natural gas product recovery will 

offset the costs of implementing control options implemented as a result of the Proposed NSPS.  

Because the total costs of the rule are likely to be more than offset by the revenues producers 

gain from increased natural gas recovery, we expect there will be no SISNOSE arising from the 

proposed NSPS.  However, not all components of the proposed NSPS are estimated to have cost 

savings.  Therefore, we analyze potential impacts to better understand the potential distribution 

of impacts across industry segments and firms.  We feel taking this approach strengthens the 

determination that there will be no SISNOSE.  Unlike the controls for the proposed NSPS, the 

controls evaluated under the proposed NESHAP amendments do not recover significant 

quantities of natural gas products.   

7.4.1 Small Business National Overview 

The industry sectors covered by the final rule were identified during the development of 

the engineering cost analysis.  The U.S. Census Bureau’s Statistics of U.S. Businesses (SUSB) 

provides national information on the distribution of economic variables by industry and 

enterprise size. The Census Bureau and the Office of Advocacy of the Small Business 

Administration (SBA) supported and developed these files for use in a broad range of economic 

analyses.54  Statistics include the total number of establishments, and receipts for all entities in an 

industry; however, many of these entities may not necessarily be covered by the final rule. SUSB 

also provides statistics by enterprise employment and receipt size (Table 7-15 and Table 7-16).  

                                                
54See http://www.census.gov/csd/susb/ and http://www.sba.gov/advocacy/ for additional details. 
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The Census Bureau’s definitions used in the SUSB are as follows: 

� Establishment: A single physical location where business is conducted or where 
services or industrial operations are performed.  

� Firm: A firm is a business organization consisting of one or more domestic 
establishments in the same state and industry that were specified under common 
ownership or control. The firm and the establishment are the same for single-
establishment firms. For each multi-establishment firm, establishments in the same 
industry within a state will be counted as one firm- the firm employment and annual 
payroll are summed from the associated establishments. 

� Receipts: Receipts (net of taxes) are defined as the revenue for goods produced, 
distributed, or services provided, including revenue earned from premiums, 
commissions and fees, rents, interest, dividends, and royalties. Receipts exclude all 
revenue collected for local, state, and federal taxes.  

� Enterprise: An enterprise is a business organization consisting of one or more 
domestic establishments that were specified under common ownership or control. The 
enterprise and the establishment are the same for single-establishment firms. Each 
multi-establishment company forms one enterprise—the enterprise employment and 
annual payroll are summed from the associated establishments. Enterprise size 
designations are determined by the sum of employment of all associated 
establishments. 

Because the SBA’s business size definitions (SBA, 2008) apply to an establishment’s “ultimate 

parent company,” we assumed in this analysis that the “firm” definition above is consistent with 

the concept of ultimate parent company that is typically used for SBREFA screening analyses, 

and the terms are used interchangeably.    
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Table 7-16 Distribution of Small and Large Firms by Number of Firms, Total 

Employment, and Estimated Receipts by Firm Size and NAICS, 2007 

      Percent of Firms 

NAICS NAICS Description Total Firms
 Small 

Businesses 
 Large 

Businesses  Total Firms 

Number of Firms by Firm Size 

211111 Crude Petroleum and Natural Gas Extraction 6,424 98.5% 1.5% 100.0%

211112 Natural Gas Liquid Extraction 139 70.5% 29.5% 100.0%

213111 Drilling Oil and Gas Wells 2,059 97.6% 2.4% 100.0%

486210 Pipeline Transportation of Natural Gas 126 48.4% 51.6% 100.0%

Total Employment by Firm Size 

211111 Crude Petroleum and Natural Gas Extraction 133,286 41.7% 58.3% 100.0%

211112 Natural Gas Liquid Extraction 8,523 22.0% 78.0% 100.0%

213111 Drilling Oil and Gas Wells 106,426 34.4% 65.6% 100.0%

486210 Pipeline Transportation of Natural Gas 24,683 N/A* N/A* N/A*

Estimated Receipts by Firm Size ($1000) 

211111 Crude Petroleum and Natural Gas Extraction 194,107,252 23.2% 76.8% 100.0%

211112 Natural Gas Liquid Extraction 39,977,741 5.4% 94.6% 100.0%

213111 Drilling Oil and Gas Wells 23,848,238 30.6% 69.4% 100.0%

486210 Pipeline Transportation of Natural Gas 20,796,681 N/A* N/A* N/A*

Note: Employment and receipts could not be broken down between small and large businesses because of non-
disclosure requirements. 

Source: SBA 

While the SBA and Census Bureau statistics provide informative broad contextual 

information on the distribution of enterprises by receipts and number of employees, it is also 

useful to additionally contrast small and large enterprises (where large enterprises are defined as 

those that are not small, according to SBA criteria) in the oil and natural gas industry.  The 

summary statistics presented in previous tables indicate that there are a large number of 

relatively small firms and a small number of large firms.  Given the majority of expected impacts 

of the proposed rules arises from well completion-related requirements, which impacts 

production activities, exclusively, some explanation of this particular market structure is 

warranted as it pertains to production and small entities.  An important question to answer is 

whether there are particular roles that small entities serve in the production segment of the oil 

and natural gas industry that may be disproportionately affected by the proposed rules. 
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The first important broad distinction among firms is whether they are independent or 

integrated.  Independent firms concentrate on exploration and production (E&P) activities, while 

integrated firms are vertically integrated and often have operations in E&P, processing, refining, 

transportation, and retail.  To our awareness, there are no small integrated firms.  Independent 

firms may own and operate wells or provide E&P-related services to the oil and gas industry.  

Since we are focused on evaluating potential impacts to small firms owning and operating new 

and existing hydraulically fractured wells, we should narrow down on this sector.   

In our understanding, there is no single industry niche for small entities in the production 

segment of the industry since small operators have different business strategies and that small 

entities can own different types of wells.  The organization of firms in oil and natural gas 

industry also varies greatly from firm to firm.  Additionally, oil and natural gas resources vary 

widely geographically and can vary significantly within a single field.  

Among many important roles, independent small operators historically pioneered 

exploration in new areas, as well as developed new technologies.  By taking on these relatively 

large risks, these small entrepreneurs (wildcatters) have been critical sources of industrial 

innovation and opened up critical new energy supplies for the U.S. (HIS Global Insight).  In 

recent decades, as the oil and gas industry has concentrated via mergers, many of these smaller 

firms have been absorbed into large firms.   

Another critical role, which provides an interesting contrast to small firms pioneering 

new territory, is that smaller independents maintain and operate a large proportion of the 

Nation’s low producing wells, which are also known as marginal or stripper wells (Duda et al. 

2005).  While marginal wells represent about 80 percent of the population of producing wells, 

they produce about 15 percent of domestic production, according to EIA (Table 7-17). 
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Table 7-17 Distribution of Crude Oil and Natural Gas Wells by Productivity Level, 2009 

Type of Wells Wells (no.) Wells (%) 

Production 
(MMbbl for oil 

and Bcf gas) Production (%)

Crude Oil 

Stripper Wells (<15 boe per year) 310,552 85% 311 19%

Other Wells (>=15 boe per year) 52,907 15% 1,331 81%

Total Crude Oil Wells 363,459 100% 1,642 100%

Natural Gas 

Natural Gas Stripper Wells (<15 boe per year) 338,056 73% 2,912 12%

Other Natural Gas Wells (>=15 boe per year) 123,332 27% 21,048 88%

Total Natural Gas Wells 461,388 100% 23,959 100%

Source: U.S. Energy Information Administration, Distribution of Wells by Production Rate Bracket.

<http://www.eia.gov/pub/oil_gas/petrosystem/us_table.html> Accessed 7/10/11. 

Note: Natural gas production converted to barrels oil equivalent (boe) uses the conversion of 0.178 barrels of crude oil to 
1000 cubic feet natural gas. 

Many of these wells were likely drilled and initially operated by major firms (although 

the data are not available to quantify the percentage of wells initially drilled by small versus 

large producers).  Well productivity levels typically follow a steep decline curve; high 

production in earlier years but sustained low production for decades.  Because of relatively low 

overhead of maintaining and operating few relatively co-located wells, some small operators 

with a particular business strategy purchase low producing wells from the majors, who 

concentrate on new opportunities.   As small operators have provided important technical 

innovation in exploration, small operators have also been sources of innovation in extending the 

productivity and lifespan of existing wells (Duda et al. 2005). 

7.4.2 Small Entity Economic Impact Measures 

The proposed Oil and Natural Gas NSPS and NESHAP amendments will affect the 

owners of the facilities that will incur compliance costs to control their regulated emissions. The 

owners, either firms or individuals, are the entities that will bear the financial impacts associated 

with these additional operating costs. The proposed rule has the potential to impact all firms 

owning affected facilities, both large and small.  
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The analysis provides EPA with an estimate of the magnitude of impacts the proposed 

NSPS and NESHAP amendments may have on the ultimate domestic parent companies that own 

facilities EPA expects might be impacted by the rules. The analysis focuses on small firms 

because they may have more difficulty complying with a new regulation or affording the costs 

associated with meeting the new standard. This section presents the data sources used in the 

screening analysis, the methodology we applied to develop estimates of impacts, the results of 

the analysis, and conclusions drawn from the results.  

The small business impacts analysis for the NSPS and NESHAP amendments relies upon 

a series of firm-level sales tests (represented as cost-to-revenue ratios) for firms that are likely to 

be associated with NAICS codes listed in Table 7-15.  For both the NSPS and NESHAP 

amendments, we obtained firm-level employment, revenues, and production levels using various 

sources, including the American Business Directory, the Oil and Gas Journal, corporate 

websites, and publically-available financial reports.  Using these data, we estimated firm-level 

compliance cost impacts and calculated cost-to-revenue ratios to identify small firms that might 

be significantly impacts by the rules.  The approaches taken for the NSPS and NESHAP 

amendments differed; more detail on approaches for each set of proposed rules is presented in 

the following sections. 

For the sales test, we divided the estimates of annualized establishment compliance costs 

by estimates of firm revenue. This is known as the cost-to-revenue ratio, or the “sales test.” The 

“sales test” is the impact methodology EPA employs in analyzing small entity impacts as 

opposed to a “profits test,” in which annualized compliance costs are calculated as a share of 

profits.  The sales test is often used because revenues or sales data are commonly available for 

entities impacted by EPA regulations, and profits data normally made available are often not the 

true profit earned by firms because of accounting and tax considerations.  Revenues as typically 

published are correct figures and are more reliably reported when compared to profit data. The 

use of a “sales test” for estimating small business impacts for a rulemaking such as this one is 

consistent with guidance offered by EPA on compliance with SBREFA55 and is consistent with 

guidance published by the U.S. SBA’s Office of Advocacy that suggests that cost as a percentage 

                                                
55 The SBREFA compliance guidance to EPA rulewriters regarding the types of small business analysis that should 

be considered can be found at <http://www.epa.gov/sbrefa/documents/rfaguidance11-00-06.pdf> 
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of total revenues is a metric for evaluating cost increases on small entities in relation to increases 

on large entities (U.S. SBA, 2010).568

7.4.3 Small Entity Economic Impact Analysis, Proposed NSPS 

7.4.3.1 Overview of Sample Data and Methods 

The proposed NSPS covers emissions points within various stages of the oil and natural 

gas production process.  We expect that firms within multiple NAICS codes will be affected, 

namely the NAICS categories presented in Table 7-15.  Because of the diversity of the firms 

potentially affected, we decided to analyze three distinct groups of firms within the oil and 

natural gas industry, while accounting for overlap across the groups.  We analyze firms that are 

involved in oil and natural gas extraction that are likely to drill and operate wells, while a subset 

are integrated firms involved in multiple segments of production, as well as retailing products.  

We also analyze firms that primarily operate natural gas processing plants.  A third set of firms 

we analyzed contains firms that primarily operate natural gas compression and pipeline 

transmission. 

To identify firms involved in the drilling and primary production of oil and natural gas, 

we relied upon the annual Oil and Gas Journal 150 Survey (OGJ 150) as described in the 

Industry Profile in Section 2.  While the OGJ 150 lists public firms, we believe the list is 

reasonably representative of the larger population of public and private firms operating in this 

segment of the industry.  While the proportion of small firm in the OGJ 150 is smaller than the 

proportion evaluated by the Census SUSB, the OGJ 150 provides detailed information on the 

production activities and financial returns of the firms within the list, which are critical 

ingredients to the small business impacts analysis.  We drew upon the OGJ 150 lists published 

for the years 2008 and 2009 (Oil and Gas Journal, September 21, 2009 and Oil and Gas Journal, 

September 6, 2010).  The year 2009 saw relatively low levels of drilling activities because of the 

economic recession, while 2008 saw a relatively high level of drilling activity because of high 

fuel prices.  Combined, we believe these two years of data are representative.    

                                                
56U.S. SBA, Office of Advocacy. A Guide for Government Agencies, How to Comply with the Regulatory 

Flexibility Act, Implementing the President’s Small Business Agenda and Executive Order 13272, June 2010. 
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To identify firms that process natural gas, the OGJ also releases a period report entitled 

“Worldwide Gas Processing Survey”, which provides a wide range of information on existing 

processing facilities.  We used the most recent list of U.S. gas processing facilities57 and other 

resources, such as the American Business Directory and company websites, to best identify the 

parent company of the facilities.  To identify firms that compress and transport natural gas via 

pipelines, we examined the periodic OGJ survey on the economics of the U.S. pipeline industry.  

This report examines the economic status of all major and non-major natural gas pipeline 

companies.58  For these firms, we also used the American Business Directory and corporate 

websites to best identify the ultimate owner of the facilities or companies. 

After combining the information for exploration and production firms, natural gas 

processing firms, and natural gas pipeline transmission firms in order to identify overlaps across 

the list, the approach yielded a sample of 274 firms that would potentially be affected by the 

proposed NSPS in 2015 assuming their 2015 production activities were similar to those in 2008 

and 2009.  We estimate that 129 (47 percent) of these firms are small according to SBA criteria.  

We estimate 121 firms (44 percent) are not small firms according to SBA criteria.  We are unable 

to classify the remaining 24 firms (9 percent) because of a lack of required information on 

employee counts or revenue estimates. 

Table 7-18 shows the estimated revenues for 250 firms for which we have sufficient data 

that would be potentially affected by the proposed NSPS based upon their activities in 2008 and 

2009.  We segmented the sample into four groups, production and integrated firms, processing 

firms, pipeline firms, and pipelines/processing firms.  For the firms in the pipelines/processing 

group, we were unable to determine the firms’ primary line of business, so we opted to group 

together as a fourth group. 

  

                                                
57 Oil and Gas Journal. “Special Report: Worldwide Gas Processing: New Plants, Data Push Global Gas Processing 
Capacity Ahead in 2009.” June 7, 2010.
58 Oil and Gas Journal. “Natural Gas Pipelines Continue Growth Despite Lower Earnings; Oil Profits Grow.” 
November 1, 2010. 
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Table 7-18 Estimated Revenues for Firms in Sample, by Firm Type and Size 

    

Number of Firms 

Estimated Revenues (millions, 2008 dollars) 

Firm Type/Size Total Average Median Minimum Maximum

Production and Integrated 

�

Small 79 18,554.5 234.9 76.3 0.1 1,116.9 

Large 49 1,347,463.0 27,499.2 1,788.3 12.9 310,586.0 

Subtotal 128 1,366,017.4 10,672.0 344.6 0.1 310,586.0 

Pipeline 

�

Small 11 694.5 63.1 4.6 0.5 367.0 

Large 36 166,290.2 4,619.2 212.9 7.1 112,493.0 

Subtotal 47 166,984.6 3,552.9 108.0 0.5 112,493.0 

Processing 

�

Small 39 4,972.1 127.5 26.9 1.9 1,459.1 

Large 23 177,632.1 8,881.6 2,349.4 10.4 90,000.0 

Subtotal 62 182,604.2 3,095.0 41.3 1.9 90,000.0 

Pipelines/Processing 

�

Small 0 N/A N/A N/A N/A N/A 

Large 13 175,128.5 13,471.4 6,649.4 858.6 71,852.0 

Subtotal 13 175,128.5 13,471.4 6,649.4 858.6 71,852.0 

Total 

�

�

Small 129 24,221.1 187.8 34.9 0.1 1,459.1 

Large 121 1,866,513.7 15,817.9 1,672.1 7.1 310,586.0 

  Total 250 1,890,734.8 7,654.8 163.9 0.1 310,586.0 

Sources: Oil and Gas Journal. “OGJ150.” September 21, 2009; Oil and Gas Journal. “OGJ150 Financial Results 
Down in '09; Production, Reserves Up.” September 6, 2010.  Oil and Gas Journal. “Special Report: Worldwide Gas 
Processing: New Plants, Data Push Global Gas Processing Capacity Ahead in 2009.” June 7, 2010, with additional 
analysis to determine ultimate ownership of plants.  Oil and Gas Journal. “Natural Gas Pipelines Continue Growth 
Despite Lower Earnings; Oil Profits Grow.” November 1, 2010.  American Business Directory was used to 
determine number of employees.

As shown in Table 7-18, there is a wide variety of revenue levels across firm size, as well as 

across industry segments.  The estimated revenues within the sample are concentrated on 

integrated firms and firms engaged in production activities (the E&P firms mentioned earlier). 
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 The oil and natural gas industry is capital-intensive.  To provide more context on the 

potential impacts of new regulatory requirements, Table 7-19 presents descriptive statistics for 

small and large integrated and production firms from the sample of firms (121 of the 128 

integrated and production firms listed in the Oil and Gas Journal; capital and exploration 

expenditures for 7 firms were not reported in the Oil and Gas Journal). 

Table 7-19 Descriptive Statistics of Capital and Exploration Expenditures, Small and 

Large Firms in Sample, 2008 and 2009 (million 2008 dollars) 

    Capital and Exploration Expenditures (millions, 2008 dollars) 

Firm Size Number Total Average Median Minimum Maximum 

Small 76 13,478.8 177.4 67.1 0.1 2,401.9

Large 45 126,749.3 2,816.7 918.1 10.3 22,518.7

Total 121 140,228.2 1,158.9 192.8 0.1 22,518.7

Sources: Oil and Gas Journal. “OGJ150.” September 21, 2009; Oil and Gas Journal. “OGJ150 Financial Results 
Down in '09; Production, Reserves Up.” September 6, 2010.  American Business Directory was used to 
determine number of employees. 

The average 2008 and 2009 total capital and exploration expenditures for the sample of 121 

firms were $140 billion in 2008 dollars).  About 10 percent of this total was spent by small firms.  

Average capital and explorations expenditures for small firms are about 6 percent of large firms; 

median expenditures of small firms are about 7 percent of large firms’ expenditures.  For small 

firms, capital and exploration expenditures are high relative to revenue, which appears to hold 

true more generally for independent E&P firms compared to integrated major firms.  This would 

seem to indicate the capital-intensive nature of E&P activities.  As expected, this would drive up 

ratios comparing estimated engineering costs to revenues and capital and exploration 

expenditures.   

 Table 7-20 breaks down the estimated number of natural gas and crude oil wells drilled 

by the 121 firms in the sample for which the Oil and Gas Journal information reported well-

drilling estimates.  Note the fractions on the minimum and maximum statistics; the fractions 

reported are due to our assumptions to estimate oil and natural gas wells drilled from the total 

wells drilled reported by the Oil and Gas Journal.  The OGJ150 lists new wells drilled by firm in 

2008 and 2009, but the drilling counts are not specific to crude oil or natural gas wells.  We 
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apportion the wells drilled to natural gas and crude oil wells using the distribution of well drilling 

in 2009 (63 percent natural gas and 37 percent oil).    

Table 7-20 Descriptive Statistics of Estimated Wells Drilled, Small and Large Firms in 

Sample, 2008 and 2009 (million 2008 dollars) 

      
Estimated Average Wells Natural Gas and Crude Oil Wells Drilled 

(2008 and 2009) 

Well Type Firm Size Number of Firms Total Average Median Minimum Maximum 

Natural Gas 

Small 76 2,288.3 30.1 6.0 0.2 259.3

Large 45 9,445.1 209.9 149.1 0.6 868.3

Subtotal 121 11,733.4 97.0 28.3 0.2 868.3

Crude Oil 

Small 76 1,317.1 17.3 3.5 0.1 149.2

Large 45 5,436.3 120.8 85.8 0.4 499.7

Subtotal 121 6,753.4 55.8 16.3 0.1 499.7

Total 

Small 76 3,605.4 47.4 9.5 0.0 408.5

Large 45 14,881.4 330.7 234.9 0.0 1,368.0

  Total 121 18,486.8 152.8 44.6 0.0 1,368.0

Sources: Oil and Gas Journal. “OGJ150.” September 21, 2009; Oil and Gas Journal. “OGJ150 Financial Results 
Down in '09; Production, Reserves Up.” September 6, 2010.  American Business Directory was used to 
determine number of employees. 

This table highlights the fact that many firms drill relatively few wells; the median for small 

firms is 6 natural gas wells compared to 149 for large firms.  Later in this section, we examine 

whether this distribution has implications for the engineering costs estimates, as well as the 

estimates of expected natural product recovery from controls such as RECs. 

Unlike the analysis that follows for the analysis of impacts on small business from the 

NESHAP amendments, we have no specific data on potentially affected facilities under the 

NSPS.  The NSPS will apply to new and modified sources, for which data are not fully available 

in advance, particularly in the case of new and modified sources such as well completions and 

recompletions which are spatially diffuse and potentially large in number.   

The engineering cost analysis estimated compliance costs in a top-down fashion, 

projecting the number of new sources at an annual level and multiplying these estimates by 
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model unit-level costs to estimate national impacts.  To estimate per-firm compliance costs in 

this analysis, we followed a procedure similar to that of entering estimate compliance costs in 

NEMS on a per well basis.  We first use the OGJ150-based list to estimate engineering 

compliance costs for integrated and production companies that may operate facilities in more 

than one segment of the oil and natural gas industry.  We then estimate the compliance costs per 

crude oil and natural gas well by totaling all compliance costs estimates in the engineering cost 

estimates for the proposed NSPS and dividing that cost by the total number of crude oil and 

natural gas wells forecast as of 2015, the year of analysis.  These compliance costs include the 

expected revenue from natural gas and condensate recovery that result from implementation of 

some proposed controls.   

This estimation procedure yielded an estimate of crude well compliance costs of $162 per 

drilled well and natural gas well compliance costs of $38,719 without considering estimated 

revenues from product recovery and -$2,455 per drilled well with estimated revenues from 

product recovery included.  Note that the divergence of estimated per well costs between crude 

oil and natural gas wells is because the proposed NSPS requirements are primary directed toward 

natural gas wells.  Also note that the per well cost savings estimate for natural gas wells is 

different than the estimated cost of implementing a REC; this difference is because this estimate 

is picking up savings from other control options.  We then estimate a single-year, firm-level 

compliance cost for this subset of firms by multiplying the per well cost estimates with the well 

count estimates. 

The OGJ reports plant processing capacity in terms of MMcf/day.  In the energy system 

impacts analysis, the NEMS model estimates a 6.5 percent increase (from 21.05 tcf in 2011 to 

22.43 tcf in 2015) in domestic natural gas production from 2011 to 2015, the analysis year.  On 

this, basis, we estimate that natural gas processing capacity for all plants in the OGJ list will 

increase 1.3 percent per year.  This annual increment is equivalent to an increase in national gas 

processing capacity of 350 bcf per year.  We assume that the engineering compliance costs 

estimates associated with processing are distributed according to the proportion of the increased 

national processing capacity contributed by each processing plant.  These costs are estimated at 

$6.9 million without estimated revenues from product recovery and $2.3 million with estimated 
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revenues from product recovery, respectively, in 2008 dollars, or about $20/MMcf without 

revenues and $7/MMcf with revenues.  

The OGJ report on pipeline companies has the advantage that it reports expenditures on 

plant additions.  We assume that the firm-level proposed compression and transmission-related 

NSPS compliance costs are proportional to the expenditures on plant additions and that these 

additions reflect a representative year or this analysis.  We estimate the annual compression and 

transmission-related NSPS compliance costs at $5.5 million without estimated revenues from 

product recovery and $3.7 million with estimated revenues from product recovery, respectively, 

in 2008 dollars.  

7.4.3.2 Small Entity Impact Analysis, Proposed NSPS, Results 

Summing estimated annualized engineering compliance costs across industry segment 

and individual firms in our sample, we estimate firms in the OGJ-based sample will face about 

$480 million in 2008 dollars, about 65 percent of the estimated annualized costs of the Proposed 

NSPS without including revenues from additional product recovery ($740 million).  When 

including revenues from additional product recovery, the estimated compliance costs for the 

firms in the sample is about  -$23 million, compared to engineering cost estimate of -$45 million. 

Table 7-21 presents the distribution of estimated proposed NSPS compliance costs across 

firm size for the firms within our sample.  Evident from this table, about 98 percent of the 

estimated engineering compliance costs accrue to the integrated and production segment of the 

industry, again explain by the fact that completion-related requirements contribute the bulk of the 

estimated engineering compliance costs (as well as estimated emissions reductions).  About 17 

percent of the total estimated engineering compliance costs (and about 18 percent of the costs 

accruing the integrated and production segment) are focused on small firms. 
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Table 7-21 Distribution of Estimated Proposed NSPS Compliance Costs Without 

Revenues from Additional Natural Gas Product Recovery across Firm Size in Sample of 

Firms 

    

Number of Firms

Estimated Engineering Compliance Costs Without Estimated Revenues from 
Natural Gas Product Recovery (2008 dollars) 

Firm Type/Size Total Mean Median Minimum Maximum 

Production and Integrated 

Small 79 82,293,903 1,041,695 221,467 3,210 10,054,401

Large 49 387,489,928 7,907,958 5,730,634 15,238 33,677,388

Subtotal 128 469,783,831 3,670,186 969,519 3,210 33,677,388

Pipeline 

� � � �Small 11 3,386 308 111 18 1,144

Large 36 1,486,929 41,304 3,821 37 900,696

Subtotal 47 1,490,314 31,709 2,263 18 900,696

Processing 

� � � �

�

Small 39 476,165 12,209 1,882 188 276,343

Large 23 859,507 37,370 8,132 38 423,645

Subtotal 62 1,335,672 21,543 2,730 38 423,645

Pipelines/Processing 

� � � �

�

Small 0 N/A N/A N/A N/A N/A

Large 13 5,431,510 417,808 147,925 2,003 2,630,236

Subtotal 13 5,431,510 417,808 147,925 2,003 2,630,236

Total

� � � � �

�

Small 129 82,773,454 641,655 49,386 18 10,054,401

Large 121 395,267,874 3,266,677 57,220 37 33,677,388

  Total 250 478,041,328 1,912,165 55,888 18 33,677,388

These distributions are similar when the revenues from expected natural gas recovery are 

included (Table 7-22).  About 21 percent of the total savings from the proposed NSPS is 

expected to accrue to small firms (about 19 percent of the savings to the integrated and 

production segment accrue to small firms).  Note also in Table 7-22 that the pipeline and 

processing segments (and the pipeline/processing firms) are not expected to experience net cost 

savings (negative costs) from the proposed NSPS. 
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Table 7-22 Distribution of Estimated Proposed NSPS Compliance Costs With Revenues 

from Additional Natural Gas Product Recovery across Firm Size in Sample of Firms 

    

Number of Firms

Estimated Engineering Compliance Costs With Estimated Revenues from 
Natural Gas Product Recovery (millions, 2008 dollars) 

Firm Type/Size Total Mean Median Minimum Maximum 

Production and Integrated 

Small 79 -5,065,551 -64,121 -13,729 -620,880 8,699

Large 49 -22,197,126 -453,003 -318,551 -2,072,384 423,760

Subtotal 128 -27,262,676 -212,990 -43,479 -2,072,384 423,760

Pipeline 

� � � �Small 11 2,303 209 76 12 779

Large 36 1,011,572 28,099 2,599 25 612,753

Subtotal 47 1,013,876 21,572 1,539 12 612,753

Processing 

� � � �

�

Small 39 160,248 4,109 634 63 93,000

Large 23 289,258 12,576 2,737 13 142,573

Subtotal 62 449,506 7,250 919 13 142,573

Pipelines/Processing 

� � � �

�

Small 0 ���� ���� ���� ���� ����

Large 13 3,060,373 235,413 86,301 716 1,746,730

Subtotal 13 3,060,373 235,413 86,301 716 1,746,730

Total

�

�

Small 129 -4,902,999 -38,008 -2,520 -620,880 93,000

Large 121 -17,835,922 -147,404 634 -2,072,384 1,746,730

  Total 250 -22,738,922 -90,956 22 -2,072,384 1,746,730
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Table 7-23 Summary of Sales Test Ratios, Without Revenues from Additional Natural 

Gas Product Recovery for Firms Affected by Proposed NSPS 

    

Number of Firms

Descriptive Statistics for Sales Test Ratio Without Estimated Revenues 
from Natural Gas Product Recovery (%) 

Firm Type/Size Mean Median Minimum Maximum 

Production and Integrated 

Small 79 2.18% 0.49% 0.01% 50.83% 

Large 49 0.41% 0.28% <0.01% 2.83% 

Subtotal 128 1.50% 0.39% <0.01% 50.83% 

Pipeline 

Small 11 <0.01% <0.01% <0.01% 0.01% 

Large 36 0.01% <0.01% <0.01% 0.06% 

Subtotal 47 0.01% <0.01% <0.01% 0.06% 

Processing 

�

Small 39 0.05% 0.01% <0.01% 0.33% 

Large 23 0.02% 0.01% <0.01% 0.15% 

Subtotal 62 0.04% 0.01% <0.01% 0.33% 

Pipelines/Processing 

�

Small 0 ���� ���� ���� ����

Large 13 <0.01% <0.01% <0.01% 0.01% 

Subtotal 13 <0.01% <0.01% <0.01% 0.01% 

Total

�

�

Small 129 1.34% 0.15% <0.01% 50.83%

Large 121 0.17% 0.01% <0.01% 2.83%

  Total 250 0.78% 0.03% <0.01% 50.83%

 The mean cost-sales ratio for all businesses when estimated product recovery is excluded 

from the analysis of the sample data is 0.78 percent, with a median ratio of 0.03 percent, a 

minimum of less than 0.01 percent, and a maximum of over 50 percent (Table 7-23).  For small 

firms in the sample, the mean and median cost-sales ratios are 1.34 percent and 0.15 percent, 

respectively, with a minimum of less than 0.01 percent and a maximum of over 50 percent 

(Table 7-23).  Each of these statistics indicates that, when considered in the aggregate, impacts 

are relatively higher on small firms than large firms when the estimated revenue from additional 

natural gas product recovery is excluded.  However, as the next table shows, the reverse is true 

when these revenues are included. 
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Table 7-24 Summary of Sales Test Ratios, With Revenues from Additional Natural Gas 

Product Recovery for Firms Affected by Proposed NSPS 

    

Number of Firms

Descriptive Statistics for Sales Test Ratio With Estimated Revenues 
from Natural Gas Product Recovery (%) 

Firm Type/Size Mean Median Minimum Maximum 

Production and Integrated 

Small 79 -0.13% -0.03% -2.96% <0.00% 

Large 49 -0.02% -0.02% -0.17% 0.06% 

Subtotal 128 -0.09% -0.02% -2.96% 0.06% 

Pipeline 

Small 11 <0.00% <0.01% <0.01% 0.01% 

Large 36 0.01% <0.01% <0.01% 0.04% 

Subtotal 47 0.01% <0.01% <0.01% 0.04% 

Processing 

�

Small 39 0.01% <0.01% <0.01% 0.05% 

Large 23 <0.00% <0.01% <0.01% 0.05% 

Subtotal 62 0.01% <0.01% <0.01% 0.05% 

Pipelines/Processing 

�

Small 0 ���� ���� ���� ����

Large 13 <0.01% <0.01% <0.01% 0.01% 

Subtotal 13 <0.01% <0.01% <0.01% 0.01% 

Total

�

Small 129 -0.08% -0.01% -2.96% 0.05%

Large 121 -0.01% <0.01% -0.17% 0.06%

  Total 250 -0.04% <0.01% -2.96% 0.06%

 The mean cost-sales ratio for all businesses when estimated product recovery is included 

is in the sample is -0.04 percent, with a median ratio of less than 0.01 percent, a minimum of       

-2.96 percent, and a maximum of 0.06 percent (Table 7-24).  For small firms in the sample, the 

mean and median cost-sales ratios are -0.08 percent and -0.01 percent, respectively, with a 

minimum of -2.96 percent and a maximum of 0.05 percent (Table 7-24).  Each of these statistics 

indicates that, when considered in the aggregate, impacts are small on small business when the 

estimated revenue from additional natural gas product recovery are included, the reverse of the 

conclusion found when these revenues are excluded. 

Meanwhile, Table 7-25 presents the distribution of estimated cost-sales ratios for the 

small firms in our sample with and without including estimates of the expected natural gas 

product recover from implementing controls.  When revenues estimates are included, all 129 
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firms (100 percent) have estimated cost-sales ratios less than 1 percent. While less than 1 

percent, the highest cost-sales ratios for small firms in the sample experiencing impacts are 

largely driven by costs accruing to processing and pipeline firms.  That said, the incremental 

costs imposed on firms that process natural gas or transport natural gas via pipelines are not 

estimated to create significant impacts on a cost-sales ratio basis at the firm-level. 

Table 7-25 Impact Levels of Proposed NSPS on Small Firms as a Percent of Small Firms 

in Sample, With and Without Revenues from Additional Natural Gas Product Recovery

  
Without Estimated Revenues from Natural 

Gas Product Recovery 
With Estimated Revenues from Natural 

Gas Product Recovery 

Impact Level 

Number of Small 
Firms in Sample 
Estimated to be 

Affected 

% of Small Firms in 
Sample Estimated to 

be Affected 

Number of Small 
Firms in Sample 
Estimated to be 

Affected 

% of Small Firms in 
Sample Estimated to 

be Affected 

C/S Ratio less than 1% 109 84.5% 129 100.00% 

C/S Ratio 1-3% 11 8.5% 0 0.00% 

CS Ratio greater than 3% 9 7.0% 0 0.00% 

When the estimated revenues from product recovery are not included in the analysis, 11 firms 

(about 9 percent) are estimated to have sales test ratios between 1 and 3 percent.  Nine firms 

(about 7 percent) are estimated to have sales test ratios greater than 3 percent.  These results 

noted, the exclusion of product recovery is somewhat artificial.  While the mean engineering 

compliance costs and revenues estimates are valid, drawing on the means ignores the distribution 

around the mean estimates, which risks masking effects.  Because of this risk, the following 

section offers a qualitative discussion of small entities with regard to obtaining REC services, the 

validity of the cost and performance of RECs for small firms, as well as offers a discussion about 

whether older equipment, which may be disproportionately owned and operated be smaller 

producers, would be affected by the proposed NSPS. 
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7.4.3.3 Small Entity Impact Analysis, Proposed NSPS, Additional Qualitative Discussion 

3.5.3.3.1  Small Entities and Reduced Emissions Completions 

Because REC requirements of the proposed NSPS are expected to contribute the large 

majority of engineering compliance costs, it is important to examine these requirements more 

closely in the context small entities.  Important issues to resolve are the scale of REC costs 

within a drilling project, how the payment system for recovered natural gas functions, whether 

small entities pursue particular “niche” strategies that may influence the costs or performance in 

a way that makes the estimates costs and revenues invalid. 

According to the most recent natural gas well cost data from EIA, the average cost of 

drilling and completing a producing natural gas well in 2007 was about $4.8 million (adjusted to 

2008 dollars).  This average includes lower cost wells that may be relatively shallow or are not 

hydraulically fractured.  Hydraulically fractured wells in deep formations may cost up to $10 

million.  RECs contracted from a service provider are estimated to cost $33,200 (in 2008 dollars) 

or roughly 0.3%-0.7% of the typical cost of a drilling and completing a natural gas well.  As this 

range does not include revenues expected from natural gas and hydrocarbon condensate recovery 

expected to offset REC implementation costs, REC costs likely represent a small increment of 

the overall burden of a drilling project. 

To implement an REC, a service provider, which may itself be a small entity, is typically 

contracted to bring a set of equipment to the well pad temporarily to capture the stream that 

would otherwise be vented to the atmosphere.  Typically, service providers are engaged in a long 

term drilling program in a particular basin covering multiple wells on multiple well pads.  For 

gas captured and sold to the gathering system, Lease Automatic Custody Transfer (LACT) 

meters are normally read daily automatically, and sales transactions are typically settled at the 

end of the month.  Invoices from service providers are generally delivered in 30-day increments 

during the well development time period, as well as at the end of the working contract for that 

well pad.  The conclusion from the information, based on the available information, in most 

cases, the owner/operator incurs the REC cost within the same 30 day period that the 

owner/operator receives revenue as a result of the REC.  
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We assume small firms are performing RECs in CO and WY, as in many instances RECs 

are required under state regulation.  In addition to State regulations, some companies are 

implementing RECs voluntarily such as through participation in the EPA Natural Gas STAR 

Program and the focus of recent press reports.   

As described in more detail below, many small independent E&P companies often do not 

conduct any of the actual field work.  These firms will typically contract the drilling, completion, 

testing, well design, environmental assessment, and maintenance.  Therefore, we believe it is 

likely that small independent E&P firms will contract for RECs from service providers if 

required to perform RECs.  An important reminder is that performing a REC is a straightforward 

and inexpensive extension of drilling, completion, and testing activities. 

To the extent that very small firms may specialize in operating relatively few low-

producing stripper wells, it is important to ask whether low-producing wells are likely candidates 

for re-fracturing/re-completion and, if so, whether the expected costs and revenues would be 

valid.  These marginal gas wells are likely to be older and in conventional formations, and as 

such are unlikely to be good candidates for re-fracturing/completion.  To the extent the marginal 

wells may be good candidates for re-fracturing/completion, the REC costs are valid estimates.  

The average REC cost is valid for RECs performed on any well, regardless of the operator size.  

The reason for this is that the REC service is contracted out to specialty service providers who 

charge daily rates for the REC equipment and workers.  The cost is not related to any well 

characteristic.   

Large operators may receive a discount for offering larger contracts which help a service 

provider guarantee that REC equipment will be utilized.  However, we should note that the 

existence of a potential discount for larger contracts is based on a strong assumption; we do not 

have evidence to support this assumption.  Since contracting REC equipment is analogous to 

contracting for drilling equipment, completion equipment, etc., the premium would likely be in 

the same range as other equipment contracted by small operators.  Since the REC cost is a small 

portion of the overall well drilling and completion cost, the effect of any bulk discount disparity 

between large and small operators will be small, if in fact it does exist. 
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Although small operators may own the majority of marginal and stripper wells, they will 

make decisions based on economics just as any sized company would.  For developing a new 

well, any sized company will expect a return on their investment meaning the potential for 

sufficient gas, condensate, and/or oil production to pay back their investment and generate a 

return that exceeds alternative investment opportunities.  Therefore, small or large operators that 

are performing hydraulic fracture completions will experience the same distribution of REC 

performance.  For refracturing an existing well, the well must be a good candidate to respond to 

the re-fracture/completion with a production increase that merits the investment in the re-

fracture/completion.  

Plugging and abandoning wells is complex and costly, so sustaining the productivity of 

wells is important for maximizing the exploitation of proven domestic resources.  However, 

many marginal gas wells are likely to be older and in conventional formations, and as such are 

unlikely to be good candidates for re-fracturing/completion, which means they are likely 

unaffected by the proposed NSPS.   

3.5.3.3.2  Age of Equipment and Proposed Regulations 

Given a large fraction of domestic oil and natural gas production is produced from older 

and generally low productivity wells, it is important to examine whether the proposed 

requirements might present impediments to owners and operators of older equipment.  The NSPS 

is a standard that applies to new or modified sources.  Because of this, NSPS requirements target 

new or modified affected facilities or equipment, such as processing plants and compressors.  

While the requirements may apply to modifications of existing facilities, it is important to 

discuss well completion-related requirements aside from other requirements in the NSPS 

distinctly.   

Excluding well completion requirements from the cost estimates, the non-completion 

NSPS requirements (related to equipment leaks at processing plants, reciprocating and 

centrifugal compressors, pneumatic controllers, and storage vessels) are estimated to require $27 

million in annualized engineering costs.  EPA also estimates that the annualized costs of these 

requirements will be mostly if not fully offset by revenues expected from natural gas recovery.  

EPA does not expect these requirements to disproportionately affect producers with older 
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equipment.  Meanwhile, the REC and emissions combustion requirements in the proposed NSPS 

relate to well completion activities at new hydraulically fractured natural gas wells and existing 

wells which are recompleted after being fractured or re-fractured.  These requirements constitute 

the bulk of the expected engineering compliance expenditures (about $710 million in annualized 

costs) and expected revenues from natural gas product recovery (about $760 million in revenues, 

annually).  

While age of the well and equipment may be an important factor for small and large 

producers in determining whether it is economical to fracture or re-fracture an existing well, this 

equipment is unlikely to be subject to the NSPS.  To comply with completion-related 

requirements, producers are likely to rely heavily on portable and temporary completion 

equipment brought to the wellpad over a short period of time (a few days to a few weeks) to 

capture and combust emissions that are otherwise vented.  The equipment at the wellhead—

newly installed in the case of new well completions or already in place and operating in the case 

of existing wells—is not likely to be subject to the NSPS requirement. 

7.4.3.4 Small Entity Impact Analysis, Proposed NSPS, Screening Analysis Conclusion 

The number of significantly impacted small businesses is unlikely to be sufficiently large 

to declare a SISNOSE.   Our judgment in this determination is informed by the fact that many 

affected firms are expected to receive revenues from the additional natural gas and condensate 

recovery engendered by the implementation of the controls evaluated in this RIA.  As much of 

the additional natural gas recovery is estimated to arise from completion-related activities, we 

expect the impact on well-related compliance costs to be significantly mitigated. This conclusion 

is enhanced because the returns to reduced emissions completion activities occur without a 

significant time lag between implementing the control and obtaining the recovered product 

unlike many control options where the emissions reductions accumulate over long periods of 

time; the reduced emission completions and recompletions occur over a short span of time, 

during which the additional product recovery is also accomplished. 
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7.4.4 Small Entity Economic Impact Analysis, Proposed NESHAP Amendments 

The proposed NESHAP amendments will affect facilities operating three types of 

equipment: glycol dehydrators at production facilities, glycol dehydrators at transmission and 

compression facilities, and storage vessels.  We identified likely affected facilities in the 

National Emissions Inventory (NEI) and estimated the number of newly required controls of 

each type that would be required by the NESHAP amendments for each facility.  We then used 

available data sources to best identify the ultimate owner of the equipment that would likely 

require new controls and linked facility-level compliance cost estimates to firm-level 

employment and revenue data.  These data were then used to calculate an estimated compliance 

costs to revenues ratio to identify small businesses that might be significantly impacted by the 

NESHAP. 

While we were able to identify the owners all but 14 facilities likely to be affected, we 

could not obtain employment and revenue levels for all of these firms.  Overall, we expect about 

447 facilities to be affected, and these facilities are owned by an estimated 160 firms.  We were 

unable to obtain financial information on 42 (26 percent) of these firms due to inadequate data.  

In some instances, firms are private, and financial data is not available.  In other instance, firms 

may no longer exist, since NEI data are not updated continuously.  From the ownership 

information and compliance cost estimates from the engineering analysis, we estimated total 

compliance cost per firm.   

Of the 118 firms for which we have financial information, we identified 62 small firms 

and 56 large firms that would be affected by the NESHAP amendments.  Annual compliance 

costs for small firms are estimated at $3.0 million (18 percent of the total compliance costs), and 

annual compliance costs for large firms are estimated at $10.7 million (67 percent of the total 

compliance costs).  The facilities for which we were unable to identify the ultimate owners, 

employment, and revenue levels would have an estimated annual compliance cost of $2.3 million 

(15 percent of the total).  All figures are in 2008 dollars. 

The average estimated annualized compliance cost for the 62 small firms identified in the 

dataset is $48,000, while the mean annual revenue figure for the same firms is over $120 million, 

or less than 1 percent for a average sales-test ratio for all 62 firms (Table 7-26).  The median 
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sale-test ratio for these firms is smaller at 0.14 percent.  Large firms are likely to see an average 

of $190,000 in annual compliance costs, whereas average revenue for these firms exceeds $30 

billion since this set of firms includes many of the very large, integrated energy firms.  For large 

firms, the average sales-test ratio is about 0.01 percent, and the median sales-test ratio is less 

than 0.01 percent (Table 7-26). 

Table 7-26 Summary of Sales Test Ratios for Firms Affected by Proposed NESHAP 

Amendments 

Firm Size 
No. of Known 
Affected Firms 

% of Total Known 
Affected Firms Mean C/S Ratio Median C/S Ratio 

Min. C/S 
Ratio 

Max. 
C/S 

Ratio 

Small 62 53% 0.62% 0.14% < 0.01% 6.2% 

Large 56 47% 0.01% < 0.01% < 0.01% 0.4% 

All 118 100% 0.34% 0.02% < 0.01% 6.2% 

Among the small firms, 52 of the 62 (84 percent) are likely to have impacts of less than 1 

percent in terms of the ratio of annualized compliance costs to revenues.  Meanwhile 10 firms 

(16 percent) are likely to have impacts greater than 1 percent (Table 7-27).  Four of these 10 

firms are likely to have impacts greater than 3 percent (Table 7-27) While these 10 firms might 

receive significant impacts from the proposed NESHAP amendments, they represent a very 

small slice of the oil and gas industry in its entirety, less than 0.2 percent of the estimated 6,427 

small firms in NAICS 211 (Table 7-27). 

Table 7-27 Affected Small Firms as a Percent of Small Firms Nationwide, Proposed 

NESHAP amendments 

Firm Size 

Number of Small 
Firms Affected 

Nationwide  

% of Small Firms 
Affected 

Nationwide  

Affected Firms 
as a % of 

National Firms 
(6,427) 

C/S Ratio less than 1% 52 83.9% 0.81% 

C/S Ratio 1-3% 6 9.7% 0.09% 

CS Ratio greater than 3% 4 6.5% 0.06% 

Screening Analysis Conclusion:  While there are significant impacts on small business, the 

analysis shows that a substantial number of small firms are not impacted.  Based upon the 

analysis in this section, we presume there is no SISNOSE arising from the proposed NESHAP 

amendments.   
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Intro duc tion



The Na tional En ergy Mod el ing Sys tem (NEMS) is a com -

puter-based, en ergy-econ omy mod el ing sys tem of U.S.

through 2030. NEMS pro jects the pro duc tion, imports,

con ver sion, con sump tion, and prices of en ergy, sub ject to

as sump tions on mac ro eco nomic and financial fac tors,

world en ergy mar kets, re source availabil ity and costs,

be hav ioral and tech no log i cal choice cri te ria, cost and per -

for mance char ac ter is tics of energy technologies, and de -

mo graph ics. NEMS was designed and im ple mented by

the En ergy In for ma tion Administration (EIA) of the U.S.

De part ment of Energy (DOE).

The Na tional En ergy Mod el ing Sys tem: An Over view

2009 provides an over view of the struc ture and meth -

od ol ogy of NEMS and each of its com po nents. This

chap ter pro vides a de scrip tion of the de sign and ob jec tives 

of the sys tem, fol lowed by a chap ter on the over all mod el -

ing struc ture and so lu tion al go rithm. The re main der of

the re port sum ma rizes the methodology and scope of

the com po nent mod ules of NEMS. The model de scrip -

tions are in tended for read ers fa mil iar with ter mi nol ogy

from eco nomic, op er a tions re search, and en ergy mod el -

ing. More detailed model doc u men ta tion re ports for all

the NEMS mod ules are also avail able from EIA

(Appendix, “Bibliography”).

Purpose of NEMS

NEMS is used by EIA to pro ject the en ergy, economic,

en vi ron men tal, and se cu rity im pacts on the United

States of al ter na tive en ergy pol i cies and dif fer ent as -

sump tions about en ergy mar kets. The pro jec tion ho ri zon 

is ap prox i mately 25 years into the fu ture. The pro jec tions in 

An nual En ergy Out look 2009 (AEO2009) are from the

pres ent through 2030. This time pe riod is one in which

tech nol ogy, de mo graph ics, and eco nomic con di tions are

suf fi ciently un der stood in or der to rep re sent en ergy mar -

kets with a rea son able de gree of con fi dence. NEMS

provides a con sis tent frame work for rep re sent ing the

com plex in ter ac tions of the U.S. en ergy sys tem and its

re sponse to a wide va ri ety of al ter na tive assumptions and 

pol i cies or pol icy ini tia tives. As an an nual model, NEMS

can also be used to ex am ine the im pact of new en ergy

pro grams and pol i cies.

En ergy re sources and prices, the de mand for spe cific en -

ergy ser vices, and other char ac ter is tics of en ergy mar -

kets vary widely across the United States. To address

these differences, NEMS is a regional model. The

regional disaggregation for each module reflects the

availability of data, the regional format typically used to

analyze trends in the specific area, geology, and other

factors, as well as the regions determined to be the most

useful for policy analysis. For example, the demand

modules (e.g., residential, commercial, industrial and

transportation) use the nine Census divisions, the

Electricity Market Module uses 15 supply regions based

on the North American Electric Reliability Council (NERC)

regions, the Oil and Gas Supply Modules use 12 supply

regions, including 3 offshore and 3 Alaskan regions, and

the Petroleum Market Module uses 5 regions based on

the Petroleum Administration for Defense Districts.

Base line pro jec tions are de vel oped with NEMS and

pub lished an nu ally in the An nual En ergy Out look

(AEO). In ac cor dance with the re quire ment that EIA re -

main pol icy-neu tral, the AEO projections are gen er ally

based on Fed eral, State, and lo cal laws and reg u la tions in

af fect at the time of the pro jec tion.  The po ten tial im pacts of

pend ing or pro posed leg is la tion, reg u la tions, and stan -

dards¾or of sec tions of leg is la tion that have been en -

acted but that re quire im ple ment ing reg u la tions or

ap pro pri a tions of funds that have not been pro vided or

spec i fied in the leg is la tion it self¾are not re flected in

NEMS.  The first ver sion of NEMS, com pleted in De -

cem ber 1993, was used to de velop the pro jec tions pre -

sented in the An nual En ergy Out look 1994.  This re port

de scribes the  ver sion of NEMS used for the

AEO2009.1

The pro jec tions produced by NEMS are not con sid ered to 

be state ments of what will hap pen but of what might

hap pen, given the as sump tions and methodologies used.

As sump tions in clude, for ex am ple, the es ti mated size of

the eco nom i cally re cov er able re source base of fos sil fu -

els, and changes in world en ergy sup ply and de mand. 

The pro jec tions are busi ness-as-usual trend es ti mates,

given known tech no log i cal and de mo graphic trends.

Analytical Capability

NEMS can be used to an a lyze the ef fects of ex ist ing and

pro posed gov ern ment laws and reg u la tions related to

en ergy pro duc tion and use; the po ten tial impact of new

and ad vanced en ergy pro duc tion, conver sion, and con -

sump tion tech nol o gies; the im pact and cost of green -

house gas con trol; the im pact of in creased use of

re new able en ergy sources; and the po ten tial sav ings

Energy Information Administration / The National Energy Modeling System: An Overview 2009 1
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from in creased ef fi ciency of energy use; and the im pact of

reg u la tions on the use of al ter na tive or  re for mu lated 

fuels.

In ad di tion to pro duc ing the anal y ses in the AEO, NEMS

is used for one-time analytical re ports and pa pers, such

as An Up dated An nual En ergy Out look 2009 Ref er ence

Case Re flect ing Pro vi sions of the Amer i can Re cov ery

and Re in vest ment Act and Re cent Changes in the Eco -

nomic Out look,2  which up dates the AEO2009 ref er ence

case to re flect the en act ment of the Amer i can Re cov ery

and Re in vest ment Act in Feb ru ary 2009 and to adopt a

re vised mac ro eco nomic out look for the U.S. and global

econ o mies. The re vised AEO2009 ref er ence case will be

used as the start ing point for pend ing and fu ture anal y ses

of pro posed en ergy and en vi ron mental leg is la tion. Other

an a lyt i cal pa pers, which either de scribe the

assumptions and meth od ol ogy of the NEMS or look at cur -

rent en ergy mar kets is sues, are pre pared us ing the NEMS. 

Many of these pa pers are pub lished in the Is sues In Fo cus

sec tion of the AEO.  Past and cur rent anal y ses are avail -

able at http://www.eia.doe.gov/oiaf/aeo/otheranalysis/

aeo_analyes.html.

NEMS has also been used for a num ber of spe cial anal -

y ses at the re quest of the Ad min is tra tion, U.S. Con -

gress, other of fices of DOE and other gov ernment

agen cies, who spec ify the sce nar ios and assumptions

for the anal y sis. Some re cent ex am ples in clude:

• En ergy Mar ket and Eco nomic Im pacts of H.R.

2454, the Amer i can Clean En ergy and Se cu rity Act

of 2009,3 re quested by Chair man Henry Waxman

and Chair man Ed ward Markey to an a lyze the im -

pacts of H.R. 2454, the Amer i can Clean En ergy and 

Se cu rity Act of 2009 (ACESA), which was passed

by the House of Rep re sen ta tives on June 26, 2009.  

ACESA is a com plex bill that reg u lates emis sions of 

green house gases through mar ket-based

mech a nisms, ef fi ciency pro grams, and eco nomic

in cen tives.

• Im pacts of a 25-Per cent Re new able Elec tric ity

Stan dard as Pro posed in the Amer i can Clean En -

ergy and Se cu rity Act,4 re quested by Sen a tor

Markey to an a lyze the ef fects of a 25-per cent Fed -

eral re new able elec tric ity stan dard (RES) as in -

cluded in the dis cus sion draft of broader leg is la tion,

the Amer i can Clean En ergy and Se cu rity Act.

• Light-Duty Die sel Ve hi cles: Ef fi ciency and Emis -

sions At trib utes and Mar ket Is sues,5 re quested by

Sen a tor Ses sions to an a lyze the en vi ron men tal and 

en ergy ef fi ciency at trib utes of die sel-fu eled

light-duty ve hi cles (LDV’s), in clud ing com par i son of 

the char ac ter is tics of the ve hi cles with those of sim i -

lar gas o line-fu eled, E85-fu eled, and hy brid ve hi -

cles, as well as a dis cus sion of any tech ni cal,

eco nomic, reg u la tory, or other ob sta cles to in creas -

ing the use of die sel-fu eled ve hi cles in the United

States.

• The Im pact of In creased Use of Hy dro gen on Pe tro -

leum Con sump tion and Car bon Di ox ide Emis -

sions,6 re quested by Sen a tor Dorgan to an a lyze the 

im pacts on U.S. en ergy im port de pend ence and

emis sions re duc tions re sult ing from the com mer -

cial iza tion of ad vanced hy dro gen and fuel cell tech -

nol o gies in the trans por ta tion and dis trib uted

gen er a tion mar kets.

• Anal y sis of Crude Oil Pro duc tion in the Arc tic Na -

tional Wild life Ref uge,7 re quested by Sen a tor

Stevens to ac cess the im pact of Fed eral oil and nat u -

ral gas leas ing in the coastal plain of the Arc tic Na -

tional Wild life Ref uge in Alaska.

• En ergy Mar ket and Eco nomic Im pacts of S.2191,

the Lieberman-Warner Cli mate Se cu rity Act of

2 Energy Information Administration / The National Energy Modeling System: An Overview  2009
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2 Energy Information Administration, An Updated Annual Energy Outlook 2009 Reference Case Reflecting Provisions of 

the American Recovery and Reinvestment Act and Recent Changes in the Economic Outlook, SR/OIAF/2009-4

(Washington, DC, April 2009).

3 Energy Information Administration, Energy Market and Economic Impacts of H.R. 2454, the American Clean energy

and Security Act of 2009, SR/OIAF/2009-05 (Washington, DC, August 2009).

4 Energy Information Administration, Impacts of a 25-Percent Renewable Electricity Standard as proposed in the

American Clean Energy and Security Act Discussion, SR/OIAF/2009-03 (Washington, DC, April 2009)

5 Energy Information Administration, Light-Duty Diesel Vehicles: Efficiency and Emissions Attributes and Market Issues, 

SR/OIAF/2009-02 (Washington, DC, February 2009).

6 Energy Information Administration, The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon

Light-Duty Diesel Vehicles: Efficiency and Emissions Attributes and Market Issues, SR/OIAF/2008-04 (Washington,

DC, September 2008).

7 Energy Information Administration, Analysis of Crude Oil Production in the Arctic National Wildlife Refuge,

SR/OIAF/2008-03 (Washington, DC, May 2008).



2007,8 re quested by Sen a tors Lieberman, Warner,

Inhofe, Voinovich, and Barrasso to an a lyze the im -

pacts of the green house gas cap-and-trade pro gram

that would be es tab lished un der Ti tle I of S.2191.

• En ergy Mar ket and Eco nomic Im pacts of S.1766,

the Low Car bon Econ omy Act of 2007,9 re quested

by Sen a tors Bingaman and Spec ter to an a lyze the im -

pact of the man da tory green house gas al low ance

pro gram un der S.1766 de signed to main tain cov ered

emis sions at ap prox i mately 2006 lev els in 2020, 1990 

lev els in 2030, and at least 60 per cent be low 1990

lev els by 2050.

Representations of Energy Market
Interactions

NEMS is de signed to rep re sent the im por tant interac tions 

of sup ply and de mand in U.S. en ergy markets. In the

United States, en ergy mar kets are driven pri mar ily by the 

fun da men tal eco nomic interac tions of sup ply and de -

mand. Gov ern ment regulations and pol i cies can ex ert

con sid er able in flu ence, but the ma jor ity of de ci sions af -

fect ing fuel prices and con sump tion pat terns, re source

al lo ca tion, and energy tech nol o gies are made by pri -

vate in di vid u als who value at trib utes other than life cy -

cle costs or com pa nies at tempt ing to op ti mize their own 

economic in ter ests. NEMS rep re sents the mar ket

behavior of the pro duc ers and con sum ers of en ergy at a

level of de tail that is use ful for an a lyz ing the implications of

tech no log i cal im prove ments and pol icy initiatives.

Energy Supply/Conversion/Demand Interactions

NEMS is a mod u lar sys tem.  Four end-use de mand

mod ules rep re sent fuel consumption in the res i den tial,

com mer cial, trans por ta tion, and in dus trial sec tors, sub -

ject to de liv ered fuel prices, mac ro eco nomic in flu -

ences, and tech nol ogy char ac ter is tics. The pri mary fuel

sup ply and con ver sion mod ules com pute the lev els of do -

mes tic production, im ports, trans por ta tion costs, and

fuel prices that are needed to meet do mes tic and ex port 

demands for en ergy, sub ject to re source base char ac -

teristics, in dus try in fra struc ture and tech nol ogy, and

world mar ket con di tions. The mod ules in ter act to solve

for the eco nomic sup ply and de mand bal ance for each

fuel. Be cause of the mod u lar de sign, each sec tor can

be rep re sented with the meth od ol ogy and the level of

de tail, in clud ing re gional de tail, ap pro pri ate for that sec -

tor. The mod u lar ity also facilitates the anal y sis,

main te nance, and test ing of the NEMS com po nent mod -

ules in the multi-user environment.

Domestic Energy System/Economy Interactions 

The gen eral level of eco nomic ac tiv ity, rep re sented by

gross do mes tic prod uct, has tra di tion ally been used as

a key ex plan a tory vari able or driver for projections of en -

ergy con sump tion at the sec toral and re gional lev els. In

turn, en ergy prices and other energy sys tem ac tiv i ties in -

flu ence eco nomic growth and ac tiv ity. NEMS cap tures

this feed back be tween the do mes tic econ omy and the

en ergy sys tem. Thus, changes in en ergy prices af fect

the key mac ro eco nomic vari ables—such as gross do -

mes tic prod uct, dis pos able per sonal in come, in dus trial

out put, housing starts, em ploy ment, and in ter est

rates—that drive en ergy con sump tion and ca pac ity ex -

pan sion de ci sions.

Domestic/World Energy Market Interactions

World oil prices play a key role in do mes tic en ergy sup -

ply and de mand de ci sion mak ing and oil price as sump -

tions are a typ i cal start ing point for en ergy sys tem

pro jec tions. The level of oil pro duc tion and con sump -

tion in the U.S. en ergy sys tem also has a sig nif i cant in -

flu ence on world oil mar kets and prices. In NEMS, an

in ter na tional mod ule represents the re sponse of world

oil mar kets (sup ply and de mand) to as sumed world oil

prices. The re sults/out puts of the mod ule are in ter na -

tional liq uids con sump tion and pro duc tion by re gion,

and a crude oil sup ply curve rep re sent ing in ter na tional

crude oil sim i lar in qual ity to West Texas In ter me di ate

that is avail able to U.S. mar kets through the Pe tro leum

Mar ket Mod ule (PMM) of NEMS. The sup ply-curve cal -

cu la tions are based on his tor i cal mar ket data and a

world oil sup ply/de mand bal ance, which is de vel oped

from re duced-form mod els of in ter na tional liq uids sup -

ply and de mand, cur rent in vest ment trends in ex plo ra -

tion and de vel op ment, and long-term re source

eco nom ics for 221 coun tries/ter ri to ries. The oil pro duc -

tion es ti mates in clude both conventional and

unconventional supply recovery technologies.

Introduction
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Economic Decision Making Over Time

The pro duc tion and con sump tion of en ergy prod ucts

to day are in flu enced by past in vest ment de ci sions to

de velop en ergy re sources and ac quire en ergy-us ing

cap i tal stock. Sim i larly, the pro duc tion and

consumption of en ergy in a fu ture time pe riod will be

influenced by de ci sions made to day and in the past.

Cur rent in vest ment de ci sions de pend on expectations

about fu ture mar kets. For ex am ple, ex pec ta tions of ris -

ing en ergy prices in the fu ture in crease the like li hood of

cur rent de ci sions to in vest in more en ergy-ef fi cient tech -

nol o gies or al ter na tive en ergy sources. A va ri ety of as -

sump tions about plan ning horizons, the for ma tion of

ex pec ta tions about the future, and the role of those ex -

pec ta tions in eco nomic de ci sion mak ing are ap plied

within the in di vid ual NEMS mod ules.

Technology Representation

A key fea ture of NEMS is the rep re sen ta tion of

technology and tech nol ogy im prove ment over time. Five

of the sec tors—res i den tial, com mer cial, transportation, 

elec tric ity gen er a tion, and re fin ing—in clude ex ten sive

treat ment of individual tech nol o gies and their char ac ter -

is tics, such as the ini tial cap i tal cost, op er at ing cost, date

of avail abil ity, ef fi ciency, and other char ac ter is tics spe -

cific to the par tic u lar tech nol ogy. For ex am ple, tech no -

log i cal prog ress in light ing tech nol o gies re sults in a

grad ual re duc tion in cost and is mod eled as a function

of time in these end-use sec tors. In ad di tion, the elec tric ity

sec tor ac counts for tech no log i cal op ti mism in the cap i tal

costs of first-of-a-kind gen er at ing technologies and for a

de cline in cost as ex pe ri ence with the tech nol o gies is

gained both do mes ti cally and internationally. In each of

these sec tors, equip ment choices are made for in di vid -

ual tech nol o gies as new equip ment is needed to meet

grow ing de mand for energy ser vices or to re place re tired

equip ment.

In the other sec tors—in dus trial, oil and gas sup ply, and

coal sup ply—the treat ment of tech nol o gies is more lim -

ited due to a lack of data on in di vid ual technologies. In the

in dus trial sec tor, only the com bined heat and power and

mo tor tech nol o gies are ex plic itly con sid ered and char ac -

ter ized. Cost re duc tions resulting from tech no log i cal

prog ress in com bined heat and power tech nol o gies are

rep re sented as a func tion of time as ex pe ri ence with the

tech nol o gies grows.  Tech no log i cal prog ress is not ex -

plic itly mod eled for the in dus trial mo tor tech nol o gies.

Other technologies in the en ergy-in ten sive in dus tries

are represented by tech nol ogy bun dles, with tech nol ogy

possibility curves rep re sent ing ef fi ciency im prove ment

over time. In the oil and gas sup ply sec tor, technological

prog ress is rep re sented by econometrically es ti mated

im prove ments in find ing rates, suc cess rates, and

costs. Pro duc tiv ity im prove ments over time rep re sent

tech no log i cal prog ress in coal production.

External Availability

In ac cor dance with EIA re quire ments, NEMS is fully doc u -

mented and ar chived. EIA has been run ning NEMS on

four EIA ter mi nal serv ers and sev eral dual-pro ces sor

per sonal com put ers (PCs) us ing the Win dows XP op er -

at ing sys tem. The ar chive file pro vides the source lan -

guage, in put files, and out put files to rep li cate the

An nual En ergy Out look re ference case runs on an iden -

ti cally equipped com puter; how ever, it does not in clude

the pro pri etary por tions of the model, such as the IHS

Global In sight, Inc. (for merly DRI-WEFA) mac ro eco -

nomic model and the optimization mod el ing li brar ies.

NEMS can be run on a high-pow ered in di vid ual PC as

long as the required pro pri etary soft ware re sides on the

PC.  Because of the com plex ity of NEMS, and the rel a -

tively high cost of the pro pri etary soft ware, NEMS is not

widely used out side of the De part ment of En ergy. How -

ever, NEMS, or por tions of it, is in stalled at the Law rence

Berke ley Na tional Lab o ra tory, Oak Ridge  Na tional Lab o -

ra tory, the Elec tric Power Re search In sti tute, the Na -

tional En ergy Tech nol ogy Laboratory, the Na tional

Re new able En ergy Lab o ra tory, sev eral pri vate con sult -

ing firms, and a few uni ver si ties.                    
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Over view of NEMS



NEMS ex plic itly rep re sents do mes tic en ergy markets

by the eco nomic de ci sion mak ing in volved in the pro -

duc tion, con ver sion, and consumption of en ergy prod -

ucts. Where pos si ble, NEMS in cludes ex plicit

rep re sen ta tion of en ergy technologies and their char -

ac ter is tics. Since en ergy costs, avail abil ity, and

energy-con sum ing char ac ter is tics vary widely across

re gions, con sid er able re gional de tail is in cluded. Other

de tails of pro duc tion and con sump tion are rep re sented

to fa cil i tate pol icy anal y sis and en sure the va lid ity of the

re sults. A sum mary of the de tail pro vided in NEMS is

shown in Ta ble 1.
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  Energy Activity Categories Regions

 Res i den tial De mand                  Twenty four end-use ser vices

Three hous ing types

Fifty end-use tech nol o gies

Nine Cen sus divisions

 Com mer cial demand Ten end-use ser vices

Eleven build ing types

Eleven dis trib uted gen er a tion tech nol o gies

Sixty-three end-use technologies

Nine Cen sus divisions

 In dus trial demand Seven en ergy-in ten sive in dus tries

Eight non-en ergy-in ten sive in dus tries

Six non-man u fac tur ing in dus tries

Cogeneration

Four Cen sus re gions, shared to  

    nine Cen sus di vi sions

 Trans por ta tion demand Six car sizes

Six light truck sizes

Sixty-three con ven tional fuel-sav ing tech nol o gies 

     for light-duty ve hi cles

Gas o line, die sel, and four teen al ter na tive-fuel

     ve hi cle tech nol o gies for light-duty ve hi cles

Twenty vin tages for light-duty ve hi cles

Re gional, nar row, and wide-body air craft

Six ad vanced air craft tech nol o gies

Light, me dium, and heavy freight trucks

Thirty-seven ad vanced freight truck tech nol o gies

Nine Cen sus divisions

 Elec tric ity Eleven fos sil gen er a tion tech nol o gies

Two dis trib uted gen er a tion tech nol o gies

Eight re new able gen er a tion tech nol o gies

Con ven tional and ad vanced nu clear

Stor age tech nol ogy to model load shift ing

Mar ginal and av er age cost pric ing

Gen er a tion ca pac ity ex pan sion

Seven en vi ron men tal con trol tech nol o gies

Fif teen elec tric ity sup ply re gions (in clud ing Alaska and

   Ha waii)  based on the North Amer i can Elec tric Re li abil ity  

   Coun cil re gions and sub re gions

Nine Cen sus di vi sions for de mand

Fif teen elec tric ity sup ply re gions

 Renewables Two wind tech nol o gies—on shore and off shore—, 

    geo ther mal, so lar ther mal, so lar pho to vol taic,

    land fill gas, bio mass, con ven tional hydropower

 Oil supply Lower-48 on shore

Lower-48 deep and shal low off shore

Alaska on shore and off shore

Six lower 48 on shore re gions

Three lower 48 off shore re gions

Three Alaska re gions

 Nat u ral gas sup ply Con ven tional lower-48 on shore

Lower-48 deep and shal low off shore

Coalbed meth ane

Gas shales

Tight sands

Six lower 48 on shore re gions

Three lower 48 off shore re gions

Three Alaska regions

 Nat u ral gas trans mis sion and distribution Core vs. noncore de liv ered prices

Peak vs. off-peak flows and prices

Pipe line ca pac ity ex pan sion

Pipe line and dis trib u tor tar iffs

Can ada, Mex ico, and LNG im ports and ex ports

Alaska gas con sump tion and sup ply

Twelve lower 48 re gions

Ten pipe line bor der points

Eight LNG im port re gions

 Refining Five crude oil cat e go ries

Four teen prod uct cat e go ries

More than 40 dis tinct tech nol o gies

Re fin ery ca pac ity ex pan sion

Five re fin ery re gions based on the Pe tro leum

    Ad min is tra tion for De fense Dis tricts

 Coal supply Three sul fur cat e go ries

Four ther mal cat e go ries

Un der ground and sur face min ing types

Im ports and Ex ports

Four teen sup ply re gions

Four teen de mand re gions

Sev en teen ex port re gions

Twenty im port re gions

Table 1. Characteristics of Selected Modules



Ma jor As sump tions

Each mod ule of NEMS em bod ies many as sump tions and 

data to char ac ter ize the fu ture pro duc tion, conver sion, or

con sump tion of en ergy in the United States. Two of the

more im por tant fac tors in flu enc ing en ergy mar kets are

eco nomic growth and oil prices.

The AEO2009 in cludes five pri mary fully-in te grated

cases:  a re ference case, high and low eco nomic growth

cases, and high and low oil price cases.  The primary

de ter mi nant for dif fer ent eco nomic growth rates are as -

sump tions about growth in the la bor force and pro duc tiv -

ity, while the long-term oil price paths are based on

ac cess to and cost of oil from the non-Or ga ni za tion of 

Pe tro leum  Ex port ing  Coun tries (OPEC), OPEC sup ply

de ci sions, and the sup ply po ten tial of un con ven tional liq -

uids, as well as the de mand for liq uids.

In ad di tion to the five pri mary fully-in te grated cases,

AEO2009 in cludes 34 other cases that ex plore the im pact 

of vary ing key as sump tions in the individual com po nents

of NEMS. Many of these cases involve changes in the as -

sump tions that im pact the pen e tra tion of new or im -

proved tech nol o gies, which is a ma jor un cer tainty in

for mu lat ing pro jec tions of fu ture en ergy mar kets. Some

of these cases are run as fully in te grated cases (e.g., in te -

grated 2009 tech nol ogy case, in te grated high tech nol ogy 

case, low and high renewables tech nol ogy cost cases,

slow and rapid oil and gas tech nol ogy cases, and low and 

high coal cost cases).  Oth ers ex ploit the mod u lar struc -

ture of NEMS by run ning only a por tion of the en tire mod -

el ing sys tem in or der to fo cus on the first-or der im pacts

of changes in the as sump tions (e.g., 2009, high, and

best avail able tech nol ogy cases in the res i den tial and

com mer cial sec tors, 2009 and high tech nol ogy cases in

the in dus trial sec tor and, low and high tech nol ogy cases in

the trans por ta tion sec tor).

NEMS Modular Structure

Over all, NEMS rep re sents the be hav ior of en ergy mar -

kets and their in ter ac tions with the U.S. economy. The

model achieves a sup ply/de mand bal ance in the

end-use de mand re gions, de fined as the nine Cen sus di -

vi sions (Fig ure 1), by solv ing for the prices of each en ergy

type that will bal ance the quantities pro duc ers are will ing

to sup ply with the quan ti ties con sum ers wish to con sume. 

The sys tem re flects mar ket eco nom ics, in dus try struc -

ture, and ex ist ing en ergy pol i cies and reg u la tions that in -

flu ence market be hav ior.

NEMS con sists of four sup ply mod ules (oil and gas, nat -

u ral gas trans mis sion and dis tri bu tion, coal mar ket, and

re new able fu els); two con ver sion mod ules (elec tric ity mar -

ket and pe tro leum  mar ket); four end-use de mand mod -

ules (res i den tial de mand,  com mer cial de mand,

in dus trial de mand, and trans por ta tion de mand); one

mod ule to sim u late en ergy/economy in ter ac tions (mac ro -

eco nomic ac tiv ity); one module to sim u late in ter na tional

en ergy mar kets (in ter na tional energy); and one mod ule

that pro vides the mech a nism to achieve a gen eral mar -

ket equi lib rium among all the other mod ules (in te grat ing

mod ule). Fig ure 2 depicts the high-level structure of

NEMS.

Be cause en ergy mar kets are het er o ge neous, a sin gle

meth od ol ogy does not ad e quately rep re sent all supply,

con ver sion, and end-use de mand sec tors. The mod u -

lar ity of the NEMS de sign pro vides the flexibility for each

com po nent of the U.S. en ergy sys tem to use the meth od -

ol ogy and cov er age that is most appropriate. Fur ther more, 

mod u lar ity pro vides the capability to ex e cute the mod ules

in di vid u ally or in collec tions of mod ules, which fa cil i tates

the de velopment and anal y sis of the sep a rate com po -

nent modules. The in ter ac tions among these mod ules

are controlled by the in te grat ing mod ule.

The NEMS global data struc ture is used to co or di nate

and com mu ni cate the flow of in for ma tion among the

mod ules. These data are passed through com mon in ter -

faces via the in te grat ing mod ule. The global data struc -

ture in cludes en ergy mar ket prices and con sump tion;

mac ro eco nomic vari ables; en ergy pro duc tion, trans por -

ta tion, and con ver sion information; and cen tral ized model

con trol vari ables, parameters, and as sump tions. The

global data struc ture ex cludes vari ables that are de fined

lo cally within the mod ules and are not com mu ni cated to

other modules.

A key sub set of the vari ables in the global data structure is

the end-use prices and quan ti ties of fu els that are used

to equilibrate the NEMS en ergy balance in the con ver -

gence al go rithm. These de liv ered prices of en ergy and

the quan ti ties de manded are defined by prod uct, re gion,

and sec tor. The de liv ered prices of fuel en com pass all

the ac tiv i ties nec es sary to pro duce, im port, and trans -

port fu els to the end user. The re gions used for the price

and quan tity vari ables in the global data struc ture are the

nine Cen sus di vi sions. The four Cen sus re gions (shown in

Fig ure 1 by breaks be tween State groups) and nine Cen -

sus di vi sions are a com mon, main stream level of

regionality widely used by EIA and other or ga ni za tions for

data col lec tion and analysis.
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Integrating Module

The NEMS integrating module controls the entire

NEMS solution process as it iterates to determine a

general market equilibrium across all the NEMS

modules. It has the following functions:

• Man ages the NEMS global data struc ture

• Ex e cutes  all  or  any  of  the  user-se lected mod ules

in an it er a tive con ver gence al go rithm

• Checks for con ver gence and re ports vari ables that

re main out of con ver gence

• Im ple ments   con ver gence   re lax ation   on se lected

vari ables be tween it er a tions to ac cel er ate con ver -

gence

• Up dates ex pected val ues of the key NEMS vari -

ables.

The in te grat ing mod ule ex e cutes the de mand, con ver -

sion, and sup ply mod ules iteratively un til it achieves an

eco nomic equi lib rium of sup ply and demand in all the

con sum ing and pro duc ing sec tors. Each mod ule is

called in se quence and solved, assuming that all other

vari ables in the en ergy markets are fixed. The mod ules

are called iteratively un til the end-use prices and quan ti ties

remain constant within a specified tolerance, a con di tion

defined as convergence.  Equilibration is achieved

annually throughout the projection period, cur rently

through 2030, for each of the nine Census divisions.

In ad di tion, the mac ro eco nomic ac tiv ity and in ter na -

tional en ergy mod ules are ex e cuted iteratively to in cor -

po rate the feed back on the econ omy and in ter na tional

en ergy mar kets from changes in the do mes tic en ergy

mar kets. Con ver gence tests check the sta bil ity of a set

of key mac ro eco nomic and in ter na tional trade vari ables

in re sponse to in ter ac tions with the do mes tic en ergy

system.

The NEMS al go rithm ex e cutes the sys tem of modules

un til con ver gence is reached. The so lu tion procedure for 

one it er a tion in volves the ex e cu tion of all the com po nent

mod ules, as well as the up dat ing of ex pec ta tion vari -

ables (re lated to fore sight assumptions) for use in the

next it er a tion. The sys tem is executed se quen tially for
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each year in the pro jec tion period. Dur ing each it er a tion,

the mod ules are ex e cuted in turn, with in ter ven ing

convergence checks that iso late spe cific mod ules that

are not con verg ing. A con ver gence check is made for

each price and quan tity vari able to see whether the per -

cent age change in the vari able is within the assumed

tol er ance. To avoid un nec es sary it er a tions for changes in

in sig nif i cant val ues, the quan tity convergence check is

omit ted for quan ti ties less than a user-spec i fied min i -

mum level. The or der of ex e cu tion of the mod ules may af -

fect the rate of con ver gence but will gen er ally not pre vent

con ver gence to an equilibrium so lu tion or sig nif i cantly

al ter the re sults. An op tional re lax ation  rou tine can be 

ex e cuted  to dampen swings in so lu tion val ues be -

tween iterations. With this op tion, the cur rent it er a tion

val ues are re set part way be tween so lu tion val ues from

the cur rent and pre vi ous it er a tions. Because of the

modular structure of NEMS and the it er a tive so lu tion al -

go rithm, any sin gle mod ule or sub set of mod ules can

be ex e cuted in de pend ently. Mod ules not ex e cuted are

by passed in the call ing sequence, and the val ues they

would cal cu late and pro vide to the other mod ules are held

fixed at the val ues in the global data struc ture, which are

the so lu tion val ues from a pre vi ous run of NEMS. This

flex i bil ity is an aid to in de pend ent de vel op ment, de bug -

ging, and anal y sis.
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Car bon Diox ide Emis sions



The emis sions pol icy submodule, part of the in te grat ing 

mod ule, es ti mates en ergy-re lated car bon di ox ide emis -

sions and is ca pa ble of rep re sent ing two re lated green -

house gas (GHG) emis sions pol i cies:  a cap-and-trade

pro gram and a car bon dioxide emission tax.   

Car bon di ox ide emis sions are cal cu lated from fos -

sil-fuel en ergy con sump tion and fuel-spe cific emis -

sions fac tors.  The es ti mates are ad justed for car bon

cap ture tech nol o gies where ap pli ca ble.  Car bon di ox -

ide emis sions from en ergy use are de pend ent on the

car bon con tent of the fos sil fuel, the frac tion of the fuel

con sumed in com bus tion, and the con sump tion of that

fuel. The prod uct of the car bon con tent at full com bus -

tion and the com bus tion frac tion yields an ad justed car -

bon emis sion fac tor.  The ad justed car bon emis sions

fac tors, one for each fuel and sec tor, are provided as

input to the emissions policy module. 

Data on past car bon di ox ide emis sions and emis sions

fac tors are up dated each year from the EIA’s an nual in -

ven tory, Emis sions of Green house Gases the United

States.10  To pro vide a more com plete ac count ing of

green house gas emis sions con sis tent with that in ven -

tory, a base line emis sions pro jec tion for the non-en ergy 

car bon di ox ide and other green house gases may be

spec i fied as an exogenous input.  

To rep re sent car bon tax or cap-and-trade pol i cies, an

in cre men tal cost of us ing each fos sil fuel, on a dol -

lar-per-Btu ba sis, is cal cu lated based the car bon di ox -

ide emis sions fac tors and the per-ton car bon di ox ide 

tax or cap-and-trade al low ance cost.  This in cre men tal

cost, or car bon price ad just ment, is added to the cor re -

spond ing en ergy prices as seen by the en ergy de mand

mod ules.  These price ad just ments in flu ence en ergy

de mand and en ergy-re lated CO2 emis sions, as well as

macroeconomic trends.  

Un der a cap-and-trade pol icy, the al low ance or per mit

price is de ter mined in an it er a tive so lu tion pro cess such 

that the an nual cov ered emis sions match the cap each

year. If al low ance bank ing is per mit ted, a con -

stant-growth al low ance price path is found such that

cu mu la tive emis sions over the bank ing in ter val match

the cu mu la tive cov ered emis sions.  To the ex tent the

pol i cies cover green house gases other than CO2, the

cov er age as sump tions and abate ment po ten tial for the

gases must be pro vided as in put.  In past stud ies, EIA

has drawn on work by the En vi ron men tal Pro tec tion

Agency (EPA) to rep re sent ex og e nous es ti mates of

emis sions abate ment and the use of off sets as a func -

tion of al low ance prices.  

Rep re sent ing spe cific cap-and-trade pol i cies in NEMS

al most al ways re quires cus tom iz ation of the model.  

Among the is sues that must be ad dressed are what

gases and sec tors are cov ered, what off sets are el i gi -

ble as com pli ance mea sures, how the rev e nues raised

by the taxes or al low ance sales are used, how al low -

ances or the value of al low ances are dis trib uted, and

how the dis tri bu tion af fects en ergy pric ing or the cost of

us ing en ergy.
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Mac ro eco nomic Activity
Mod ule



The Mac ro eco nomic Ac tiv ity Mod ule (MAM) links

NEMS to the rest of the econ omy by pro vid ing projections

of eco nomic driver vari ables for use by the sup ply, de -

mand, and con ver sion mod ules of NEMS. The der i va tion

of the base line mac ro eco nomic pro jec tion lays a foun -

da tion for the de ter mi na tion of the en ergy de mand and

sup ply fore cast. MAM is used to pres ent al ter na tive mac ro -

eco nomic growth cases to pro vide a range of un cer tainty

about the growth po ten tial for the econ omy and its likely

con se quences for the energy sys tem. MAM is also able

to ad dress the mac ro eco nomic im pacts as so ci ated with

chang ing en ergy mar ket con di tions, such as al ter na tive

world oil price as sump tions. Out side of the AEO set ting, 

MAM rep re sents a sys tem of linked mod ules which can

as sess the po ten tial im pacts on the econ omy of

changes in en ergy events or pol icy pro pos als.  These

eco nomic im pacts then feed back into NEMS for an in te -

grated so lu tion. MAM con sists of five submodules:

• Global In sight Model of the U.S. Econ omy 

• Global In sight In dus try Model

• Global In sight Em ploy ment Model

• EIA Re gional Model

• EIA Com mer cial Floorspace Model

The IHS Global In sight Model of the U.S. Econ omy

(Macroeconomic Model) is the same model used by IHS

Global In sight, Inc.  to gen er ate the eco nomic pro jec -

tions be hind the com pany’s monthly as sess ment of the

U.S. econ omy. The In dus try and Em ploy ment

submodules, are de riv a tives of  IHS Global In sight’s In -

dus try and Em ploy ment Mod els, and have been tai lored

to pro vide the in dus try and re gional de tail re quired by

NEMS. The Re gional and Com mer cial Floorspace

Submodules were developed by EIA to com ple ment the  

set of Global Insight mod els, pro vid ing a fully in te grated 

ap proach to pro ject ing eco nomic ac tiv ity at the na -

tional, in dus try and re gional lev els. The set of mod els is 

de signed to run in a re cur sive man ner (see Fig ure 3).

Global In sight’s Mac ro eco nomic Model de ter mines the

na tional econ omy’s growth path and fi nal demand mix.

The Global In sight Mac ro eco nomic Model pro vides pro -

jec tions of over 1300 con cepts span ning fi nal de mands,

ag gre gate  sup ply,  prices,  in comes,  in ter na tional

trade, in dus trial de tail, in ter est rates and fi nan cial flows.

The In dus try Submodule takes the fi nal de mand

projections from the Mac ro eco nomic Submodule as in -

puts to pro vide pro jec tions of out put and other key in -

dicators for 61 sec tors, cov er ing the en tire econ omy.

This is later ag gre gated to 41 sec tors to pro vide

information to NEMS. The In dus try Submodule in sures

that  sup ply by in dus try is con sis tent with the fi nal

demands (con sump tion, in vest ment, gov ern ment

spending, exports and imports) generated in the

Macroeconomic Submodule.

The Em ploy ment Submodule takes the in dus try out put

pro jec tions from the In dus try Submodule and  na tional

wage rates, pro duc tiv ity trends and av er age work-week 

trends from the Mac ro eco nomic Submodule to project

em ploy ment for the 41 NEMS in dus tries.  The sum of

non-ag ri cul tural em ploy ment is con strained to sum to

the na tional to tal pro jected by the Macroeconomic

Submodule.

The Re gional Submodule de ter mines the level of in dus try 

out put and em ploy ment, pop u la tion, in comes, and hous -

ing ac tiv ity in each of nine Cen sus re gions. The Com mer -

cial Floorspace Submodule cal cu lates re gional

floorspace for 13 types of build ing use by Cen sus

Divi sion.
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Macroeconomic Activity Module

MAM Outputs Inputs from NEMS Exogenous Inputs

Gross do mes tic prod uct
Other eco nomic ac tiv ity mea sures, in clud ing hous ing
  starts, com mer cial floorspace growth, ve hi cle sales, 
  pop u la tion
Price in di ces and de fla tors
Pro duc tion and em ploy ment for man u fac tur ing
Pro duc tion and em ploy ment for nonmanufacturing
In ter est rates

Pe tro leum, nat u ral gas, coal, and
   elec tric ity prices
Oil, nat u ral gas, and coal production
Elec tric and gas in dus try out put
Re fin ery out put
End-use en ergy con sump tion by fuel

Mac ro eco nomic vari ables de fin ing al ter na tive
   eco nomic growth cases



In te grated fore casts of NEMS cen ter around es ti mat ing 

the state of the en ergy-econ omy sys tem un der a set of

al ter na tive en ergy con di tions. Typ i cally, the pro jec tions 

fall into the fol low ing four types of in te grated NEMS

sim u la tions:

• Base line Pro jec tion

• Al ter na tive World Oil Prices

• Pro posed En ergy Fees or Emis sions Per mits

• Pro posed Changes in Com bined Av er age Fuel

Econ omy (CAFE) Stan dards

In these in te grated NEMS sim u la tions, pro jec tion pe -

riod base line val ues for over 240 mac ro eco nomic and

de mo graphic vari ables from MAM are passed to NEMS 

which solves for de mand, sup ply and prices of en ergy

for the pro jec tion pe riod.  These en ergy prices and

quan ti ties are passed back to MAM and solved in the

Mac ro eco nomic, In dus try, Em ploy ment, Re gional, and

Com mer cial Floorspace Submodules in the EViews en -

vi ron ment.11  
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Macroeconomic Activity Module

National Employment
Variables

Regional Macroeconomic 
Industry Employment
and Commercial

Floorspace Variables

National Interindustry
Variables

Oil, Natural Gas and Coal 
Production; Refinery 

Activity; Electric and Gas 
Industry Output

Energy Prices and End-use 
Consumption

National Macroeconomic 
Variables

National 
Macroeconomic 

Variables & Industrial 
Shipments

Macroeconomic

Submodule

Industry

Submodule

Employment

Submodule

Regional

Submodule

Macroeconomic 
Growth Cases

Exogenous

Commercial Floorspace

Submodule

Macroeconomic Activity Module

NEMS

Fig ure 3. Mac ro eco nomic Ac tiv ity Mod ule Structure

11 Eviews is a model build ing nad op er at ing soft ware pack age main tained by QMS (Quan ti ta tive Mi cro Soft ware.)



Inter na tional Energy Mod ule



The In ter na tional En ergy Mod ule (IEM) (Fig ure 4) per -

forms the fol low ing func tions:                         

• Cal cu lates the world oil price (WOP) that

equilibrates world crude-like liq uids sup ply with de -

mand for each year. The WOP is de fined as the

price of light, low sul fur crude oil de liv ered to Cush -

ing, Oklahoma.  

• Pro vides the pro jected world crude-like liq uids sup -

ply curve (for each year) used by the Pe tro leum

Mar ket Mod ule (PMM).  These curves are ad justed

to re flect ex pected con di tions in in ter na tional oil

mar kets and pro jected changes in U.S. crude-like

liq uids pro duc tion and con sump tion.

• Pro vide an nual re gional (coun try) level pro duc tion

de tail for con ven tional and un con ven tional liq uids

based on ex og e nous as sump tions about ex pected

coun try-level liq uid fu els pro duc tion and pro ducer

be hav ior.

• Pro jects crude oil and light and heavy re fined prod -

uct im port quan ti ties into the U.S. by year and by

source based on ex og e nous as sump tions about fu -

ture ex plo ra tion, pro duc tion, re fin ing, and dis tri bu -

tion in vest ments world wide.

Scope of IEM  

Non-U.S. liq uid fu els mar kets are rep re sented in NEMS 

by the in ter ac tion be tween the PMM and the IEM.  Us -

ing the spe cific al go rithm de scribed in the doc u men ta -

tion of this mod ule, IEM cal cu lates the WOP that

equilibrates world crude-like liq uids sup ply with de -

mand for each year.  The IEM then es ti mates new world 

crude-like liq uids sup ply curves based on ex og e nous,

ex pected U.S. and world crude-like liq uids sup ply and

de mand curves and that in cor po rate any changes in

U.S. crude-like liq uids pro duc tion or con sump tion pro -

jected by other NEMS mod ules.  Op er a tion ally, IEM

passes to PMM an ar ray of nine points of this sup ply

curve, with the equi lib rium point be ing the fifth point of

this ar ray.

In put data into IEM con tain the his tor i cal per cent ages

of im ports of oils, heavy and light prod ucts im ported into 

U.S. from dif fer ent re gions in the world.  Us ing these

val ues and to tal im ports into the U.S. of crudes, heavy

and light prod ucts pro vided by PMM, IEM gen er ates a

re port, with im ports by source for ev ery year in the

pro jec tion.

While the IEM is in tended to be ex e cuted as a mod ule

of the NEMS sys tem, and uti liz ing its com plete ca pa bil i -

ties and fea tures re quires a NEMS in ter face, it is also

pos si ble to ex e cute the IEM mod ule on a stand-alone

ba sis.  In stand-alone mode, the IEM cal cu lates the

WOP based on an ex og e nously spec i fied pro jec tion of

U.S. crude-like liq uids pro duc tion and con sump tion.

Sen si tiv ity anal y ses can be con ducted to ex am ine the

re sponse of the world oil mar ket to changes in oil price,

pro duc tion ca pac ity, and de mand. To sum ma rize, the

model searches for the WOP that equilibrates

crude-like liq uids sup ply and de mand at the world level. 

Based on the fi nal re sults for U.S. to tal liq uids pro duc -

tion and con sump tion, IEM also pro vides an In ter na -

tional Pe tro leum Sup ply and Dis po si tion Sum mary

ta ble for world con ven tional and un con ven tional liq uids

pro duc tion as well as for world liq uids de mand by re -

gion.  Ex og e nous data used to build this re port is con -

tained in omsinput.wk1 file.  Each sce nario has its own

ver sion of this file.

Be cause U.S. pro duc tion and con sump tion of con ven -

tional liq uids are dy namic val ues (out put from NEMS),

all other world re gions have been pro por tion ally up -

dated such that the world liq uids pro duc tion and con -

sump tion re flect the cor re spond ing value as in the

In ter na tional En ergy Out look (IEO).

Relation to Other NEMS Components

The IEM both uses in for ma tion from and pro vides in for -

ma tion to other NEMS com po nents. It pri mar ily uses in -

for ma tion about pro jected U.S and world crude-like

liq uids pro duc tion and con sump tion and pe tro leum im -

ports and pro vides in for ma tion about the world liq uid fu -

els mar kets, in clud ing global crude-like liq uids sup ply

curves and the sources of pe tro leum im ports into the

U.S. It should be noted, how ever, that the pres ent fo cus 

of the IEM is on the in ter na tional oil mar ket where the
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International Energy Module

IEM Outputs Inputs from NEMS Exogenous Inputs

World crude-like liq uids sup ply curves 
Pro jected world liq uid fu els pro duc tion
   and con sump tion by re gion
Sources of crude oil and pe tro leum
   prod uct im ports by year

Con trol ling in for ma tion: it er a tion count, time
   ho ri zon, etc
GDP de fla tor
Pro jected U.S. and world crude-like liq uids
   pro duc tion and con sump tion
U.S. crude oil and pe tro leum prod uct imports

Ex pected US and world crude-like liq uids sup ply and
   de mand curves
Ex pected world liq uid fuel pro duc tion and con sump tion
   by region



WOP is com puted.  Any in ter ac tions be tween the U.S.

and for eign re gions in fu els other than oil (for ex am ple,

coal trade) are mod eled in the par tic u lar NEMS mod ule

that deals with that fuel. 

For U.S. crude-like liq uids pro duc tion and con sump tion 

in any year of the pro jec tion pe riod, the IEM uses pro -

jec tions gen er ated by the NEMS PMM (based on sup -

ply curves pro vided by the Oil and Gas Sup ply Mod ule

(OGSM) and de mand curves from the end-use de mand 

mod ules). 

U.S. and world ex pected crude-like liq uids sup ply and

de mand curves, for any year in the pro jec tion pe riod,

are ex og e nously pro vided through data in cluded in in -

put file omsecon.txt, as de tailed in the doc u men ta tion of 

the IEM. 

International Energy Module
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World Oil Price

Petroleum
Market Module

Macroeconomic
Activity
Module

N
E
M
S

Projected U. S. 
crude-like  liquids 

production
and consumption

by year 

U. S. crude oil and 
petroleum product

imports by year

World crude-like
liquids supply
curve by year

Projected world liquid
fuels production and

consumption by 
region by year

GDP Deflator

Projected world 
crude-like liquids
production and 
consumption

by year

Sources of crude oil
and petroleum product

imports by year

Expected U. S.
 crude-like liquids

supply and demand
curves by year 

Exogenous

Expected world
 crude-like liquids

supply and demand
curves by year

Expected world
liquid fuels production

and consumption 
by region by year 

International 
Energy Module

Fig ure 4. In ter na tional En ergy Mod ule Structure



Res i den tial Demand Module



The res i den tial de mand mod ule (RDM) pro jects energy 

con sump tion by Cen sus di vi sion for seven marketed

en ergy sources plus so lar, wind, and geo ther mal

energy. RDM is a struc tural model and its de mand pro -

jec tions are built up from pro jec tions of the res i den tial

hous ing stock and en ergy-con sum ing equip ment. The

com po nents of RDM and its interactions with the NEMS 

sys tem are shown in Figure 5. NEMS pro vides pro jec -

tions of res i den tial en ergy prices, pop u la tion, dis pos -

able in come, and hous ing starts, which are used by

RDM to de velop pro jec tions of en ergy con sump tion by

end–use ser vice, fuel type, and Census division.

RDM in cor po rates the ef fects of four broadly-de fined

de ter mi nants of en ergy con sump tion: eco nomic and

de mo graphic ef fects, struc tural ef fects, tech nol ogy

turn over and ad vance ment ef fects, and en ergy mar ket

ef fects. Eco nomic and de mo graphic ef fects in clude the

num ber, dwell ing type (sin gle-fam ily, mul ti fam ily or mo -

bile homes), oc cu pants per household, dis pos able in -

come, and lo ca tion of hous ing units.Struc tural ef fects

in clude in creas ing av er age dwell ing size and changes

in the mix of de sired end-use ser vices pro vided by en -

ergy (new end uses and/or in creas ing pen e tra tion of

cur rent end uses, such as the in creas ing pop u lar ity of

elec tronic equip ment and com put ers). Tech nol ogy ef -

fects in clude changes in the stock of in stalled equip -

ment caused by nor mal turn over of old, worn out

equip ment with newer ver sions that tend to be more en -

ergy ef fi cient, the in te grated ef fects of equip ment and

build ing shell (in su la tion level) in new con struc tion, and

the pro jected avail abil ity of even more en ergy-ef fi cient

equip ment in the fu ture. En ergy mar ket ef fects in clude

the short-run ef fects of en ergy prices on en ergy de -

mands, the lon ger-run ef fects of en ergy prices on the

ef fi ciency of pur chased equip ment and the ef fi ciency of

build ing shells, and lim i ta tions on min i mum lev els of ef -

fi ciency im posed by leg is lated ef fi ciency stan dards. 

Hous ing Stock Submodule

The base hous ing stock by Cen sus di vi sion and dwell -

ing type is de rived from EIA's 2005 Res i den tial En ergy

Con sump tion Sur vey (RECS).  Each el e ment of the of

the base stock is re tired on the ba sis of a con stant rate

of de cay for each dwellling type.  RDM re ceives as an

input from the macroeconomic activity module pro jec -

tions of housing additions by type and Census division.

RDM supplements the surviving stocks from the previous 

year with the pro jected ad di tions by dwelling type and

Census division. The average square footage of new

construction is based on recent upward trends developed 

from the RECS and the Census Bureau’s Characteristics 

of New Housing.

Appliance Stock Submodule

The in stalled stock of ap pli ances is also taken from the

2005 RECS. The ef fi ciency of the ap pli ance stock is

derived from his tor i cal ship ments by ef fi ciency level

over a multi-year in ter val for the fol low ing equip ment:

heat pumps, gas fur naces, cen tral air con di tion ers,

room air con di tion ers, wa ter heat ers, re frig er a tors,

freez ers, stoves, dish wash ers, clothes wash ers, and

clothes dry ers. A lin ear re tire ment func tion with both

min i mum and max i mum equipment lives is used to re -

tire equip ment in sur viv ing hous ing units. For equip ment

where ship ment data are avail able, the ef fi ciency of the

re tir ing equipment var ies over the pro jec tion. In early

years, the re tir ing ef fi ciency tends to be lower as the

older, less ef fi cient equip ment in the stock turns over

first. Also, as hous ing units re tire, the as so ci ated appli-

ances are re moved from the base ap pli ance stock as

well. Ad di tions to the base stock are tracked separately

for housing units existing in 2005 and for cumulative new

construction.

As ap pli ances are re moved from the stock, they are re -

placed by new ap pli ances with gen er ally higher

efficiencies due to tech nol ogy im prove ments,

equipment  stan dards,  and  mar ket  forces.  Ap pli ances 

added due to new con struc tion are ac cu mu lated and re -

tired par al lel to ap pli ances in the ex ist ing stock. Ap pli -

ance stocks are main tained by fuel, end use, and

tech nol ogy as shown in Ta ble 2.

Technology Choice Submodule

Fuel-spe cific equip ment choices are made for both new 

con struc tion and re place ment pur chases.  For new

con struc tion, ini tial heat ing sys tem shares (taken from

the most re cently avail able Cen sus Bureau sur vey data 

cov er ing new con struc tion, currently 2005) are ad justed 
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Residential Demand Module

RDM Outputs Inputs from NEMS Exogenous Inputs

En ergy de mand by ser vice and fuel type
Changes in hous ing and ap pli ance stocks
Ap pli ance stock efficiency

En ergy prod uct prices
Hous ing starts
Population

Cur rent hous ing stocks and re tire ment rates
Cur rent ap pli ance stocks and life ex pec tancy
New  ap pli ance types, efficiences, and costs
Hous ing shell ret ro fit in di ces
Unit en ergy con sump tion
Square footage
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                                                                   Residential Demand Module

NEMS

Macroeconomic
Activity Module

Petroleum
Market
Module

Electricity
Market
Module

Housing Starts,
Population

Technology 
Choice 

Submodule

Fuel
Consumption
Submodule

Housing
Stock

Submodule

Electricity Prices

Natural Gas 
Transmission

and Distribution
Module

Coal
Market 
Module

Electricity Demand

Natural Gas Prices

Natural Gas Demand

Petroleum Product 
Prices

Petroleum Demand

Coal Prices

Coal Demand

Shell
Integrity

Submodule

Stock of Structures by Type and Vintage

Appliance
Stock 

Submodule

Building Shell Efficiencies

Surviving Stock of Appliances

Average Efficiency of Appliance Stock

Exogenous

Base Year Housing Stock and
Retirement Rates, Appliance

Stocks and Life Expectancies,
New Appliance Types, Efficiencies,

and Costs, Housing Shell
Retrofit Indices, Unit Energy

Consumption, Square Footage

Distributed
Generation
Submodule

Residential Demand Module

Fig ure 5. Res i den tial De mand Mod ule Struc ture



based on rel a tive life cy cle costs for all com pet ing tech -

nol ogy and fuel com bi na tions. Once new home heat ing

sys tem shares are es tab lished, the fuel choices for

other ser vices, such as wa ter heat ing and cook ing, are

de ter mined based on the fuel cho sen for space heat -

ing. For re place ment pur chases, fuel switch ing is al -

lowed for an as sumed per cent age of all re place ments

but is de pend ent on the es ti mated costs of fuel-switch -

ing (for ex am ple, switch ing from elec tric to gas heat ing

is as sumed to in volve the costs of run ning a new gas

line).

For both re place ment equip ment and new construction, 

a “sec ond-stage” of the equip ment choice decision re -

quires se lect ing from sev eral avail able ef fi ciency lev -

els. The efficiency range of avail able equip ment

rep re sents a “menu” of efficiency lev els and in stalled

cost com bi na tions projected to be avail able at the time

the choice is be ing made. Costs and ef fi cien cies for se -

lected ap pli ances are shown in Table 3, de rived from

the re port As sump tions to the An nual En ergy Out look

2009.12 At the low end of the ef fi ciency range are the min -

i mum lev els re quired by leg is lated stan dards. In any

given year, higher ef fi ciency lev els are as so ci ated with

higher in stalled costs. Thus, pur chas ing higher  than 

the  min i mum  ef fi ciency  in volves  a trade-off be tween

higher in stal la tion costs and future sav ings  in  en ergy 

ex pen di tures.  In RDM, these trade-offs are cal i brated

to re cent ship ment, cost, and ef fi ciency data. Changes

in purchases by ef fi ciency level are based on changes in

either the in stalled cap i tal costs or changes in the

first-year op er at ing costs across the avail able ef fi -

ciency lev els. As en ergy prices in crease, the incentive

of greater en ergy ex pen di tures sav ings will pro mote in -

creased pur chases of higher-ef fi ciency equipment. In

some cases, due to gov ern ment pro grams or gen eral pro -

jec tions of tech nol ogy im prove ment, in creases in ef fi ciency 

or de creases in the installed costs of higher-ef fi ciency

equip ment will also pro mote purchases of

higher-efficiency equipment.

Shell Integrity Submodule

Shell in teg rity is also tracked sep a rately for the existing

hous ing stock and new con struc tion. Shell integrity for

ex ist ing con struc tion is as sumed to respond to in -

creases in real en ergy prices by be com ing more ef fi cient. 

There is no change in ex ist ing shell in teg rity when real

en ergy prices de cline. New shell ef fi cien cies are based

on the cost and per for mance of the heat ing and cool ing

equip ment as well as the shell characteristics.  Sev eral

ef fi ciency lev els of shell char ac ter is tics are avail able

through out the pro jec tion pe riod and can change over

time based on changes in build ing codes. All shell ef fi -

cien cies are sub ject to a max i mum shell ef fi ciency based

on studies of cur rently avail able res i den tial con struc tion 

methods.

Distributed Generation Submodule

Dis trib uted gen er a tion equip ment with ex plicit technology

char ac ter iza tions is also mod eled for residential cus tom -

ers. Cur rently, three tech nol o gies are char ac ter ized, 

photovoltaics,  wind, and  fuel  cells.  The submodule 

in cor po rates  his tor i cal  es ti mates  of photovoltaics

(res i den tial-sized fuel cells are not expected to be  com -

mer cial ized un til af ter 2005, the base year of the model)

from its tech nol ogy char ac ter iza tion and ex og e nous

penetration in put file. Pro gram-based pho to vol taic
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Residential Demand Module

Space Heating Equipment: electric furnace, electric air-source    
heat pump, natural gas furnace, natural gas hydronic, kerosene
furnace, liquefied petroleum gas, distillate furnace, distillate
hydronic, wood stove, ground-source heat pump, natural gas
heat pump.

Space Cooling Equipment: room air conditioner, central air
conditioner, electric air-source heat pump, ground-source heat
pump, natural gas heat pump.

Water Heaters: solar, natural gas, electric distiallate, liquefied
petroleum gas.

Refrigerators: 18 cubic foot top-mounted freezer, 25 cubic foot
side-by-side with through-the-door features.

Freezers: chest - manual defrost, upright - manual defrost.

Lighting: incandescent, compact fluorescent, LED, halogen,
linear fluoresent.

Clothes Dryers: natural gas, electric.

Cooking: natural gas, electric, liquefied petroleum gas.

Dishwashers

Clothes Washers

Fuel Cells

Solar Photovoltaic

Wind

Table 2. NEMS Res i den tial Mod ule Equip ment Sum mary

12 Energy Information Administration,  Assumptions to the Annual Energy Outlook 2009,

http://www.eia.doe.gov/oiaf/aeo/assumption/pdf/0554(2009).pdf (Washington, DC, March 2009).



estimates for the De part ment of En ergy’s Mil lion So lar

Roofs pro gram are also in put to the submodule from the

exogenous penetration portion of the input file.

Endogenous, economic purchases are based on a

penetration function driven by a cash flow model that

simulates the costs and benefits of distributed generation

purchases. The cash flow calculations are developed

from NEMS projected energy prices coupled with the

technology characterizations provided from the input file.

Po ten tial  eco nomic  pur chases  are  mod eled  by Cen -

sus di vi sion and tech nol ogy for all years subsequent to

the base year. The cash flow model de vel ops a 30-year

cost-ben e fit ho ri zon for each po ten tial invest ment.  It in -

cludes con sid er ations of an nual costs (down pay ments,

loan pay ments, main te nance costs and, for fuel cells, gas

costs) and an nual ben e fits (interest tax de duc tions, any

ap pli ca ble tax cred its, elec tric ity cost sav ings, and wa -

ter heat ing sav ings for fuel cells) over the en tire 30-year 

pe riod.  Penetration  for  a  po ten tial  in vest ment  in  ei -

ther photovoltaics, wind,  or fuel cells is a func tion of

whether it achieves a cu mu la tive pos i tive dis counted

cash flow, and if so, how many years it takes to achieve

it.

Once the cu mu la tive stock of dis trib uted equip ment is

pro jected, re duced res i den tial pur chases of electricity

are pro vided to NEMS.  For fuel cells, increased resi-

dential nat u ral gas con sump tion is also pro vided to NEMS

based on the cal cu lated en ergy input re quire ments of the

fuel cells, par tially off set by nat u ral gas wa ter heat ing sav -

ings from the use of waste heat from the fuel cell.

Energy Consumption Submodule

The fuel con sump tion submodule mod i fies base year en -

ergy  con sump tion  in ten si ties  in  each  pro jec tion year.

Base year en ergy con sump tion for each end use is de rived

from en ergy in ten sity es ti mates from the 2005 RECS. The 

base year en ergy in ten si ties are mod i fied for the fol low ing

ef fects: (1) in creases in efficiency, based on a com par i son

of the appliance stock serv ing this end use rel a tive to the

base year stock, (2) changes in shell in teg rity for space

heat ing and cool ing end uses, (3) changes in real fuel

prices—(short-run  price  elas tic ity  ef fects), (4) changes

in square foot age, (5) changes in the num ber of oc cu pants

per house hold, (6) changes in dis pos able in come, (7)

changes in weather rel a tive to the base year, (8) ad just -

ments in uti li za tion rates caused by ef fi ciency in creases

(ef fi ciency “re bound” ef fects), and (9) re duc tions in pur -

chased elec tric ity and increases in nat u ral gas con sump -

tion from dis trib uted gen er a tion. Once these mod i fi ca tions

are made, to tal en ergy use is com puted across end uses

and hous ing types and then summed by fuel for each Cen -

sus division.
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  Equip ment Type
Rel a tive
Per for mance1

2007
In stalled Cost
($2007)2

     

Ef fi ciency3

2020 
In stalled Cost 
 ($2007)2

 

Ef fi ciency3

       Ap prox i mate
   Hur dle
     Rate

   Elec tric Heat Pump

   

   Nat u ral Gas Furnace                 

Min i mum

Best

Min i mum

Best

$3,800

$6,700

$1,900

$3,050

13.0

17.0

0.80

0.96

$3,800

$6,700

$1,900

$2,700

13.0

20.0

0.80

0.96

15% 

15%

   Room Air Con di tioner

  Cen tral Air Conditioner

Min i mum

Best

Min i mum

Best

$310

$925

$3,000

$5,700

9.8

11.7

13.0

21.0

$310

$875

$3,000

$5,750

9.8

12.0

13.0

23.0

140%

15%

   Re frig er a tor (23.9 cu bic ft in ad justed vol ume)

   Elec tric Wa ter Heater     

Min i mum

Best

Min i mum

Best

$550

$950

$400

$1,400

510

417

0.90

2.4

$550

$1000

$400

$1,700

510

417

0.90

2.4

19%

30%

Table 3. Characteristics of Selected Equipment

1Min i mum per for mance re fers to the low est ef fi ciency equip ment avail able.  Best re fers to the high est ef fi ciency equip ment avail able.

2In stalled costs are given in 2007 dol lars in the orig i nal source doc u ment.

3Ef fi ciency mea sure ments vary by equip ment type.  Elec tric heat pumps and cen tral air con di tion ers are rated for cool ing per for mance us ing the Sea sonal En ergy Ef fi -

ciency Ra tio (SEER); nat u ral gas fur naces are based on An nual Fuel Uti li za tion Ef fi ciency; room air con di tion ers are based on En ergy Ef fi ciency Ra tio (EER); re frig er a -

tors are based on ki lo watt-hours per year; and wa ter heat ers are based on En ergy Fac tor (de liv ered Btu di vided by in put Btu).

Source:  Navigant Con sult ing, EIA Tech nol ogy Fore cast Up dates-Res i den tial and Com mer cial Build ings Tech nol o gies, Sep tem ber 2007.
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The com mer cial de mand mod ule (CDM) pro jects

energy consumption by Census division for eight

marketed energy sources plus solar, wind, and

geothermal energy. For the three major commercial

sector fuels, electricity, natural gas and distillate oil,

CDM is a structural model and the pro jec tions are built

up from the stock of commercial floorspace and

energy-consuming  equipment. For the remaining five 

marketed  minor  fuels,  simple  econometric projections

are made.

The com mer cial sec tor en com passes busi ness

establishments that are not en gaged in in dus trial or

trans por ta tion ac tiv i ties. Com mer cial sec tor en ergy is

con sumed mainly in build ings, ex cept for a relatively

small amount for ser vices such as street lights and wa ter

sup ply. CDM in cor po rates the ef fects of four

broadly-de fined de ter mi nants of en ergy consumption:

eco nomic and de mo graph ics, struc tural, tech nol ogy

turn over and change, and en ergy mar kets. De mo -

graphic ef fects in clude to tal floorspace, build ing type

and lo ca tion. Struc tural ef fects in clude changes in the mix

of de sired end-use ser vices pro vided by en ergy (such

as the pen e tra tion of telecommunications equip ment,

per sonal com put ers and other of fice equip ment). Tech -

nol ogy ef fects in clude changes in the stock of in stalled

equip ment caused by the nor mal turn over of old, worn out 

equip ment to newer ver sions that tend to be more en -

ergy ef fi cient, the in te grated ef fects of equip ment and

building shell (in su la tion level) in new con struc tion, and

the pro jected avail abil ity of equip ment with even greater 

en ergy-ef fi ciency. En ergy mar ket ef fects include the

short-run ef fects of en ergy prices on energy  de mands,  

the  lon ger-run  ef fects  of  en ergy prices on the ef fi -

ciency of pur chased equip ment, and lim i ta tions on min i -

mum lev els of ef fi ciency im posed by leg is lated ef fi ciency

stan dards. The model structure car ries out a se quence

of five ba sic steps, as shown in Fig ure 6. The first step

is to pro ject commercial sec tor floorspace. The sec ond

step is to pro ject the en ergy ser vices (space heat ing,

light ing, etc.) re quired by the pro jected floorspace. The

third step is to pro ject the elec tric ity gen er a tion and wa ter

and space heat ing sup plied by dis trib uted gen eration and

com bined heat and power (CHP) technologies. The

fourth step is to se lect spe cific tech nol o gies (nat u ral gas

fur naces, flu o res cent lights, etc.) to meet the de mand for 

en ergy ser vices. The last step is to de ter mine how much

en ergy will be con sumed by the equip ment cho sen to

meet the de mand for en ergy ser vices.

Floorspace Submodule

The base stock of com mer cial floorspace by Cen sus di -

vi sion and build ing type is de rived from EIA’s 2003

Com mer cial Build ings En ergy Con sump tion Sur vey

(CBECS). CDM re ceives pro jec tions of to tal floorspace

by build ing type and Cen sus di vi sion from the

macroeconomic ac tiv ity mod ule (MAM) based on IHS

Global In sight, Inc. def i ni tions of the com mer cial sec tor.

These pro jec tions em body both economic  and  de mo -

graphic  ef fects  on  com mer cial floorspace.  Since  the 

def i ni tion  of  com mer cial floorspace from IHS Global In -

sight, Inc. is not cal i brated to CBECS, CDM es ti mates the

sur viv ing floorspace from the pre vi ous year and then

cal i brates its new con struc tion  so  that  growth  in  to tal 

floorspace matches that from MAM by build ing type and

Census division.

CDM mod els com mer cial floorspace for the fol low ing 11

build ing types:

•  As sem bly

•  Ed u ca tion

•  Food sales

•  Food ser vice

•  Health care

•  Lodg ing

•  Of fice-large

•  Of fice-small

•  Mer can tile and ser vice

•  Ware house

•  Other
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CDM Outputs Inputs from NEMS Exogenous Inputs

En ergy de mand by ser vice and fuel type
Changes in floorspace and ap pli ance stocks

En ergy prod uct prices
In ter est rates
Floorspace growth

Ex ist ing com mer cial floorspace
Floorspace sur vival rates
Ap pli ance stocks and sur vival
New  ap pli ance types, ef fi cien cies, costs
En ergy use intensities
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Equipment 
Choice 

Submodule

Floorspace
Submodule

Electricity Prices

Natural Gas 
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Module
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Energy
Service
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Submodule

End-Use Service Demands
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Exogenous
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New Appliance Types,

Efficiences, Costs,
Energy Use Intensities

Distributed
Generation/

Cogeneration
Submodule

Commercial Demand Module

Fig ure 6. Com mer cial De mand Mod ule Structure



Energy Service Demand Submodule

En ergy con sump tion is de rived from the de mand for en -

ergy ser vices. So the next step is to pro ject  en ergy ser vice 

de mands for the pro jected floorspace.  CDM mod els 

ser vice  de mands  for  the  fol low ing  ten end-use

services:

•  Heat ing

•  Cool ing

•  Ven ti la tion

•  Wa ter heat ing

•  Light ing

•  Cook ing

•  Re frig er a tion

•  Of fice equip ment per sonal com puter

•  Of fice equip ment other

•  Other end uses.

Dif fer ent build ing types re quire unique combinations of

en ergy ser vices. A hos pi tal must have more light than a

ware house. An of fice build ing in the North east re quires

more heat ing than one in the South. To tal ser vice de -

mand for any ser vice de pends on the floorspace, type,

and lo ca tion of build ings. Base ser vice de mand by end

use by build ing type and Cen sus di vi sion is de rived from

es ti mates de vel oped from CBECS en ergy con sump tion

data. Pro jected ser vice de mands are ad justed for trends in 

new con struc tion based on CBECS data con cern ing re -

cent construction.

Distributed Generation and CHP Submodule

Com mer cial  con sum ers  may  de cide  to  pur chase

equip ment to gen er ate elec tric ity (and per haps pro vide

heat as well) rather than de pend on pur chased elec tric ity

to ful fill all of their elec tric power re quirements. The third

step of the com mer cial module struc ture is to pro ject elec -

tric ity gen er a tion, fuel con sump tion, wa ter heat ing, and

space heat ing sup plied by eleven dis trib uted gen er a tion

and CHP tech nol o gies. The tech nol o gies char ac ter ized

in clude: pho to vol taic so lar sys tems, wind tur bines, nat u -

ral gas  fuel cells, re cip ro cat ing en gines, tur bines and

microturbines, die sel en gine, coal-fired CHP, and mu nic -

i pal solid waste, wood, and hy dro elec tric gen er a tors.

Ex ist ing elec tric ity gen er a tion by CHP tech nol o gies is de -

rived from his tor i cal data con tained in the most re cent

year’s ver sion of Form EIA-860,  An nual Elec tric Gen -

er a tor Re port.  The estimated units form the in stalled

base of CHP equipment that is car ried for ward into fu -

ture years and sup ple mented with any ad di tions.

Proven in stal la tions of so lar pho to vol taic systems, wind

tur bines and fuel cells are also in cluded based on

information from the De part ments of En ergy and

Defense. For years fol low ing the base year, an

endogenous pro jec tion of dis trib uted gen er a tion and

CHP is de vel oped based on the eco nomic re turns pro -

jected for dis trib uted gen er a tion tech nol o gies. A de -

tailed dis counted cash-flow ap proach is used to

es ti mate the in ter nal rate of re turn for an in vest ment. The 

cal cu la tions in clude the an nual costs (down pay ments,

loan pay ments, main te nance costs, and fuel costs) and

re turns (tax de duc tions, tax credits, and en ergy cost sav -

ings) from the in vest ment cov er ing a 30-year pe riod

from the time of the invest ment de ci sion. Pen e tra tion of

these tech nol o gies is a func tion of how quickly an in vest -

ment in a technology is es ti mated to re coup its flow of

costs. In terms of NEMS pro jec tions, in vest ments in

distributed gen er a tion re duce pur chases of elec tric ity.

Fuel con sum ing tech nol o gies also gen er ate waste heat 

that is as sumed to be par tially cap tured and used to off -

set com mer cial wa ter heat ing and space heating en ergy

use.

Equip ment Choice Submodule

Once ser vice de mands are pro jected, the next step is to

de fine the type and ef fi ciency of equip ment that will be

used to sat isfy the de mands. The bulk of equip ment re -

quired to meet ser vice de mand will carry over from the

equip ment stock of the pre vi ous model year. How ever,

equip ment must al ways be pur chased to sat isfy ser vice 

de mand for new construction. It must also be pur -

chased to re place equip ment that has ei ther worn out

(re place ment equip ment) or reached the end of its eco -

nom i cally use ful life (retrofit equip ment). For re quired

equip ment re placements, CDM uses a con stant de cay

rate based on equip ment life. A tech nol ogy will be retro fit -

ted only if the com bined an nual op er at ing and main te -

nance costs plus an nu al ized cap i tal costs of a po ten tial 

tech nol ogy are lower than the an nual operating and

maintenance costs of an existing technology.

Equip ment choices are made based on a com par i son of

an nu al ized cap i tal and op er at ing and maintenance

costs across all al low able equip ment for a particular

end-use ser vice. In or der to add in er tia to the equip ment

choices, only sub sets of the to tal menu of po ten tially

avail able equip ment may be al lowed for de fined mar ket

seg ments. For ex am ple, only 7 percent of floorspace in

large of fice build ings may consider all avail able equip -

ment us ing any fuel or technology when mak ing space

Energy Information Administration / The National Energy Modeling System: An Overview 2009 27

Commercial Demand Module



heat ing equip ment replace ment de ci sions. A sec ond

seg ment equal to 31 per cent of floorspace, must se lect

from tech nol o gies us ing the same fuel as al ready in -

stalled. A third segment, the remaining 62 percent of

floorspace, is constrained to consider only different

efficiency levels of the same fuel and technology already

installed. For light ing and refrigeration, all replacement

choices are limited to the same tech nol ogy class, where

technologies are broadly defined to encompass the prin -

ci pal competing tech nol o gies for a par tic u lar ap pli ca tion.

For ex am ple, a com mer cial ice maker may re place an -

other ice maker, but may not re place a re frig er ated vend -

ing ma chine.

When com put ing an nu al ized costs to de ter mine equip -

ment choices, com mer cial floorspace is segmented by

what are re ferred to as hur dle rates or implicit dis count

rates (to dis tin guish them from the gen er ally lower and

more com mon no tion of fi nan cial dis count rates). Seven

seg ments are used to sim u late con sumer be hav ior when

pur chas ing com mer cial equip ment. The seg ments range

from rates as low as the 10-year  Trea sury  bond  rate  to 

rates  high enough to guarantee that only equipment

with the lowest capital cost (and least efficiency) is chosen. 

As real energy prices increase (decrease) there is an

incentive for all but the highest implicit discount rate

segments to purchase increased (decreased) levels of

efficiency.

The equip ment choice submodule is de signed to

choose among a dis crete set of tech nol o gies that are

char ac ter ized by a menu which de fines avail abil ity, cap i -

tal costs, main te nance costs, ef fi cien cies, and equip -

ment life. Tech nol ogy char ac ter is tics for selected space 

heat ing equip ment are shown Ta ble 4, de rived from the

re port As sump tions to the An nual En ergy 

Out look 2009.13 This menu of equip ment in cludes tech -

no log i cal in no va tion, mar ket de vel op ments, and pol icy

interventions. For the AEO2009, the tech nol ogy types

that are in cluded for seven of the ten ser vice de mand

cat e go ries are listed in Ta ble 5.

The re main ing three end-use ser vices (PC-re lated of -

fice equip ment, other of fice equip ment, and other end

uses) are con sid ered mi nor ser vices and are pro jected us -

ing ex og e nous equip ment ef fi ciency and market pen e tra -

tion trends.

Energy Consumption Submodule

Once the re quired equip ment choices have been made, 

the to tal stock and ef fi ciency of equip ment for a par tic u lar

end use are de ter mined. En ergy consumption by fuel can

be cal cu lated from the amount of ser vice de mand sat is -

fied by each tech nol ogy and the cor re spond ing ef fi ciency

of the tech nol ogy. At this stage, ad just ments to en ergy 

con sump tion are also made. These in clude ad just ments 

for changes in real energy prices (short-run price elas -

tic ity ef fects), adjustments in uti li za tion rates caused by

ef fi ciency increases (ef fi ciency re bound ef fects), and

changes for weather rel a tive to the CBECS sur vey year. 

Once these mod i fi ca tions are made, to tal en ergy use is

com puted across end uses and build ing types for the

three ma jor fu els, for each Cen sus di vi sion. Combining

these pro jec tions with the ec ono met ric/trend pro jec tions

for the five mi nor fu els yields to tal projected com mer cial

en ergy con sump tion. 
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13 Energy Information Administration, Assumptions to the Annual Energy Outlook 2009,

http://www.eia.doe.gov/oiaf/aeo/assumption/pdf/0554(2009).pdf (Washington, DC, March 2009)
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   Equip ment Type Vin tage Ef fi ciency2

Cap i tal Cost
($2007 per
Mbtu/hour) 3

Main te nance Cost
($2007 per
Mbtu/hour) 3

Ser vice
Life
(Years)

   Elec tric Roof top Heat Pump 2007- typ i cal  

2007- high efficiency

3.2

3.4 

$72.78 

$96.67

$1.39 

$1.39

15 

15

2010 - typ i cal (stan dard)

2010 - high efficiency

3.3 

3.4

$76.67 

$96.67

$1.39 

$1.39

15 

15

2020 - typ i cal

2020 - high efficiency

3.3

3.4

$76.67 

$96.67

$1.39

$1.39

15 

15

   Ground-Source Heat Pump 2007 - typ i cal 

2007 - high efficiency

3.5 

4.9

$140.00 

$170.00  

$16.80 

$16.80

20

20

2010 - typ i cal

2010 - high efficiency

3.5 

4.9

$140.00   

$170.00

$16.80 

$16.80

20

20

2020 - typ i cal

2020 - high efficiency

4.0

4.9

$140.00 

$170.00  

$16.80

$16.80

20

20

   Elec tric Boiler

   Pack aged Electric

Cur rent typ i cal

Typical

0.98 

0.96

$17.53 

$16.87

$0.58 

$3.95

21 

18

   Nat u ral Gas Fur nace Cur rent Stan dard 

2007 - high efficiency

0.80 

0.82

$9.35

$9.90

$0.97 

$0.94

20 

20

2020 - typ i cal

2020 - high efficiency

0.81 

0.90

$9.23 

$11.57

$0.96 

$0.86

20 

20

2030 - typ i cal

2030 - high efficiency

0.82

0.91 

$9.12 

$11.44

$0.94 

$0.85

20 

20

   Nat u ral Gas Boiler Cur rent Stan dard

2007 - mid efficiency

0.80 

0.85

$22.42 

$25.57

$0.50 

$0.47

25 

25

2007 - high ef fi ciency

2020 - typical

0.96 

0.82

$39.96

$21.84 

$0.52 

$0.49

25 

25

   Nat u ral Gas Heat Pump 2007 - ab sorp tion

2010 - absorption

1.4 

1.4

$158.33   

$158.33

$2.50

$2.50

15 

15

2020 - ab sorp tion 1.4 $158.33 $2.50 15

   Dis til late Oil Fur nace Cur rent Stan dard 0.81 $11.14 $0.96 20 

2020 - typ i cal 0.81 $11.14 $0.96 20 

  Dis til late Oil Boiler Cur rent Stan dard

2007 - high efficiency

0.83

0.89

$17.63 

$19.84

$0.15 

$0.14

20 

20

2020 - typ i cal 0.83 $17.63 $015 20 

Table 4. Cap i tal Cost and Ef fi ciency Rat ings of Se lected Com mer cial Space Heat ing Equip ment1

1Equip ment listed is for the New Eng land Cen sus di vi sion, but is also rep re sen ta tive of the tech nol ogy data for the rest of the U.S. See the
source ref er enced be low for the com plete set of tech nol ogy data..

2Ef fi ciency mea sure ments vary by equip ment type. Elec tric roof top air-source heat pumps, ground source and nat u ral gas heat pumps are
rated for heat ing per for mance us ing co ef fi cient of per for mance; nat u ral gas and dis til late fur naces are based on Ther mal Ef fi ciency; and boil ers
are based on com bus tion ef fi ciency. 

3Cap i tal and main te nance costs are given in 2007 dol lars.

Source: En ergy In for ma tion Ad min is tra tion, “EIA - Tech nol ogy Fore cast Up dates - Res i den tial and Com mer cial Build ing Tech nol o gies - Ref er -
ence Case Sec ond  Edi tion (Re vised)”, Navigant Con sult ing, Inc., Ref er ence Num ber 20070831.1, Sep tem ber 2007.
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End-Use Service by Fuel Technology Types

Electric Space Heating air-source heat pump, ground-source heat pump, boiler, packaged space heating

Natural Gas Space Heating boiler, furnace, absorption heat pump

Fuel Oil Space Heating boiler, furnace

Electric Space Cooling air-source heat pump, ground-source heat pump, reciprocating chiller, centrifugal chiller, screw
chiller, scroll chiller, rooftop air conditioner, residential style central air conditioner, window  unit

Natural Gas Space Cooling absorption chiller, engine-driven chiller, rooftop air conditioner, engine-driven heat pump, absorption
heat pump

Electric Water Heating electric resistance, heat pump water heater, solar water heater with electric back-up

Natural Gas Water Heating natural gas water heater

Fuel Oil Water Heating fuel oil water heater

Ventilation constant air volume (CAV) system, variable air volume (VAV) system

Electric Cooking range/oven/griddle, induction range/oven/griddle

Natural Gas Cooking range/oven/griddle, power burner range/oven/griddle

Incandescent Style Lighting incandescent, compact fluorescent, halogen, halogen-infrared, light emitting diode (LED)

Four-foot Fluorescent Lighting magnetic ballast, electronic ballast-T8 electronic w/controls, electronic w/reflectors, electronic
ballast-T5, electronic ballast-super T8, LED,

Eight-foot Fluorescent Lighting magnetic ballast, electronic ballast, electronic-high output, LED

High Intensity-Discharge Lighting metal halide, mercury vapor, high pressure sodium, electronic-T8 high output, electronic-T5 high
output, LED

Refrigeration supermarket compressor rack, suupermarket condenser, supermarket display case, walk-in cooler,
walk-in freezer, reach-in refrigerator, reach-in freezer, ice machine, beverage merchandiser,
refrigerated vending machine

Table 5. Com mer cial End-Use Tech nol ogy Types



Indus trial Demand Mod ule



The In dus trial De mand Mod ule (IDM) pro jects energy

con sump tion for fu els and feedstocks for fif teen man u -

fac tur ing in dus tries and six nonmanufacturing in dus -

tries, sub ject to de liv ered prices of en ergy and

macroeconomic variables representing the value of

shipments for each industry. The module includes

electricity generated through Com bined Heat and

Power (CHP) systems that is either used in the

industrial sector or sold to the electricity grid. The IDM

structure is shown in Figure 7.

In dus trial en ergy de mand is pro jected as a combination 

of “bot tom up” char ac ter iza tions of the en ergy-us ing

technology and “top down” econometric estimates of

behavior. The influence of energy prices on industrial

energy consumption is modeled in terms of the

efficiency of use of existing capital, the efficiency of new 

capital acquisitions, and the mix of fuels utilized, given

existing capital stocks. Energy conservation from

technological change is represented over time by

trend-based “technology possibility curves.” These

curves represent the aggregate efficiency of all new

technologies that are likely to penetrate the future

markets as well as the aggregate improvement in

efficiency of 2002 technology.

IDM in cor po rates three ma jor in dus try cat e go ries: en -

ergy-in ten sive  man u fac tur ing  in dus tries, non-en -

ergy-in ten sive  man u fac tur ing  in dus tries, and

nonmanufacturing in dus tries (see Ta ble 6). The level

and type of mod el ing and de tail is dif fer ent for each.

Man u fac tur ing disaggregation is at the 3-digit North 

Amer i can  In dus trial  Clas si fi ca tion  Sys tem (NAICS)

level, with some fur ther disaggregation of large and en -

ergy-in ten sive in dus tries. Detailed in dus tries in clude

food, pa per, chem i cals, glass, ce ment, steel, and

aluminum. En ergy prod uct de mands are cal cu lated in -

de pend ently for each industry.

Each in dus try is mod eled (where ap pro pri ate) as three 

in ter re lated  com po nents:  build ings (BLD), boil -

ers/steam/cogeneration (BSC),  and  pro cess/as sem -

bly (PA) ac tiv i ties. Build ings are es ti mated to ac count

for 4 per cent of en ergy con sump tion in manufacturing 

in dus tries (in  nonmanufacturing  in dus tries, build ing

en ergy con sump tion is not cur rently cal cu lated).

Con se quently,  IDM  uses  a  sim ple  mod el ing 

approach for the BLD com po nent. En ergy con sump tion 

in in dus trial build ings is as sumed to grow at the same

rate as the av er age growth rate of em ploy ment and out -

put in that in dus try.  The BSC com po nent con sumes

en ergy to meet the steam de mands from and pro vide

in ter nally gen er ated elec tric ity to the other two com po -

nents.  The boiler com po nent con sumes by-prod uct fu -

els and fos sil fu els to pro duce steam, which is passed

to the PA and BLD com po nents.
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IDM Outputs Inputs from NEMS Exogenous Inputs

En ergy de mand by ser vice and fuel type
Elec tric ity sales to grid
Cogeneration out put and fuel consumption

En ergy prod uct prices
Eco nomic out put by in dus try
Re fin ery fuel con sump tion
Lease and plant fuel con sump tion
Cogeneration from re fin er ies and oil and gas
   pro duc tion

Pro duc tion stages in en ergy-in ten sive in dus tries
Tech nol ogy pos si bil ity curves
Unit en ergy con sump tion of out puts
Cap i tal stock re tire ment rates

Energy-Intensive

Manufacturing

Nonmanufacturing

Industries

Food and Kindred Products 
   (NAICS 311)

Agricultural Production - Crops 
(NAICS 111)

Paper and Allied Products 
   (NAICS 322)

Other Agriculture including 
   Livestock (NAICS 112-115)

Bulk Chemicals (NAICS 325) Coal Mining (NAICS 2121)

Glass and Glass Products 
   (NAICS 3272)

Oil and Gas Extraction
    (NAICS 211)

Hydraulic Cement
   (NAICS 32731)

Metal and Other Nonmetallic   
   Mining (NAICS 2122-2123)

Blast Furnaces and Basic Steel
   (NAICS 331111)

Construction (NAICS 233-235)

Aluminum (NAICS 3313)

Nonenergy-Intensive

Manufacturing

Metals-Based Durables
  (NAICS 332-336)

Other Manufacturing
   (all remaining manufacturing
NAICS)

NAICS = North American Industry Classification System

Table 6. Eco nomic Subsectors Within the IDM



IDM mod els “tra di tional” CHP based on steam de mand

from the BLD and the PA com po nents. The “non-tra di -

tional” CHP units are rep re sented in the elec tric ity mar -

ket mod ule since these  units  are  mainly  grid-serv ing, 

elec tricity-price-driven entities.

CHP ca pac ity, gen er a tion, and fuel use are cal cu lated

from ex og e nous data on ex ist ing and planned ca pac ity

ad di tions and new ad di tions de ter mined from an en gi -

neer ing and eco nomic eval u a tion. Existing CHP ca pac -

ity and planned ad di tions are derived from Form

EIA-860, “An nual Elec tric Generator  Re port,”  for merly  

Form  EIA-867, “An nual Nonutility Power Pro ducer Re -

port.” Existing CHP ca pac ity is as sumed to re main in

ser vice through out the pro jec tion or, equiv a lently, to be

re fur bished or re placed with sim i lar units of equal

capacity.

Cal cu la tion of un planned CHP ca pac ity ad di tions be -

gins in 2009. Mod el ing of un planned ca pac ity ad di tions

is done in two parts: bio mass-fu eled and fossil-fu eled.

Bio mass CHP ca pac ity is as sumed to be added to the

ex tent pos si ble as ad di tional bio mass waste prod ucts

are pro duced, pri mar ily in the pulp and pa per in dus try. 

The amount of bio mass CHP ca pac ity added is equal to 

the quan tity of new bio mass avail able (in Btu), divided

by the to tal heat rate from bio mass steam tur bine CHP.
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Unit Energy Consumption
  by Industry,

Production Stage Information
  for Energy-Intensive Industries,

Technology Possibility Curves,
Stock Retirement Rates

Exogenous

Boilers/Steam/Cogeneration
Component

Buildings
Component

Process/Assembly
Component

Steam and Cogenerated Electricity

N

E

M

S

Macroeconomic

Activity Module

Electricity 

Market

Module

Coal Market

Module

Oil and Gas

Supply Module

Natural Gas 

Transmission 

and Distribution

Module

Petroleum Market 

Module

Economic Activity by 
Sector

Electricity Prices

Electricity Demand

Electricity Sales to Grid

Cogeneration Output 
and Fuel Consumption 

Coal Prices

Coal Demand

Cogeneration

Natural Gas Prices

Natural Gas Demand

Lease and Plant Fuel 
Consumption

Petroleum Product 
Prices

Refinery Fuel Consumption

Cogeneration

Petroleum Demand 

Energy Byproducts
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Fig ure 7. In dus trial De mand Mod ule Structure



It is as sumed that the tech ni cal po ten tial for fos sil-fuel

source CHP is based pri mar ily on sup ply ing ther mal re -

quire ments. First, the model as sesses the amount of ca -

pac ity that could be added to gen er ate the in dus trial

steam re quire ments not met by ex isting CHP. The sec -

ond step is an eco nomic eval u a tion of gas tur bine pro to -

types for each steam load segment. Fi nally, CHP

ad di tions are pro jected based on a range of acceptable

payback periods.

The PA com po nent ac counts for the larg est share of di -

rect en ergy con sump tion for heat and power, 55 per -

cent. For the seven most en ergy-in ten sive industries,

pro cess steps or end uses are mod eled us ing engineering

con cepts. The pro duc tion pro cess is decomposed into the

ma jor steps, and the en ergy re la tion ships among the

steps are spec i fied.

The en ergy in ten si ties of the pro cess steps or end uses

vary over time, both for ex ist ing tech nol ogy and for tech nol -

o gies ex pected to be adopted in the fu ture. In IDM, this

vari a tion is based on en gi neer ing judgement and is re -

flected in the pa ram e ters of tech nol ogy pos si bil ity curves,

which show the de clin ing en ergy in ten sity of ex ist ing and 

new cap i tal rel a tive to the 2002 stock.

IDM uses “tech nol ogy bun dles” to char ac ter ize

technological change in the en ergy-in ten sive in dus tries.

These bun dles are de fined for each pro duc tion process 

step for five of the in dus tries and for end uses in the

remaining two en ergy-in ten sive in dus tries. The pro cess

step in dus tries are pulp and pa per, glass, ce ment, steel,

and alu mi num. The end-use in dus tries are food and bulk

chem i cals (see Ta ble 7).

Ma chine drive elec tric ity con sump tion in the food, bulk

chem i cals, metal-based durables, and bal ance of man u -

fac tur ing sec tors is cal cu lated by a mo tor stock model.

The be gin ning stock of mo tors is modified over the pro jec -

tion ho ri zon as mo tors are added to ac com mo date

growth in ship ments for each sec tor, as mo tors are re -

tired and re placed, and as failed motors are re wound. 

When a new mo tor is added, either to ac com mo date

growth or as a re place ment, an eco nomic choice is made

be tween pur chas ing a mo tor that meets the EPACT min i -

mum for ef fi ciency or a pre mium ef fi ciency mo tor.  There

are seven mo tor size groups in each of the four in dus -

tries.   The EPACT ef fi ciency stan dards only ap ply to

the five small est groups (up to 200 horse power). As the

motor stock changes over the pro jec tion ho ri zon, the

overall ef fi ciency of the mo tor pop u la tion changes as

well.

The Unit En ergy Con sump tion (UEC) is de fined as the

energy use per ton of through put at a pro cess step or as

en ergy use per dol lar of ship ments for the end-use

industries. The “Ex ist ing UEC” is the cur rent av er age in -

stalled in ten sity as of 2002. The “New 2002 UEC” is the

in ten sity as sumed to pre vail for a new installation in 2002.

Sim i larly, the “New 2030 UEC” is the in ten sity ex pected to 

pre vail for a new in stal la tion in 2030. For in ter ven ing

years, the in ten sity is interpolated.

The rate at which the av er age in ten sity de clines is de -

ter mined by the rate and tim ing of new ad di tions to ca pac -

ity. In IDM, the rate and tim ing of new additions are

func tions of re tire ment rates and in dus try growth rates.

IDM uses a vintaged cap i tal stock ac count ing frame work

that mod els en ergy use in new ad di tions to the stock and

in the ex ist ing stock. This cap i tal stock is rep re sented as

the ag gre gate vin tage of all plants built within an in dus try

and does not im ply the inclusion of spe cific tech nol o gies

or cap i tal equip ment.

The cap i tal stock is grouped into three vin tages: old, mid -

dle, and new. The old vin tage con sists of cap i tal in pro -

duc tion prior to 2002, which is as sumed to retire at a fixed

rate each year. Mid dle-vin tage cap i tal is that added af ter

2002. New pro duc tion ca pac ity is built in the pro jec tion

years when the capacity of the existing stock of capital in
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End Use Characterization

Food: direct fuel, hot water/steam, refrigeration, and other
energy uses.

Bulk Chemicals: direct fuel, hot water/steam, electrotytic, and
other energy uses.

Process Step characterization

Pulp and Paper: wood preparation, waste pulping, mechanical
pulping, semi-chemical pulping, kraft pulping, bleaching, and
paper making.

Glass: batch preparation, melting/refining, and forming.

Cement: dry process clinker, wet process clinker, and finish
grinding.

Steel: coke oven, open hearth steel making, basic oxygen
furnace steel making, electric arc furnace steel making, ingot
casting, continuous casting, hot rolling, and cold rolling.

Aluminum: primary and secondary (scrap) aluminum smelting,
semi-fabrication (e.g. sheet, wire, etc.).

Table 7. Fuel-Con sum ing Ac tiv i ties for the En ergy-In ten sive 

Man u fac tur ing Subsectors



IDM cannot produce the output pro jected by the NEMS

regional submodule of the macroeconomic activity

module. Capital additions during the pro jec tion ho ri zon

are retired in subsequent years at the same rate as the

pre-2002 capital stock.

The en ergy-in ten sive and/or large en ergy-consuming

in dus tries are mod eled with a struc ture that explicitly de -

scribes the ma jor pro cess flows or “stages of pro duc tion” 

in the in dus try (some in dus tries have ma jor con sum ing

uses).

Tech nol ogy pen e tra tion at the level of ma jor proces ses

in each in dus try is based on a tech nol ogy penetration

curve re la tion ship. A sec ond re la tion ship can pro vide

ad di tional en ergy con ser va tion re sult ing from in creases in

rel a tive en ergy prices.  Ma jor process choices (where

ap pli ca ble) are de ter mined by industry pro duc tion, spe cific 

pro cess flows, and ex og e nous as sump tions.  

Re cy cling, waste prod ucts, and by prod uct con sump tion

are mod eled us ing pa ram e ters based on off-line anal y sis

and as sump tions about the man u fac tur ing pro cesses or

tech nol o gies ap plied within in dus try. These anal y ses

and as sump tions are mainly based upon en vi ron men -

tal reg u la tions such as gov ern ment re quire ments about

the share of re cy cled pa per used in of fices. IDM also ac -

counts for trends within industry to ward the pro duc tion of

more spe cial ized products such as spe cial ized steel

which can be pro duced us ing scrap ma te rial ver sus raw

iron ore. 
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Transportation Demand
Mod ule



The trans por ta tion de mand mod ule (TRAN) pro jects

the consumption of transportation sector fuels by

transportation  mode,  including  the  use  of renewables 

and alternative fuels, subject to delivered prices of en -

ergy and macroeconomic variables, in clud ing dis pos -

able personal income, gross domestic product, level of

imports and exports, industrial output, new car and light 

truck sales, and population. The structure of the

module is shown in Figure 8.

Pro jec tions of fu ture fuel prices in flu ence fuel ef fi ciency, 

ve hi cle-miles  trav eled,  and  alternative-fuel ve hi cle

(AFV) mar ket pen e tra tion for the cur rent fleet of ve hi -

cles. Al ter na tive-fuel  ve hi cle shares are pro jected on the

ba sis of a multinomial logit model, sub ject to State and

Fed eral gov ernment man dates for minimum AFV sales

volumes.

Fuel Economy Submodule

This submodule pro jects new light-duty ve hi cle fuel econ -

omy  by 12 U.S.  En vi ron men tal  Pro tec tion Agency

(EPA) ve hi cle size classes and 16 pro pul sion tech nol o -

gies (gas o line, die sel, and 14 AFV technologies)  as  a 

func tion  of  en ergy  prices  and  income-re lated vari -

ables. There are 61 fuel-sav ing tech nol o gies which

vary in cost and mar ginal fuel sav ings by size class.

Char ac ter is tics of a sam ple of these tech nol o gies are

shown in Ta ble 8, a com plete list is pub lished in As -

sump tions to the An nual Energy  Out look 2009.14 Tech -

nol o gies  pen e trate  the mar ket  based  on  a cost-

ef fec tive ness  al go rithm that  com pares  the  tech nol ogy  

cost  to  the discounted stream of fuel sav ings and the

value of performance to the con sumer. In gen eral,

higher fuel prices lead to higher fuel ef fi ciency es ti mates 

within each size class, a shift to a more fuel-ef fi cient

size class mix, and an in crease in the rate at which al terna -

tive-fuel ve hi cles en ter the mar ket place.

Regional Sales Submodule

Ve hi cle sales from the MAM are  di vided  into  car  and 

light  truck  sales. The re main der of the submodule is a

sim ple ac count ing mech a nism that uses  en dog e nous

es ti mates  of new  car and light truck sales and the his -

tor i cal re gional ve hi cle sales ad justed for re gional pop u -

la tion trends to produce es ti mates of re gional sales,

which are subsequently passed to the al ter na tive-fuel

ve hi cle and the light-duty vehicle stock submodules.

Alternative-Fuel Vehicle Submodule

This submodule pro jects the sales shares of al ter na -

tive-fuel tech nol o gies as a func tion of technology at trib -

utes, costs, and fuel prices. The alternative-fuel ve hi cles

at trib utes are shown in Ta ble 9, de rived from As sump tions 

to the An nual En ergy Out look 2009. Both con ven tional

and new tech nol ogy ve hi cles are con sid ered. The al ter -

na tive-fuel ve hi cle submodule re ceives re gional new

car and light truck sales by size class from the re gional

sales submodule.

The pro jec tion of ve hi cle sales by tech nol ogy uti lizes a

nested multinomial logit (NMNL) model that predicts

sales shares based on rel e vant ve hi cle and fuel at trib -

utes.  The nest ing struc ture first pre dicts the prob a bil ity

of fuel choice for multi-fuel vechicles within a tech nol -

ogy set.  The sec ond level nest ing pre dicts  pen e tra tion  

among  sim i lar  tech nol o gies within a tech nol ogy set

(i.e. gas o line ver sus die sel  hy brids). The third level

choice de ter mines mar ket share among the the dif fer -

ent tech nol ogy sets.15
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TRAN Outputs Inputs from NEMS Exogenous Inputs

Fuel de mand by mode
Sales, stocks, and char ac ter is tics of ve hi cle
   types by size class
Ve hi cle-miles trav eled
Fuel econ omy by tech nol ogy type
Al ter na tive-fuel ve hi cle sales by tech nol ogy type
Light-duty com mer cial fleet ve hi cle char ac ter is tics

En ergy prod uct prices
Gross do mes tic prod uct
Dis pos able per sonal in come
In dus trial out put
Ve hi cle sales
In ter na tional trade
Nat u ral gas pipe line
Pop u la tion

Ex ist ing ve hi cle stocks by vin tage and fuel econ omy
Ve hi cle sur vival rates
New  ve hi cle technology char ac ter is tics
Fuel avail abil ity
Com mer cial avail abil ity
Ve hi cle safety and emis sions reglations
Ve hi cle miles-per-gal lon deg ra da tion rates

14 Energy Information Administration, Assumptions to the Annual Energy Outlook 2009

http://www.eia.doe.gov/oiaf/aeo/assumption/pdf/0554(2009) (Washington, DC, January 2009).

15 Greene, David L. and S.M. Chin, "Alternative Fuels and Vehicles (AFV) Model Changes," Center for Transportation

Analysis, Oak Ridge National Laboratory, page 1, (Oak Ridge, TN, November 14, 2000).
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Fractional Fuel
Efficiency Change First Year Introduced

     

Fractional
Horsepower Change

  Ma te rial Sub sti tu tion IV 0.099 2006 0

  Drag Re duc tion IV 0.042 2000 0

  5-Speed Au to matic 0.025 1995 0

  CVT 0.052 1998 0

  Au to mated Man ual Trans 0.073 2004 0

  VVL-6 Clinder 0.033 2000 0.10

  Camless Valve Ac tu a tion 6 Cylinder 0.058 2020 0.13

  Elec tric Power Steering 0.015 2004 0

  42V-Launch As sist and Regen 0.075 2005 -0.05

Table 8. Selected Technology Characteristics for Automobiles

Year Gasoline TDI Diesel Ethanol Flex LPG Bi-Fuel

Electric
Gasoline
 Hybrid

Fuel Cell
Hydrogen

Ve hi cle Price (thousand 2007 dol lars) 2006 28.0 29.8 28.7 33.3 31.1 78.6*

2030 29.8 30.7 30.2 35.0 31.0 54.2

Ve hi cle Miles per Gal lon 2006 29.5 39.8 29.9 29.6 42.7 53.3*

2030 37.8 48.2 38.1 37.7 51.0 54.9

Ve hi cle Range (miles) 2006 521 704 381 417 652 594*

2030 674 910 492 539 843 674

*First year of avail abil ity

Ta ble 9.  Ex am ples of Midsize Au to mo bile At trib utes



The technology sets include:

• Con ven tional fuel ca pa ble (gas o line, die sel, bi-fuel

and flex-fuel),

• Hy brid (gas o line and die sel) and plug-in hy brid

• Ded i cated  al ter na tive  fuel (com pressed nat u ral

gas (CNG), liquified pe tro leum gas (LPG), and

ethanol),

• Fuel cell (gas o line, meth a nol, and hy dro gen),

• Elec tric   bat tery   pow ered (nickel-metal hy dride,

lith ium)

The ve hi cles at trib utes con sid ered in the choice algorithm

in clude: price, main te nance cost, bat tery replace ment

cost, range, multi-fuel ca pa bil ity, home re fu el ing ca pa -

bil ity, fuel econ omy, ac cel er a tion and lug gage space.

Transportation Demand Module
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Fig ure 8. Trans por ta tion De mand Mod ule Structure

Alternative Fuel Vehicles

Ethanol flex-fueled
Ethanol neat (85 percent ethanol)
Compressed natural gas (CNG)
CNG bi-fuel
Liquefied petroleum gas (LPG)
LPG bi-fuel
Battery electric vehicle
Plug-in hybrid with 10 mile all electric range
Plug-in hybrid with 40 mile all electric range
Gasoline hybrid
Diesel Hybrid
Fuel cell gasoline
Fuel cell hydrogen
Fuel cell methanol



With the ex cep tion of main te nance cost, bat tery re -

place ment cost, and lug gage space, ve hi cle at trib utes

are de ter mined en dog e nously.16 The fuel at trib utes

used in mar ket share es ti ma tion in clude avail abil ity and

price.  Ve hi cle at trib utes vary by six EPA size classes for

cars and light trucks and fuel avail abil ity var ies by Cen sus 

di vi sion. The NMNL model co ef fi cients were de vel oped

to re flect pur chase pref er ences for cars and light trucks

separately.

Light-Duty Ve hi cle (LDV) Stock Submodule

This submodule spec i fies the in ven tory of LDVs from year 

to year. Sur vival rates are ap plied to each vin tage, and

new ve hi cle sales are in tro duced into the ve hi cle stock

through an ac count ing framework. The fleet of ve hi cles

and their fuel ef fi ciency char ac ter is tics are im por tant to

the trans la tion of trans por ta tion ser vices de mand into

fuel de mand. 

TRAN main tains a level of de tail that in cludes twenty

vin tage clas si fi ca tions and six pas sen ger car and six light

truck size classes cor re spond ing to EPA in te rior vol ume

clas si fi ca tions for all ve hi cles less than 8,500 pounds,

as follows:

Vehicle-Miles Traveled (VMT) Submodule

This submodule pro jects travel de mand for automobiles

and light trucks. VMT per ca pita es ti mates are based on

the fuel cost of driv ing per mile and per ca pita dis pos able

per sonal in come. To tal VMT is calculated by mul ti ply ing 

VMT by the number of li censed drivers.

LDV Commercial Fleet Submodule

This submodule gen er ates es ti mates of the stock of cars 

and trucks used in busi ness, gov ern ment, and util ity

fleets. It also es ti mates travel de mand, fuel efficiency, and

en ergy con sump tion for the fleet vehicles prior to their

tran si tion to the pri vate sec tor at pre de ter mined vin tages.

Commercial Light Truck Submodule

The com mer cial light truck submodule es ti mates sales,

stocks, fuel ef fi cien cies, travel, and fuel demand for all

trucks greater than 8,500 pounds and less than 10,000

pounds gross ve hi cle weight rat ing.

Air Travel Demand Submodule

This submodule es ti mates the de mand for both

passenger and freight air travel. Pas sen ger travel is

pro jected by do mes tic travel (within the U.S.), in ter na -

tional travel (be tween U.S. and Non U.S.), and Non

U.S. travel.  Ded i cated air freight travel is es ti mated for

U.S. and Non U.S. de mand. In each of the mar ket

segments, the de mand for air travel is es ti mated as a

func tion of the cost of air travel (in clud ing fuel costs) and

eco nomic growth (GDP, dis pos able in come, and

merchandise exports).

Air craft Fleet Ef fi ciency Submodule

This submodule pro jects the to tal world-wide stock and

the average fleet ef fi ciency of nar row body, wide body,

and re gional jets re quired to meet the pro jected travel

demand. The stock es ti ma tion is based on the growth

of travel de mand and the flow of air craft into and out of

the United States The over all fleet efficiency is de ter -

mined by the weighted av er age of the sur viv ing air craft

ef fi ciency (in clud ing retro fits) and the ef fi cien cies of the

newly ac quired air craft.  Efficiency im prove ments of

new air craft are determined by pro ject ing the mar ket

pen e tra tion of ad vanced air craft tech nol o gies.

                                                                Transportation Demand Module
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Light Duty Vehicle Size Classes

Cars:
    Mini-compact - less than 85 cubic feet
    Subcompact - between 85 and 99 cubic feet
    Compact - between 100 and 109 cubic feet
    Mid-size - between 110 and 119 cubic feet
    Large - 120 or more cubic feet
    Two-seater - designed to seat two adults

Trucks:
    Small vans -  gross vehicle weight rating (GVWR) less than
                          4,750  pounds
    Large vans - GVWR 4,750 to 8,500 pounds
    Small pickups - GVWR  less than 4,750 pounds
    Large pickups - GVWR 4,750 to 8,500 pounds 
    Small utility - GVWR  less  than 4,750 pounds

    Large utility - GVWR 4,750 to 8,500 pounds

16 Energy and Environmental Analysis, Inc., Updates to the Fuel Economy Model (FEM) and Advanced Technology

Vehicle (ATV:) Module of the National Energy Modeling System (NEMS) Transportation Model, prepared for the

Energy Information Administration (EIA), 



Freight Trans port Submodule

This submodule trans lates NEMS es ti mates of

industrial pro duc tion into ton-miles trav eled for rail and

ships and into vehicle ve hi cle-miles trav eled for trucks,

then into fuel de mand by mode of freight travel. The

freight truck stock is sub di vided into me dium and

heavy-duty trucks. VMT freight estimates by truck size

class and tech nol ogy are based on match ing freight

needs, as mea sured by the growth in in dus trial out put

by NAICS code,  to VMT lev els as so ci ated with truck

stocks and new ve hi cles.  Rail and shipping ton-miles

trav eled are also es ti mated as a function of growth in in -

dus trial out put.

Freight truck fuel ef fi ciency growth rates are tied to his tor i -

cal growth rates by size class and are also depen dent on

the max i mum pen e tra tion, in tro duc tion year, fuel trig ger

price (based on cost-ef fec tive ness),  and fuel econ omy

im prove ment of ad vanced technologies, which in clude

al ter na tive-fuel tech nol o gies. A sub set of the tech nol ogy

char ac ter is tics are shown in Ta ble 10. In the rail and ship -

ping modes, en ergy efficiency es ti mates are struc tured

to eval u ate the potential of both tech nol ogy trends and

ef fi ciency improvements re lated to en ergy prices.

Miscellaneous Energy Use Submodule

This submodule pro jects the use of en ergy in mil i tary op er -

a tions, mass tran sit ve hi cles, rec re ational boats, and lu bri -

cants, based on en dog e nous vari ables within NEMS

(e.g., ve hi cle fuel ef fi cien cies) and exogenous vari ables

(e.g., the mil i tary bud get). 

Transportation Demand Module

Energy Information Administration / The National Energy Modeling System: An Overview 2009 41

Fuel Economy
Improvement

(percent)
Maximum Penetration

 (percent) Introduction Year
Capital Cost 
(2001 dollars)

Medium Heavy Medium Heavy Medium Heavy Medium Heavy

Aero Dy nam ics: bumper, un der side air

bat tles, wheel well covers 3.6 2.3 50 40 2002 N/A N/A $1,500

Low  roll ing resistence tires 2.3 2.7 50 66 2004 2005 $180 $550

Trans mis sion: lock-up, elec tronic con trols,

re duced friction 1.8 1.8 100 100 2005 2005 $750 $1,000

Die sel En gine: hy brid elec tric powertrain 36.0 N/A 15 N/A 2010 N/A $6,000 N/A

Re duce waste heat, ther mal mgmt N/A 9.0 N/A 35 N/A 2010 N/A $2,000

Weight re duc tion 4.5 9.0 20 30 2010 2005 $1,300 $2,000

Die sel Emis sion Nox non-ther mal plasma

cat a lyst -1.5 -1.5 25 25 2007 2007 $1,000 $1,250

PM cat a lytic filter -2.5 -1.5 95 95 2008 2006 $1,000 $1,500

HC/CO: ox i da tion cat a lyst -0.5 -0.5 95 95 2002 2002 $150 $250

NOx adsorbers -3.0 -3.0 90 90 2007 2007 $1,500 $2,500

Table 10.  Ex am ple of Truck Tech nol ogy Char ac ter is tics (Die sel)



Elec tric ity Mar ket Mod ule



The elec tric ity mar ket mod ule (EMM) rep re sents the

generation, transmission, and pricing of electricity,

subject to: delivered prices for coal, petroleum

products, and natural gas; the cost of centralized gen -

eration from renewable fuels; macroeconomic

variables for costs of capital and domestic investment;

and electricity load shapes and demand. The

submodules consist of capacity planning, fuel

dispatching, finance and pricing, and load and de mand

(Figure 9). In addition, nonutility supply and electricity

trade are represented in the fuel dispatching   and   ca -

pac ity planning   submodules. Nonutility  generation 

from CHP and other facilities whose primary business

is not electricity generation is represented in the

demand and fuel supply modules. All other nonutility

generation is represented in the EMM. The generation

of electricity is accounted for in 15 supply regions

(Figure 10), and fuel consumption is allocated to the 9

Census divisions.

The EMM de ter mines air borne emis sions pro duced by

the gen er a tion of elec tric ity. It rep re sents lim its for sul -

fur di ox ide and ni tro gen ox ides spec i fied in the Clean

Air Act Amend ments of 1990 (CAAA90) and the Clean

Air In ter state Rule.  The AEO2009 also mod els

State-level reg u la tions im ple ment ing mer cury stan -

dards. The EMM also has the abil ity to track and limit

emis sions of car bon di ox ide, and the AEO2009 in -

cludes the re gional car bon re stric tions of the Re gional

Green house Gas Ini tia tive (RGGI). 

Op er at ing (dis patch) de ci sions are pro vided by the

cost-min i miz ing mix of fuel and vari able op er at ing and

main te nance (O&M) costs, sub ject to en vi ronmen tal

costs. Ca pac ity ex pan sion is de ter mined by the

least-cost mix of all costs, in clud ing cap i tal, O&M, and

fuel. Elec tric ity de mand is rep re sented by load curves,

which vary by re gion and sea son. The so lu tion to the

submodules of EMM is simultaneous in that, di rectly or

in di rectly, the so lu tion for each submodule de pends on

the so lu tion to ev ery other submodule.  A so lu tion se -

quence through the submodules can be viewed as

fol lows:

• The  elec tric ity load  and  de mand submodule pro -

cesses elec tric ity de mand to con struct load curves

• The elec tric ity ca pac ity plan ning submodule pro -

jects the con struc tion of new util ity and nonutility 

plants,  the  level  of  firm  power trades,  and  the 

ad di tion  of  equip ment  for en vi ron men tal com pli -

ance

• The  elec tric ity  fuel  dis patch  submodule dis -

patches  the  avail able  gen er at ing  units, both util ity

and nonutility, al low ing sur plus ca pac ity in se lect re -

gions to be dis patched to meet an other re gions needs 

(econ omy trade)

• The elec tric ity fi nance and pric ing submodule cal cu -

lates to tal rev e nue re quire ments for each op er a tion

and com putes av er age and mar ginal-cost based

elec tric ity prices.

Electricity Capacity Planning Submodule

The elec tric ity ca pac ity plan ning (ECP) submodule de -

ter mines how best to meet ex pected growth in elec tric -

ity de mand, given avail able re sources, expected  load 

shapes,  ex pected  de mands  and  fuel prices, en vi ron -

men tal con straints, and costs for utility and nonutility

tech nol o gies. When new ca pac ity is re quired to meet

growth in elec tric ity de mand, the tech nol ogy cho sen is

de ter mined by the tim ing of the de mand in crease, the

ex pected uti li za tion of the new ca pac ity, the op er at ing ef fi -

cien cies, and the construction and op er at ing costs of

avail able technologies.

The ex pected uti li za tion of the ca pac ity is im por tant in the

de ci sion-mak ing pro cess. A tech nol ogy with rel a tively

high cap i tal costs but com par a tively low op er at ing

costs (pri mar ily fuel costs) may be the ap pro pri ate

choice if the ca pac ity is ex pected to op er ate con tin u -

ously (base load). How ever, a plant type with high op er -

at ing costs but low cap i tal costs may be the most

eco nom i cal se lec tion to serve the peak load (i.e., the

high est de mands on the sys tem), which oc curs in fre -

quently.  In ter me di ate or cy cling load oc cu pies a mid dle 

ground be tween base and peak load and is best served
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Electricity Market Module

EMM Outputs Inputs from NEMS Exogenous Inputs

Elec tric ity prices and price com po nents
Fuel de mands
Ca pac ity ad di tions
Cap i tal re quire ments
Emis sions
Re new able ca pac ity
Avoided costs

Elec tric ity sales
Fuel prices
Cogeneration sup ply and fuel con sump tion
Elec tric ity sales to the grid
Re new able tech nol ogy char ac ter is tics, al low able
    ca pac ity, and costs
Re new able ca pac ity fac tors
Gross do mes tic prod uct
In ter est rates

Fi nan cial data
Tax assumptions
Cap i tal costs
Op er a tion and main te nance costs
Op er at ing pa ram e ters
Emmissions rates
New tech nol o gies
Ex ist ing fa cil i ties
Trans mis sion constraints



by plants that are cheaper to build than baseload plants 

and cheaper to op er ate than peak load plants.

Tech nol o gies are com pared on the ba sis of to tal capital

and op er at ing costs in curred over a 20-year period. As

new tech nol o gies be come avail able, they are com peted

against con ven tional plant types. Fossil-fuel, nu clear,

and re new able cen tral-sta tion generating tech nol o gies

are rep re sented, as listed in Ta ble 11.  The EMM also

con sid ers two dis trib uted gen er a tion tech nol o gies

-baseload and peak.  The EMM also has the abil ity to

model a de mand stor age tech nol ogy to rep re sent load

shift ing.

Un cer tainty about in vest ment costs for new technologies

is cap tured in ECP us ing tech no log i cal optimism and

learn ing fac tors. The tech no log i cal optimism fac tor re -

flects the in her ent ten dency to un deres ti mate costs for

new tech nol o gies. The de gree of tech no log i cal op ti mism 

de pends on the com plex ity of the en gi neer ing de sign

and the stage of de velopment. As de vel op ment pro -

ceeds and more data become avail able, cost es ti mates

be come more ac cu rate and the tech no log i cal op ti mism

fac tor de clines.

Learn ing  fac tors  rep re sent  re duc tions  in  cap i tal costs

due to learn ing-by-do ing. For new technologies, cost re -

duc tions due to learn ing also ac count for in ter na tional ex -

pe ri ence in build ing gen er at ing capacity. These fac tors
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Electricity Market Module

Electricity Capacity 

Planning

Submodule

Electricity Fuel 

Dispatch 

Submodule

Electricity Finance 

and Pricing 

Submodule

Load and

Demand-Side 

Management

Submodule

Available Capacity

Fuel Demands

Average Electricity Prices

Load Curves

Capacity
Additions

Electricity Sales

Cogeneration Supply and 
Fuel Consumption 

Sales to Grid

Electricity Prices

Natural Gas Peak and 
Offpeak, Core and Noncore 

Demand

Petroleum Product Prices

Petroleum Demand

Electricity Price

Electricity Price

Coal Prices

Coal Demand

Renewable Capacity, Avoided 
Costs, Discount Rate, Biomass 

Consumption

Electricity Prices

Electric Industry Output

Macroeconomic 

Activity Module

Renewable 

Fuels

Module

Coal Market

Module

Oil and Gas

Supply Module

Petroleum

Market Module

Natural Gas

Transmission and 

Distribution 

Module

Demand 

Modules

Exogenous

     Financial Data, Tax Assumptions, Capital
  Costs, Operating and Maintenance Costs,
Operating Parameters, Emission Rates,
   Existing Facilities, New Technologies, 
      Transmission Constraints, Hydropower
           Capacity and Capacity Factors

Renewable Technology
Characteristics, Allowable Capacity, 

Capacity Factors, Costs

Expectations

Interest Rates, Gross 
Domestic Product

Natural Gas Prices

Fig ure 9. Elec tric ity Mar ket Mod ule Strucuture



are cal cu lated for each of the ma jor de sign com po nents 

of a plant type de sign. For mod el ing pur poses, com po -

nents are iden ti fied only if the com po nent is shared be -

tween mul ti ple plant types, so that the ECP can re flect

the learn ing that oc curs across tech nol o gies. The cost

ad just ment fac tors are based on the cu mu la tive ca pac -

ity of a given com po nent. A 3-step learn ing curve is uti -

lized for all de sign com po nents. 

Typ i cally, the great est amount of learn ing oc curs dur ing 

the ini tial stages of de vel op ment and the rate of cost re -

duc tions de clines as com mer cial iza tion pro gresses.

Each step of the curve is char ac ter ized by the learn ing

rate and the num ber of doublings of ca pac ity in which

this rate is ap plied. De pend ing on the stage of de vel op -

ment for a par tic u lar com po nent, some of the learn ing

may al ready be in cor po rated in the ini tial cost es ti mate.

Cap i tal costs for all new elec tric ity gen er at ing tech nol o -

gies (fos sil, nu clear, and re new able) de crease in re -

sponse to for eign and do mes tic ex pe ri ence.  Foreign

units of new tech nol o gies are as sumed to contrib ute to

re duc tions in cap i tal costs for units that are in stalled in

the United States to the ex tent that (1) the tech nol ogy

char ac ter is tics are sim i lar to those used in U.S. mar kets,

(2) the de sign and con struc tion firms and key per son nel

com pete in the U.S. mar ket, (3) the own ing and op er at ing

firm com petes ac tively in the United States, and (4) there

ex ists rel a tively com plete in for ma tion about the sta tus of

the associated fa cil ity. If the new for eign units do not

sat isfy one or more of these re quire ments, they are given

a re duced weight or not in cluded in the learn ing effects

cal cu la tion.  Cap i tal costs, heat rates, and first year of

availablilty from the AEO2009 ref er ence case are shown 

in Ta ble 12; cap i tal costs rep re sent the costs of building
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new plants or dered in 2008. Ad di tional in for ma tion

about costs and per for mance char ac ter is tics can be

found on page 89 of the "As sump tions to the An nual En -

ergy Out look 2009."17

Ini tially, in vest ment de ci sions are de ter mined in ECP

us ing cost  and per for mance  char ac ter is tics that are

rep re sented as sin gle point es ti mates corresponding to 

the av er age (ex pected) cost. How ever, these pa ram e -

ters are also sub ject to un cer tainty and are better rep re -

sented by dis tri bu tions. If the distributions of two or

more op tions over lap, the op tion with the low est av er -

age cost is not likely to cap ture the  en tire  mar ket. 

There fore,  ECP  uses  a mar ket-shar ing al go rithm to

ad just the ini tial solution and re al lo cate some of the ca -

pac ity ex pan sion decisions to technologies that are

competitive but do not have the lowest average cost.

Fos sil-fired steam and nu clear plant re tire ments are

cal cu lated en dog e nously within the model. Plants are

re tired if the mar ket price of elec tric ity is not suf fi cient to

sup port con tin ued op er a tion.  The ex pected rev e nues

from these plants are com pared to  the  an nual  go -

ing-for ward  costs,  which  are mainly fuel and O&M

costs. A plant is re tired if these costs ex ceed the rev e nues 

and the over all cost of elec tric ity can be re duced by

building replacement capacity.

The ECP submodule also de ter mines whether to con -

tract for un planned firm power im ports from Can ada

and from neigh bor ing elec tric ity sup ply regions. Im ports

from Can ada are com peted us ing sup ply curves de vel -

oped from cost es ti mates for potential hy dro elec tric pro -

jects in Can ada. Im ports from neigh bor ing elec tric ity

sup ply re gions are competed in the ECP based on the cost 

of the unit in the export ing re gion plus the ad di tional cost of 

trans mitting the power. Trans mis sion costs are com puted 

as a fraction of revenue.

Af ter build ing new ca pac ity, the submodule passes to tal

avail able ca pac ity to the elec tric ity fuel dispatch

submodule and new ca pac ity ex penses to the elec tric ity

fi nance and pric ing submodule.                               

Elec tric ity Fuel Dis patch Submodule 

Given  avail able  ca pac ity,  firm  pur chased-power 

agree ments, fuel prices, and load curves, the elec tricity 

fuel dis patch (EFD) submodule min i mizes variable

costs as it solves for gen er a tion fa cil ity utilization and

econ omy power ex changes to sat isfy demand in each

time pe riod and re gion.  Lim its on emis sions of sul fur di -

ox ide from gen er at ing units and the en gi neer ing char ac -

ter is tics of units serve as con straints. Coal-fired ca pac ity 

can co-fire with biomass in or der to lower op er at ing

costs and/or emissions.

The EFD uses a lin ear pro gram ming (LP) ap proach to

pro vide a min i mum cost so lu tion to al lo cat ing (dis patch -

ing) ca pac ity to meet de mand. It sim u lates the elec tric

trans mis sion net work on the NERC re gion level and si -

mul ta neously dis patches ca pac ity re gion ally by time

slice un til de mand for the year is met. Tra di tional

cogeneration and firm trade ca pac ity is re moved from

the load du ra tion curve prior to the dis patch de ci sion.

Ca pac ity costs for each time slice are based on fuel and 

vari able O&M costs, mak ing ad just ments for RPS
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Fossil

Existing coal steam plants (with or without environmental
controls)
New  pulverized coal with environmental controls
Advanced clean coal technology
Advanced clean coal technology with sequestration
Oil/Gas steam
Conventional combined cycle
Advanced combined cycle 
Advanced combined cycle with sequestration
Conventional combusion turbine
Fuel cells

Nuclear

Conventional nuclear
Advanced nuclear

Renewables

Conventional hydropower
Pumped storage
Geothermal
Solar-thermal
Solar-photovoltaic
Wind - onshore and offshore
Wood
Municipal solid waste

En vi ron men tal con trols in clude flue gas desulfurization (FGD), se lec tive cat -
a lytic re duc tion (SCR), se lec tive non-cat a lytic re duc tion (SNCR), fab ric fil -
ters, spray cool ing, activated car bon in jec tion (ACI), and par tic u late re moval
equipiment.

Ta ble 11. Gen er at ing Technologies

17 Energy Information Administration, Assumptions to the Annual Energy Outlook 2009,

http://www.eia.doe.gov/oiaf/aeo/assumption/pdf/0554(2009).pdf (March 2009)



cred its, if ap pli ca ble, and pro duc tion tax cred its. Gen er -

a tors are re quired to meet planned main te nance re -

quire ments, as defined by plant type.

In ter re gional econ omy trade is also rep re sented in the

EFD submodule by al low ing sur plus gen er a tion in one re -

gion to sat isfy elec tric ity de mand in an import ing re gion,

re sult ing in a cost sav ings. Econ omy trade with Can ada

is de ter mined in a sim i lar manner as in ter re gional econ -

omy trade. Sur plus Canadian en ergy is al lowed to dis -

place en ergy in an import ing re gion if it re sults in a cost

sav ings. Af ter dispatch ing, fuel use is re ported back to the

fuel sup ply mod ules and op er at ing ex penses and rev e -

nues from trade are re ported to the elec tric ity fi nance and

pricing submodule.

Electricity Finance and Pricing Submodule

The costs of build ing ca pac ity, buy ing power, and gen -

er at ing elec tric ity are tal lied in the elec tric ity finance and

pric ing (EFP) submodule, which simulates both com -

pet i tive elec tric ity pric ing and the cost-of-ser vice

method of ten used by State regulators to de ter mine the

price of elec tric ity. The AEO2009 ref er ence case as -

sumes a tran si tion to full com pet i tive pric ing in New

York, Mid-At lan tic Area Coun cil, and Texas, and a 95

per cent tran si tion to com pet i tive pric ing in New Eng -

land (Ver mont be ing the only fully-reg u lated State in

that re gion). Cal i for nia re turned to al most fully reg u -

lated pric ing in 2002, af ter be gin ning a tran si tion to

com pe ti tion in 1998. In ad di tion elec tric ity prices in the
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Technology
Capital Costs

1

(2007$/KW)
Heatrate in 2008 

(Btu/kWhr) Online Year
2

Scrubbed Coal New 2058 9200 2012

Integrated Coal-gasification Comb Cycle (IGCC) 2378 8765 2012

IGCC with carbon sequestration 3496 10781 2016

Coventional Gas/Oil Comb Cycle 962 7196 2011

Advanced Gas/Oil Comb Cycle (CC) 948 6752 2011

Advanced CC with carbon sequestration 1890 8613 2016

Conventional Combusion Turbine 670 10810 2010

Advanced Combusition Turbine 634 9289 2010

Fuel Cells 5360 7930 2011

Adv nuclear 3318 10434 2016

Distributed Generation - Base 1370 9050 2011

Distributed Generation - Peak 1645 10069 2010

Biomass 3766 9646 2012

MSW - Landfill Gas 2543 13648 2010

Geothermal3 1711 34633 2010

Conventional Hydropower 3,4 2242 9919 2012

Wind4 1923 9919 2009

Wind Offshore4 3851 9919 2012

Solar Thermal 5021 9919 2012

Photovoltaic 6038 9919 2011

Table 12.  2008 Over night Cap i tal Costs (in clud ing Con tin gen cies), 2008 Heat Rates, and On line Year by Tech nol ogy for the

AEO2009 Ref er ence Case

1Over night cap i tal cost in clud ing con tin gency fac tors, ex clud ing reigonal mul ti pli ers and learn ing ef fects.  In ter est charges are also ex cluded.  These rep re sent costs
of new pro jects ini ti ated in 2008.  Cap i tal costs are shown be fore in vest ment tax cred its are ap plied, where ap pli ca ble.
2On line year rep re sents the first year that a new unit could be com pleted, given an or der date of 2008.  For wind, geo ther mal and land fill gas, the on line year was
moved ear lier to ac knowl edge the sig nif i cant mar ket ac tiv ity al ready occuring in anticipation of the ex pi ra tion of the Pro duc tion Tax Credit in 2009 for wind and 2010 for
the oth ers.
3Be cause geo ther mal and hy dro cost and per for mance char ac ter is tics are spe cific for each site, the ta ble en tries rep re sent the cost of the least ex pen sive plant that
could be built in the North west Power Pool re gion, where most of the pro posed sites are lo cated.
4For hy dro, wind, and so lar tech nol o gies, the heatrate shown rep re sents the av er age heatrate for con ven tional ther mal gen er a tion as of 2007.  This isused for pur -
poses of cal cu lat ing pri mary en ergy con sump tion dis placed for these re sources, and does not im ply an es ti mate of their ac tual en ergy con ver sion ef fi ciency.



East Cen tral Area Re li abil ity Coun cil, the Mid-Amer i can 

In ter con nected Net work, the South east ern Elec tric Re -

li abil ity Coun cil, the South west Power Pool, the North -

west Power Pool, and the Rocky Moun tain Power

Area/Ar i zona are a mix of both com pet i tive and reg u -

lated prices. Since some States in each of these re -

gions have not taken ac tion to de reg u late their pric ing

of elec tric ity, prices in those States are as sumed to

con tinue to be based on tra di tional cost-of-ser vice pric -

ing. The price for mixed re gions is a load-weighted av -

er age of the com pet i tive price and the reg u lated price,

with the weight based on the per cent of elec tric ity load

in the re gion that has taken ac tion to de reg u late. In re -

gions where none of the states in the re gion have in tro -

duced com pe ti tion—Florida Re li abil ity Co or di nat ing

Coun cil and Mid-Con ti nent Area Power Pool—elec tric -

ity prices are as sumed to re main reg u lated and the

cost-of-ser vice calculation is used to determine

electricity prices.

Us ing his tor i cal costs for ex ist ing plants (de rived from

var i ous sources such as Fed eral En ergy Regulatory Com -

mis sion Form 1, An nual Re port of Ma jor Elec tric Util i -

ties, Li cens ees and Oth ers, and Form EIA-412, An nual

Re port of Pub lic Elec tric Util i ties), cost es ti mates for

new plants, fuel prices from the NEMS fuel sup ply mod -

ules, unit op er at ing lev els, plant de com mis sion ing costs,

plant phase-in costs,  and  pur chased  power  costs,  the  

EFP submodule cal cu lates to tal rev e nue re quire ments for

each area of op er a tion—gen er a tion, trans mis sion, and

dis tri bu tion—for pric ing of elec tric ity in the fully  reg u -

lated  States.  Rev e nue  re quire ments shared over sales 

by cus tomer class yield the price of elec tric ity for each

class. Elec tric ity prices are returned to the de mand

mod ules. In ad di tion, the submodule gen er ates de tailed

fi nan cial state ments.

For those States for which it is ap pli ca ble, the EFP also

de ter mines com pet i tive prices for elec tric ity gen eration. 

Un like cost-of-ser vice prices, which are based on av er -

age costs, com pet i tive prices are based on mar ginal

costs. Mar ginal costs are pri mar ily the operating costs of

the most ex pen sive plant re quired to meet de mand. The

com pet i tive price also in cludes a re li abil ity price ad just -

ment, which rep re sents the value con sum ers place on

re li abil ity of ser vice when de mands are high and avail able 

ca pac ity is lim ited. Prices for trans mis sion and dis tri bu -

tion are assumed to re main reg u lated, so the de liv ered

elec tricity price un der com pe ti tion is the sum of the

marginal price of gen er a tion and the av er age price of

transmission and distribution.

Electricity Load and Demand Submodule

The elec tric ity load and de mand (ELD) submodule gen -

er ates load curves rep re sent ing the de mand for elec -

tric ity. The de mand for elec tric ity var ies over the course 

of a day. Many dif fer ent tech nol o gies and end uses, each

re quir ing a dif fer ent level of ca pac ity for dif fer ent lengths

of time, are pow ered by elec tric ity. For op er a tional and

plan ning anal y sis, an an nual load du ra tion curve, which

repre sents  the  ag gre gated  hourly  de mands,  is 

constructed. Be cause de mand var ies by geo graphic area 

and time of year, the ELD submodule gen er ates load

curves for each re gion and sea son.

Emissions

EMM tracks emis sion lev els for sul fur di ox ide (SO2)

and ni tro gen ox ides (NOx).  Fa cil ity development, retro -

fit ting, and dis patch are con strained to com ply with the

pol lu tion con straints of the CAAA90 and other pol lu tion

con straints in clud ing the Clean Air In ter state Rule.  An

in no va tive fea ture of this leg is la tion is a sys tem of trad -

ing emis sions al low ances.  The trad ing sys tem al lows a 

util ity with a rel a tively low cost of com pli ance to sell its

ex cess com pli ance (i.e., the de gree to which its emis -

sions per unit of power gen er ated are be low max i mum

al low able lev els) to util i ties with a rel a tively high cost of

com pli ance.  The trad ing of emis sions al low ances does 

not change the na tional ag gre gate emis sions level set

by CAAA90, but it does tend to min i mize the over all

cost of com pli ance.

In ad di tion to SO2, and NOx, the EMM also de ter mines

mer cury and car bon di ox ide emis sions.  It rep re sents

con trol op tions to re duce emis sions of these four

gases, ei ther in di vid u ally or in any com bi na tion.  Fuel

switch ing from coal to nat u ral gas, renewables, or nu -

clear can re duce all of these emis sions.  Flue gas

desulfurization equip ment can de crease SO2 and mer -

cury emis sions.  Se lec tive cat a lytic re duc tion can re -

duce NOx and mer cury emis sions. Se lec tive

non-cat a lytic re duc tion and low-NOx burn ers can lower

NOx emis sions.  Fab ric fil ters and ac ti vated car bon in -

jec tion can re duce mer cury emis sions.  Lower emis -

sions re sult ing from de mand re duc tions are de ter mined 

in the end-use de mand mod ules.

The AEO2009 in cludes a gen er al ized struc ture to

model cur rent state-level reg u la tions call ing for the best 

avail able con trol tech nol ogy to con trol mer cury.  The

AEO2009 also in cludes the car bon caps for States that

are part of the RGGI. 

48 Energy Information Administration / The National Energy Modeling System: An Overview 2009

                                                                   Electricity Market Module



Renew able Fuels Mod ule



The re new able fu els mod ule (RFM) rep re sents re new -

able en ergy resoures and large–scale tech nol o gies

used for grid-con nected U.S. elec tric ity sup ply (Fig ure

11). Since most renewables (bio mass, con ven tional

hy dro elec tric ity, geo ther mal, land fill gas, so lar

photovoltaics, so lar ther mal, and wind) are used to gen -

er ate elec tric ity, the RFM pri mar ily in ter acts with the

electricity market module (EMM). 

New re new able en ergy gen er at ing ca pac ity is ei ther

model–de ter mined or based on sur veys or other pub -

lished in for ma tion. A new unit is only in cluded in sur -

veys or acccepted from pub lished in for ma tion if it is

re ported to or iden ti fied by the EIA and the unit meets

EIA cri te ria for in clu sion (the unit ex ists, is un der con -

struc tion, un der con tract, is pub licly de clared by the

ven dor, or is man dated by state law, such as un der a

state re new able port fo lio stan dard). EIA may also as -

sume min i mal builds for rea sons based on his tor i cal ex -

pe ri ence (floors). The pen e tra tion of grid-con nected

re new able en ergy gen er at ing tech nol o gies, with the

exception of landfill gas, is determined by the EMM. 

Each re new able en ergy submodule of the RFM is

treated in de pend ently of the oth ers, ex cept for their

least-cost com pe ti tion in the EMM. Be cause vari able

op er a tion and main te nance costs for re new able tech -

nol o gies are lower than for any other ma jor gen er at ing

tech nol ogy, and be cause they gen er ally pro duce lit tle

or no air pol lu tion, all avail able re new able ca pac ity, ex -

cept bio mass, is as sumed to be dis patched first by the

EMM.  Be cause of its po ten tially sig nif i cant fuel cost,

bio mass is dis patched according to its variable cost by

the EMM. 

With sig nif i cant growth over time, in stal la tion costs are

as sumed to be higher be cause of grow ing con straints

on the avail abil ity of sites, nat u ral re source deg ra da -

tion, the need to up grade ex ist ing trans mis sion or dis tri -

bu tion net works, and other re source-spe cific fac tors.

Geothermal-Electric Submodule

The geo ther mal-elec tric submodule pro vides the EMM

the amounts of new geo ther mal ca pac ity that can be

built at known and well char ac ter ized geo ther mal re -

source sites, along with re lated cost and per for mance

data. The in for ma tion is ex pressed in the form of a

three–step sup ply func tion that rep re sents the ag gre -

gate amount of new ca pac ity and as so ci ated costs that

can be of fered in each year in each region. 

Only hy dro ther mal (hot wa ter and steam) re sources

are con sid ered. Hot dry rock re sources are not in -

cluded, be cause they are not ex pected to be eco nom i -

cally ac ces si ble dur ing the NEMS pro jec tion horizon. 

Cap i tal and op er at ing costs are es ti mated sep a rately,

and life-cy cle costs are cal cu lated by the RFM. The

cost ing meth od ol ogy in cor po rates any ap pli ca ble ef -

fects of Fed eral and State en ergy tax con struc tion and

pro duc tion in cen tives

Wind-Electric Submodule 

The wind-elec tric submodule pro jects the avail abil ity of

wind re sources as well as the cost and per for mance of

wind tur bine gen er a tors. This in for ma tion is passed to

EMM so that wind tur bines can be built and dis patched

in com pe ti tion with other elec tric ity gen er at ing tech nol -

o gies. The wind tur bine data are ex pressed in the form

of en ergy sup ply curves that pro vide the max i mum

amount, cap i tal cost, and ca pac ity fac tor of tur bine gen -

er at ing ca pac ity that could be in stalled in a re gion in a

year, given the avail able land area and wind speed.

The model also eval u ates the con tri bu tion of the wind

ca pac ity to meet ing sys tem re li abil ity re quire ments so

that the EMM can ap pro pri ately in cor po rate wind ca -

pac ity into cal cu la tions for re gional reliability reserve

margins.

So lar-Elec tric Submodule

The so lar-elec tric submodule rep re sents both pho to -

vol taic and high-tem per a ture ther mal elec tric (concen-
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trating so lar power) in stal la tions.  Only cen tral-sta tion,

grid-con nected ap pli ca tions con structed by a util ity or

in de pend ent power pro ducer are con sid ered in this

por tion of the model.

The so lar-elec tric submodule pro vides the EMM with

time-of-day and sea sonal so lar avail abil ity data for

each re gion, as well as cur rent costs.  The EMM uses

this data to eval u ate the cost and per for mance of so -

lar-elec tric tech nol o gies in re gional grid ap pli ca tions.

The com mer cial and res i den tial de mand mod ules of

NEMS also model pho to vol taic sys tems in stalled by

con sum ers, as dis cussed in the de mand mod ule de -

scrip tions un der “Dis trib uted Gen er a tion.” 

Land fill Gas Submodule 

The land fill gas submodule pro vides an nual pro jec tions 

of elec tric ity gen er a tion from meth ane from land fills

(land fill gas).  The submodule uses the quan tity of mu -

nic i pal solid waste (MSW) that is pro duced, the pro por -

tion of MSW that will be re cy cled, and the meth ane

emis sion char ac ter is tics of three types of land fills to

pro duce pro jec tions of the fu ture elec tric power gen er -

at ing ca pac ity from land fill gas.  The amount of meth -

ane avail able is cal cu lated by first de ter min ing the

amount of to tal waste gen er ated in the United States.

The amount of to tal waste gen er ated is de rived from an

ec ono met ric equa tion that uses gross do mes tic prod -

uct and pop u la tion as the pro jec tion driv ers. It is as -

sumed that no new mass burn waste–to–en ergy

(MSW) fa cil i ties will be built and op er ated dur ing the

pro jec tion pe riod in the United States.  It is also as -

sumed that op er a tional mass-burn fa cil i ties will con -

tinue to op er ate and re tire as planned through out the

pro jec tion pe riod. The land fill gas submodule passes

cost and per for mance char ac ter is tics of the land fill

gas–to–elec tric ity tech nol ogy to the EMM for ca pac ity

plan ning de ci sions. The amount of new land-fill-gas-to-

elec tric ity ca pac ity com petes with other tech nol o gies

us ing sup ply curves that are based on the amount of

high, me dium, and low meth ane pro duc ing land fills lo -

cated in each EMM re gion.

Bio mass Fu els Submodule 

The bio mass fu els submodule pro vides bio mass-fired

plant tech nol ogy char ac ter iza tions (cap i tal costs, op er -

at ing costs, ca pac ity fac tors, etc.) and fuel in for ma tion

for EMM, thereby al low ing bio mass-fu eled power

plants to com pete with other elec tric ity gen er at ing

tech nol o gies. 

Bio mass fuel prices are rep re sented by a sup ply curve

con structed ac cord ing to the ac ces si bil ity of re sources

to the elec tric ity gen er a tion sec tor.  The sup ply curve

em ploys re source in ven tory and cost data for four cat e -

go ries of bio mass fuel - ur ban wood waste and mill res i -

dues, for est res i dues, en ergy crops, and ag ri cul tural

res i dues. Fuel dis tri bu tion and prep a ra tion cost data

are built into these curves. The sup ply sched ule of bio -

mass fuel prices is com bined with other vari able op er -

at ing costs as so ci ated with burn ing bio mass. The

ag gre gate vari able cost is then passed to EMM.

Hydroelectricity Submodule

The hy dro elec tric ity submodule pro vides the EMM the

amounts of new hy dro elec tric ca pac ity that can be built

at known and well char ac ter ized sites, along with re -

lated cost and per for mance data. The in for ma tion is ex -

pressed in the form of a three–step sup ply func tion that

rep re sents the ag gre gate amount of new ca pac ity and

as so ci ated costs that can be of fered in each year in

each re gion. Sites in clude un de vel oped stretches of

rivers, ex ist ing dams or di ver sions that do not cur rently

pro duce power, and ex ist ing hy dro elec tric plants that

have known ca pa bil ity to ex pand op er a tions through

the ad di tion of new gen er at ing units. Ca pac ity or ef fi -

ciency im prove ments through the re place ment of ex ist -

ing equip ment or changes to op er at ing pro ce dures at a

fa cil ity are not in cluded in the hy dro elec tric ity sup ply.
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The OGSM con sists of a se ries of pro cess submodules

that pro ject the avail abil ity of do mes tic crude oil

production and dry natural gas production from

onshore, offshore, and Alaskan res er voirs, as well as

con ven tional gas pro duc tion from Can ada. The OGSM

re gions are shown in Fig ure 12. 

The driv ing as sump tion of OGSM is that do mes tic oil

and gas ex plo ra tion and de vel op ment are un der taken if 

the dis counted pres ent value of the re cov ered re -

sources at least cov ers the pres ent value of taxes and

the cost of cap i tal, ex plo ra tion, de vel op ment, and pro -

duc tion. Crude oil is trans ported to re fin er ies, which are

sim u lated in the PMM, for con ver sion and blend ing into

re fined pe tro leum prod ucts. The in di vid ual submodules 

of the OGSM are solved in de pend ently, with feed backs 

achieved through NEMS solu tion iterations (Figure 13).

Tech no log i cal prog ress is rep re sented in OGSM

through an nual in creases in the find ing rates and suc -

cess rates, as well as an nual de creases in costs. For

con ven tional on shore, a time trend was used in

econometrically es ti mated equa tions as a proxy for

tech nol ogy. Re serve ad di tions per well (or find ing

rates) are pro jected through a set of equa tions that

distinquish be tween new field dis cov er ies and dis cov -

er ies (ex ten sions) and re vi sions in known fields. The

find ing rate equa tions cap ture the im pacts of tech nol -

ogy, prices, and de clin ing re sources. An other rep re -

sen ta tion of tech nol ogy is in the suc cess rate

equa tions. Suc cess rates cap ture the im pact of tech -

nol ogy and sat u ra tion of the area through cu mu la tive

drill ing. Tech nol ogy is fur ther rep re sented in the de ter -

mi na tion of drill ing, lease equip ment, and op er at ing

costs. Tech no log i cal prog ress puts down ward pres -

sure on the drill ing, lease equip ment, and op er at ing

cost pro jec tions. For un con ven tional gas, a se ries of

eleven dif fer ent tech nol ogy groups are rep re sented by

time–de pend ent ad just ments to fac tors which in flu ence 

find ing rates, success rates, and costs. 

Con ven tional nat u ral gas pro duc tion in West ern Can -

ada is mod eled in OGSM with three econometrically

es ti mated equa tions:  to tal wells drilled, re serves added 

per well, and ex pected pro duc tion-to-re serves ra tio. 

The model per forms a sim ple re serves ac count ing and

ap plies the ex pected pro duc tion-to-re serve ra tio to es ti -

mate an ex pected pro duc tion level, which in turn is

used to es tab lish a sup ply curve for con ven tional West -

ern Can ada nat u ral gas.  The rest of the gas pro duc tion

sources in Can ada are rep re sented in the Nat u ral Gas

Trans mis sion and Dis tri bu tion Mod ule (NGTDM).

Lower 48 Onshore and Shallow Offshore Supply
Submodule 

The lower 48 on shore sup ply submodule pro jects

crude oil and nat u ral gas pro duc tion from con ven tional

re cov ery tech niques. This submodule ac counts for drill -

ing, re serve ad di tions, to tal re serves,  and pro duc tion

-to-re serves ra tios for each lower 48 on shore sup ply

region. 

The ba sic pro ce dure is as fol lows: 

• First, the pro spec tive costs of a rep re sen ta tive drill -

ing pro ject for a given fuel cat e gory and well class

within a given re gion are com puted. Costs are a

func tion of the level of drill ing ac tiv ity, av er age well

depth, rig avail abil ity, and the ef fects of tech no log i -

cal progress. 

• Sec ond, the pres ent value of the dis counted cash

flows (DCF) as so ci ated with the rep re sen ta tive pro -

ject is com puted. These cash flows in clude both the

cap i tal and op er at ing costs of the pro ject, in clud ing

roy al ties and taxes, and the rev e nues de rived from

a de clin ing well pro duc tion pro file, com puted af ter

tak ing into ac count the pro gres sive ef fects of re -

source de ple tion and val ued at con stant real prices

as of the year of initial valuation. 

• Third, drill ing lev els are cal cu lated as a func tion of

pro jected prof it abil ity as mea sured by the pro jected

DCF lev els for each pro ject and na tional level cash -

flow.
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Ini tial find ing rate parameters and costs
Pro duc tion pro files
Tax parameters



• Fourth, re gional find ing rate equa tions are used to

pro ject new field dis cov er ies from new field wild -

cats, new pools, and ex ten sions from other ex plor -

atory drill ing, and re serve re vi sions from

de vel op ment drill ing. 

• Fifth, pro duc tion is de ter mined on the ba sis of re -

serves, in clud ing new re serve ad di tions, pre vi ous

pro duc tive ca pac ity, flow from new wells, and, in the 

case of nat u ral gas, fuel de mands. This oc curs

within the mar ket equil i bra tion of the NGTDM for

nat u ral gas and within OGSM for oil.

Un con ven tional Gas Re cov ery Sup ply Submodule 

Un con ven tional gas is de fined as gas pro duced from

nonconventional geo logic for ma tions, as op posed to

con ven tional (sand stones) and car bon ate rock for ma -

tions. The three un con ven tional geo logic for ma tions

con sid ered are low–per me abil ity or tight sand stones,

gas shales and coalbed methane.

For un con ven tional gas, a play–level model cal cu lates

the eco nomic fea si bil ity of in di vid ual plays based on lo -

cally spe cific well head prices and costs, re source

quan tity and qual ity, and the var i ous ef fects of tech nol -

ogy on both re sources and costs. In each year, an ini tial 

re source char ac ter iza tion de ter mines the ex pected ul ti -

mate re cov ery (EUR) for the wells drilled in a par tic u lar

play. Re source pro files are ad justed to re flect as sumed 

tech no log i cal im pacts on the size, avail abil ity, and in -

dus try knowl edge of the re sources in the play.   
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Fig ure 12.  Oil and Gas Supply Module Regions



Sub se quently, prices re ceived from NGTDM and en -

dog e nously de ter mined costs ad justed to re flect tech -

no log i cal prog ress are uti lized to cal cu late the

eco nomic prof it abil ity (or lack thereof) for the play. If the 

play is prof it able, drill ing oc curs ac cord ing to an as -

sumed sched ule, which is ad justed an nu ally to ac count

for tech no log i cal im prove ments, as well as vary ing eco -

nomic con di tions. This drill ing re sults in re serve ad di -

tions, the quan ti ties of which are di rectly re lated to the

EURs for the wells in that play. Given these re serve ad -

di tions, re serve lev els and ex pected pro duc tion–to–re -

serves (P/R) ra tios are cal cu lated at both the OGSM

and the NGTDM re gion level. The re sul tant val ues are

ag gre gated with sim i lar val ues from the con ven tional

on shore and off shore submodules.  The ag gre gate P/R 

ra tios and re serve lev els are then passed to NGTDM,

which de ter mines the prices and pro duc tion for the fol -

low ing year through mar ket equil i bra tion.

Off shore Sup ply Submodule

This submodule uses a field-based en gi neer ing ap -

proach to rep re sent the ex plo ra tion and de vel op ment of 

U.S. off shore oil and nat u ral gas re sources. The

submodule sim u lates the eco nomic de ci sion-mak ing at 

each stage of de vel op ment from fron tier ar eas to

post-ma ture ar eas.  Off shore re sources are di vided into 

3 cat e go ries:

• Un dis cov ered Fields.  The num ber, lo ca tion, and

size of the un dis cov ered fields are based on the

MMS's 2006 hy dro car bon re source as sess ment.

• Dis cov ered, Un de vel oped Fields.  Any dis cov ery

that has been an nounced but is not cur rently pro -

duc ing is eval u ated in this com po nent of the model.  

The first pro duc tion year is an in put and is based on

an nounced plans and ex pec ta tions.
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• Pro duc ing Fields.  The fields in this cat e gory have

wells that have pro duced oil and/or gas through the

year prior to the AEO pro jec tion.  The pro duc tion

vol umes are from the Min er als Man age ment Ser -

vice (MMS) da ta base.

Re source and eco nomic cal cu la tions are per formed at

an eval u a tion unit ba sis.  An eval u a tion unit is de fined

as the area within a plan ning area that falls into a spe -

cific wa ter depth cat e gory.  Plan ning ar eas are the

West ern Gulf of Mex ico (GOM), Cen tral GOM, East ern

GOM, Pa cific, and At lan tic.  There are six wa ter depth

cat e go ries:  0-200 me ters, 200-400 me ters, 400-800

me ters, 800-1600 me ters, 1600-2400 me ters, and

greater than 2400 me ters.  

Sup ply curves for crude oil and nat u ral gas are gen er -

ated for three off shore re gions: Pa cific, At lan tic, and

GOM. Crude oil pro duc tion in cludes lease con den sate.

Nat u ral gas pro duc tion ac counts for both

nonassociated gas and as so ci ated-dis solved gas.  The 

model is re spon sive to changes in oil and nat u ral gas

prices, roy alty re lief as sump tions, oil and nat u ral gas

re source base, and tech no log i cal im prove ments af fect -

ing ex plo ra tion and de vel op ment.             

Alaska Oil and Gas Submodule 

This submodule pro jects the crude oil and nat u ral gas

pro duced in Alaska. The Alas kan oil submodule is di -

vided into three sec tions: new field dis cov er ies, de vel -

op ment pro jects, and pro duc ing fields. Oil

trans por ta tion costs to lower 48 fa cil i ties are used in  

con junc tion with the rel e vant mar ket price of oil to cal -

cu late the es ti mated net price re ceived at the well head,

some times called the netback price. A dis counted cash

flow method is used to de ter mine the eco nomic vi a bil ity

of each pro ject at the netback price.

Alas kan oil sup plies are mod eled on the ba sis of dis -

crete pro jects, in con trast to the on shore lower 48 con -

ven tional oil and gas sup plies, which are mod eled on

an ag gre gate level. The con tin u a tion of the ex plo ra tion

and de vel op ment of multiyear pro jects, as well as the

dis cov ery of new fields, is de pend ent on prof it abil ity.

Pro duc tion is de ter mined on the ba sis of as sumed drill -

ing sched ules and pro duc tion pro files for new fields and 

de vel op men tal pro jects, his tor i cal pro duc tion pat terns,

and an nounced plans for cur rently pro duc ing fields. 

• Alas kan gas pro duc tion is set sep a rately for any

gas tar geted to flow through a pipe line to the lower

48 States and gas pro duced for con sump tion in the

State and for ex port to Ja pan. The lat ter is set

based on a pro jec tion of Alas kan con sump tion in

the NGTDM and an ex og e nous spec i fi ca tion of ex -

ports. North Slope pro duc tion for the pipe line is de -

pend ent on con struc tion of the pipe line, set to

com mence if the lower 48 av er age well head price is 

main tained at a level ex ceed ing the es tab lished

com pa ra ble cost of de liv ery to the lower 48 States.
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Nat u ral Gas Trans mis sion
and Dis tri bu tion Mod ule



The NGTDM of NEMS rep re sents the nat u ral gas mar -

ket and de ter mines re gional mar ket–clear ing prices for

nat u ral gas sup plies and for end–use con sump tion,

given the in for ma tion passed from other NEMS mod -

ules (Fig ure 14). A trans mis sion and dis tri bu tion net -

work (Fig ure 15), com posed of nodes and arcs, is used

to sim u late the in ter re gional flow and pric ing of gas in

the con tig u ous United States and Can ada in both the

peak (De cem ber through March) and offpeak (April

through No vem ber) pe riod. This net work is a sim pli fied

rep re sen ta tion of the phys i cal nat u ral gas pipe line sys -

tem and es tab lishes the pos si ble in ter re gional flows

and as so ci ated prices as gas moves from supply

sources to end users. 

Flows are fur ther rep re sented by es tab lish ing arcs from 

trans ship ment nodes to each de mand sec tor rep re -

sented in an NGTDM re gion (res i den tial, com mer cial,

in dus trial, elec tric gen er a tors, and trans por ta tion).

Mex i can ex ports and net stor age in jec tions in the

offpeak pe riod are also rep re sented as flow ex it ing a

trans ship ment node. Sim i larly, arcs are also es tab -

lished from sup ply points into a trans ship ment node.

Each trans ship ment node can have one or more en ter -

ing arcs from each sup ply source rep re sented: U.S. or

Ca na dian on shore or U.S. off shore pro duc tion, liq ue -

fied nat u ral gas im ports, sup ple men tal gas pro duc tion,

gas pro duced in Alaska and trans ported via pipe line,

Mex i can im ports, or net stor age with draw als in the re -

gion in the peak pe riod. Most of the types of sup ply

listed above are set in de pend ently of cur rent year

prices and be fore NGTDM de ter mines a mar ket equi -

lib rium so lu tion.

Only the on shore and off shore lower 48 U.S. and West -

ern Ca na dian Sed i men tary Ba sin pro duc tion, along

with net stor age with draw als, are rep re sented by

short–term sup ply curves and set dy nam i cally dur ing

the NGTDM so lu tion pro cess. The con struc tion of nat u -

ral gas pipe lines from Alaska and Can ada’s Mac Ken zie 

Delta are trig gered when mar ket prices ex ceed es ti -

mated pro ject costs. The flow of gas dur ing the peak

pe riod is used to es tab lish in ter re gional pipe line and

stor age ca pac ity re quire ments and the as so ci ated ex -

pan sion. These ca pac ity lev els pro vide an upper limit

for the flow during the offpeak period. 

Arcs be tween trans ship ment nodes, from the trans -

ship ment nodes to end–use sec tors, and from sup ply

sources to trans ship ment nodes are as signed tar iffs.

The tar iffs along in ter re gional arcs re flect res er va tion

(rep re sented with vol ume de pend ent curves) and us -

age fees and are es tab lished in the pipe line tar iff

submodule. The tar iffs on arcs to end–use sec tors rep -

re sent the in ter state pipe line tar iffs in the re gion, in tra -

state pipe line tar iffs, and dis trib u tor mark ups set in the

dis trib u tor tar iff submodule. Tar iffs on arcs from sup ply

sources rep re sent gath er ing charges or other dif fer en -

tials be tween the price at the sup ply source and the re -

gional mar ket hub. The tar iff as so ci ated with in ject ing,

stor ing, and with draw ing from stor age is as signed to

the arc rep re sent ing net stor age with draw als in the

peak pe riod. Dur ing the pri mary so lu tion pro cess in the

in ter state trans mis sion submodule, the tar iffs along an

in ter re gional arc are added to the price at the source

node to ar rive at a price for the gas along the arc right

be fore it reaches its des ti na tion node. 

Interstate Transmission Submodule 

The in ter state trans mis sion submodule (ITS) is the

main in te grat ing mod ule of NGTDM. One of its ma jor

func tions is to sim u late the nat u ral gas price de ter mi na -

tion pro cess. ITS brings to gether the ma jor eco nomic

fac tors that in flu ence re gional nat u ral gas trade on a

sea sonal ba sis in the United States, the bal anc ing of

the de mand for and the do mes tic sup ply of nat u ral gas,

in clud ing com pe ti tion from im ported nat u ral gas. These 

are ex am ined in com bi na tion with the rel a tive prices as -

so ci ated with mov ing the gas from the pro ducer to the

end user where and when (peak ver sus offpeak) it is  
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NGTDM Outputs Inputs from NEMS Exogenous Inputs

Nat u ral gas de liv ered prices
Do mes tic and Ca na dian nat u ral gas wellhead 
  prices
Do mes tic nat u ral gas pro duc tion
Mex i can and liq ue fied nat u ral gas im ports and ex ports
Ca na dian nat u ral gas im ports and pro duc tion
Lease and plant fuel con sump tion
Pipe line and dis tri bu tion tar iffs
In ter re gional nat u ral gas flows
Stor age and pipe line ca pac ity ex pan sion
Sup ple men tal gas production

Nat u ral gas de mands
Do mes tic and a na dian nat u ral gas 
   sup ply curves
Mac ro eco nomic vari ables
As so ci ated-dis solved nat u ral gas
    production

His tor i cal con sump tion and flow pat terns
His tor i cal sup plies
Pipe line com pany-level fi nan cial data
Pipe line and stor age ca pac ity and uti li za tion
   data
His tor i cal end-use cit gate, and well head
   prices
State and Fed eral tax pa ram e ters
Pipe line and stor age ex pan sion cost data
Liq ue fied nat u ral gas sup ply curves
Can ada and Mex ico con sump tion projections
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needed. In the pro cess, ITS sim u lates the de ci -

sion–mak ing pro cess for ex pand ing pipe line and/or

sea sonal stor age ca pac ity in the U.S. gas mar ket, de -

ter min ing the amount of pipe line and stor age ca pac ity

to be added be tween or within re gions in NGTDM. Stor -

age serves as the pri mary link be tween the two sea -

sonal pe ri ods rep re sented. 

ITS em ploys an it er a tive heu ris tic al go rithm, along with

an acy clic hi er ar chi cal rep re sen ta tion of the pri mary

arcs in the net work, to es tab lish a mar ket equi lib rium

so lu tion. Given the con sump tion lev els from other

NEMS mod ules, the ba sic pro cess fol lowed by ITS in -

volves first es tab lish ing the back ward flow of nat u ral

gas in each pe riod from the con sum ers, through the

net work, to the pro duc ers, based pri mar ily on the rel a -

tive prices of fered for the gas from the pre vi ous ITS it er -

a tion. This pro cess is per formed for the peak pe riod first 

since the net with draw als from stor age dur ing the peak

pe riod will es tab lish the net in jec tions dur ing the

offpeak pe riod. Sec ond, us ing the model’s sup ply

curves, well head and im port prices are set cor re spond -

ing to the de sired pro duc tion vol umes. Also, us ing the

pipe line and stor age tar iffs from the pipe line tar iff

submodule, pipe line and stor age tar iffs are set cor re -

spond ing to the as so ci ated flow of gas, as de ter mined

in the first step. These prices are then trans lated from

the pro duc ers, back through the net work, to the city

gate and the end us ers, by add ing the ap pro pri ate tar -

iffs along the way. A re gional stor age tar iff is added to

the price of gas in jected into stor age in the offpeak to

ar rive at the price of the gas when with drawn in the

peak pe riod. This pro cess is then re peated un til the so -

lu tion has con verged. Fi nally, de liv ered prices are de -

rived for res i den tial, com mer cial, and trans por ta tion

cus tom ers, as well as for both core and noncore in dus -

trial and elec tric gen er a tion sec tors us ing the dis trib u tor 

tar iffs pro vided by the dis trib u tor tar iff submodule.

Pipeline Tariff Submodule 

The pipe line tar iff submodule (PTS) pro vides us age

fees and vol ume de pend ent curves for com put ing unit -

ized res er va tion fees (or tar iffs) for in ter state trans por -

ta tion and stor age ser vices within the ITS. These

curves ex tend be yond cur rent ca pac ity lev els and re -

late in cre men tal pipe line or stor age ca pac ity ex pan sion 

to cor re spond ing es ti mated rates. The un der ly ing ba sis 

for each tar iff curve in the model is a pro jec tion of the

as so ci ated reg u lated rev e nue re quire ment. Econo-

met ri cally es ti mated equa tions within a gen eral ac -

count ing frame work are used to track costs and com -

pute rev e nue re quire ments as so ci ated with both

res er va tion and us age fees un der cur rent rate de sign

and reg u la tory sce nar ios. Other than an as sort ment of

mac ro eco nomic in di ca tors, the pri mary in put to PTS

from other mod ules in NEMS is pipe line and stor age

ca pac ity  uti li za tion and ex pan sion in the pre vi ous pro -

jec tion year. 

Once an ex pan sion is pro jected to oc cur, PTS cal cu -

lates the re sult ing im pact on the rev e nue re quire ment.

PTS as sumes rolled–in (or av er age), not in cre men tal,

rates for new ca pac ity. The pipe line tar iff curves gen er -

ated by PTS are used within the ITS when de ter min ing

the rel a tive cost of pur chas ing and mov ing gas from

one source ver sus an other in the peak and offpeak

sea sons. 

Distributor Tariff Submodule 

The dis trib u tor tar iff submodule (DTS) sets dis trib u tor

mark ups charged by lo cal dis tri bu tion com pa nies for

the dis tri bu tion of nat u ral gas from the city gate to the

end user.  For those that do not typ i cally pur chase gas

through a lo cal dis tri bu tion com pany, this markup rep -

re sents the dif fer en tial be tween the citygate and de liv -

ered price. End–use dis tri bu tion ser vice is

dis tin guished within the DTS by sec tor (res i den tial,

com mer cial, in dus trial, elec tric gen er a tors, and trans -

por ta tion), sea son (peak and offpeak), and ser vice type 

(core and noncore). 

Dis trib u tor tar iffs for all but the trans por ta tion sec tor are

set us ing econometrically es ti mated equa tions. The

nat u ral gas ve hi cle sec tor mark ups are cal cu lated sep -

a rately for fleet and per sonal ve hi cles and ac count for

dis tri bu tion to de liv ery sta tions, re tail mark ups, and fed -

eral and state mo tor fu els taxes.

Natural Gas Imports and Exports

Liq ue fied nat u ral gas im ports for the U.S., Can ada, and

Baja, Mex ico are set at the be gin ning of each NEMS it -

er a tion within the NGTDM by eval u at ing sea sonal east

and west sup ply curves, based on out puts from EIA’s

In ter na tional Nat u ral Gas Model, at as so ci ated

regasification tail gate prices set in the pre vi ous NEMS

it er a tion.  A shar ing al go rithm is used to al lo cate the re -

sult ing im port vol umes to par tic u lar re gions.  LNG ex -

ports to Ja pan from Alaska are set ex og e nously by the

OGSM.

The Mex ico model is largely based on ex og e nously

spec i fied as sump tions about con sump tion and pro duc -

tion growth rates and LNG im port lev els.  For the most

part, nat u ral gas im ports from Mex ico are set ex og e -

nously for each of the three bor der cross ing points with

Natural Gas Transmission And Distribution Module
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the United States, with the ex cep tion of any gas that is

im ported into Baja, Mex ico in liq uid form only to be ex -

ported to the United States.  Ex ports to Mex ico from the

United States are es tab lished be fore the NGTDM

equilibrates and rep re sent the re quired level to bal ance 

the as sumed con sump tion in (and ex ports from) Mex -

ico against do mes tic pro duc tion and LNG im ports.  The

pro duc tion lev els are also largely as sump tion based,

but are set to vary with changes in the ex pected well -

head price in the United States.  

A node for east and west Can ada is in cluded in the

NGTDM equil i bra tion net work, as well as seven bor der

cross ings into the United States.  The model in cludes a 

rep re sen ta tion/ac count ing of the U.S. bor der cross ing

pipe line ca pac ity, east and west sea sonal stor age

trans fers, east and west con sump tion, east and west

LNG im ports, east ern pro duc tion, con ven tional/tight

sands pro duc tion in the west, and coalbed/shale pro -

duc tion.  Im ports from the United States, con ven tional

pro duc tion in east ern Can ada,  and base level nat u ral 

gas con sump tion (which var ies with the world oil price)

are set ex og e nously.  Con ven tional/tight sands pro duc -

tion in the west is set us ing a sup ply curve from the

OGSM.  Coalbed and shale gas pro duc tion are ef fec -

tively based on an as sumed pro duc tion growth rate

which is ad justed with re al ized prices.

Natural Gas Transmission And Distribution Module
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Petro leum Market Mod ule



The PMM rep re sents domestic refinery operations and

the marketing of liq uid fu els  to  consumption  regions. 

PMM solves for liq uid fuel prices, crude oil and product

import activity (in conjunction with the IEM and the

OGSM), and domestic refinery capacity expansion and

fuel consumption. The so lu tion sat is fies the demand for

liq uid fu els, incorporating the prices for raw material in -

puts, im ported liq uid fu els, cap i tal investment, as well

as the domestic production of crude oil, natural gas liq -

uids, and other un con ven tional re fin ery inputs. The

relationship of PMM to other NEMS modules is

illustrated in Figure 16.

The PMM is a re gional,  lin ear pro gram ming for mu la tion

of the five Pe tro leum Administration for De fense Dis tricts

(PADDs) (Fig ure 17).  For each re gion two dis tinct re -

finery are mod eled. One is highly com plex us ing over

40 dif fer ent refinrry pro cesses, while the sec ond is de -

fined as a sim ple re fin ery that pro vides mar ginal cost

eco nom ics.  Re fin ing ca pac ity is al lowed to ex pand in

each re gion, but the model does not dis tin guish between 

ad di tions to ex ist ing re fin er ies or the build ing of new fa cil i -

ties. In vest ment cri te ria are de vel oped ex og e nously, al -

though the de ci sion to in vest is endogenous.

PMM as sumes that the pe tro leum re fin ing and marketing

in dus try is com pet i tive. The mar ket will move to ward

lower-cost re fin ers who have ac cess to crude oil and mar -

kets. The se lec tion of crude oils, re fin ery pro cess  uti li za -

tion,  and  lo gis tics (trans por ta tion) will ad just to min i mize

the over all cost of sup ply ing the mar ket with liq uid fu els.

PMM's model for mu la tion re flects the op er a tion of do -

mes tic liquuid fu els. If demand is un usu ally high in one

re gion, the price will in crease, driv ing down de mand and 

pro vid ing economic in cen tives for bring ing sup plies in

from other re gions, thus re stor ing the sup ply and de mand

bal ance.

Ex ist ing reg u la tions con cern ing prod uct types and

spec i fi ca tions, the cost of en vi ron men tal com pli ance,

and Fed eral and State taxes are also mod eled. PMM

in cor po rates pro vi sions from the En ergy In de pend ence 

and Se cu rity Act of 2007 (EISA2007) and the En ergy

Pol icy Act of 2005 (EPACT05). The costs of pro duc ing

new for mu la tions of gas o line and die sel fuel as a re sult

of the CAAA90 are de ter mined within the lin ear-pro -

gram ming rep re sen ta tion by in cor po rat ing spec i fi ca -

tions and de mands for these fuels.

PMM also in cludes the in ter ac tion be tween the do mes -

tic and in ter na tional mar kets.  Prior to AEO2009, PMM

pos tu lated en tirely ex og e nous prices for oil on the in ter -

na tional mar ket (the world oil price).  Sub se quent AEOs 

in clude an In ter na tional En ergy Mod ule (IEM) that es ti -

mates sup ply curves for im ported crude oils and prod -

ucts based on, among other fac tors, U.S. par tic i pa tion

in global trade of crude oil and liq uid fu els.

Re gions

PMM mod els U.S. crude oil re fin ing ca pa bil i ties based

on the five PADDs which were es tab lished dur ing

World War II and are still used by EIA for data col lec tion

and anal y sis. The use of PADD data per mits PMM to take 

full ad van tage of EIA’s historical da ta base and al lows

anal y sis within the same frame work used by the pe tro -

leum in dus try.
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PMM Outputs Inputs from NEMS Exogenous Inputs

Pe tro leum prod uct prices
Crude oil im ports and ex ports
Crude oil de mand
Pe tro leum prod uct im ports and ex ports
Re fin ery ac tiv ity and fuel use
Eth a nol de mand and price
Com bined heat and power (CHP)
Nat u ral gas plant liq uids pro duc tion
Pro cess ing gain
Ca pac ity ad di tions
Cap i tal ex pen di tures
Revenues

Pe tro leum prod uct de mand by sec tor
Do mes tic crude oil pro duc tion
World oil price
In ter na tional crude oil sup ply curves
In ter na tional prod uct sup ply curves
In ter na tional ox y gen ates sup ply curves
Nat u ral gas prices
Elec tric ity prices
Nat u ral glas pro duc tion
Mac ro eco nomic vari ables
Bio mass sup ply curves
Coal prices

Pro cess ing unit op er at ing pa ram e ters
Pro cess ing unit ca pac i ties
Prod uct spec i fi ca tions
Op er at ing costs
Cap i tal costs
Trans mis sion and dis tri bu tion costs
Fed eral and State taxes
Ag ri cul tural feedstock quan ti ties and costs
CHP unit op er at ing pa ram e ters
CHP unit capacities
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Fig ure 16. Pe tro leum Mar ket Mod ule Structure
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Fig ure 17. Pe tro leum Ad min is tra tion for De fense Districts



Prod uct Cat e go ries

Prod uct cat e go ries, spec i fi ca tions and rec ipe blends

mod eled in PMM in clude the fol low ing:

Liquid Fuels Mod eled in PMM

Fuel Use

PMM de ter mines re fin ery fuel use by re fin ing re gion for

pur chased elec tric ity, nat u ral gas, dis til late fuel, re sid -

ual fuel, liq ue fied pe tro leum gas, and other pe tro leum.

The fu els (nat u ral gas, pe tro leum, other gas eous fu els,

and other) con sumed within the re fin ery to gen er ate

elec tric ity from CHP fa cil i ties are also de ter mined.

Crude Oil Cat e go ries

Both do mes tic and im ported crude oils are ag gre gated

into five cat e go ries as de fined by API grav ity and sul fur

con tent ranges.  This ag gre ga tion of crude oil types al -

lows PMM to ac count for changes in crude oil com po si -

tion over time. A com pos ite crude oil with the

ap pro pri ate yields and qual i ties is de vel oped for each

cat e gory by av er ag ing char ac ter is tics of for eign and

do mes tic crude oil streams.

Re fin ery Pro cesses

The fol low ing dis tinct pro cesses are rep re sented in the

PMM:

Natural Gas Plants

Nat u ral gas plant liq uids (eth ane, pro pane, nor mal bu -

tane, iso bu tane, and nat u ral gas o line) pro duced from

nat u ral gas pro cess ing plants are mod eled in PMM.

Their pro duc tion lev els are based on the pro jected nat -

u ral gas sup ply and his tor i cal liq uids yields from var i ous 

nat u ral gas sources. These prod ucts move di rectly into

the mar ket to meet de mand (e.g., for fuel or pet ro chem -

i cal feedstocks) or are in puts to the re fin ery.

Petroleum Market Module
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Mo tor gas o line: conventional (oxygenated and
non-oxygentated), reformulated, and California
reformulated
Jet fu els: ker o sene-based
Dis til lates: kerosene, heating oil, low sulfur (LSD)
and ultra-low-sulfur (ULSD) highway diesel,
distillate fuel oil, and distillate fuel from various
non-crude feedstocks (coal, biomass, natural gas)
via the Fischer-Tropsch process (BTL, CTL, GTL)
Alternative Fuel: Biofuels [including ethanol,    
biodiesel (methyl-ester), renewable diesel,         
biomass-to-liquids (BTL)], coal-to-liquids (CTL),               
gas-to-liquids (GTL).
Re sid ual fu els: low sulfur and high sulfur residual
fuel oil
Liq ue fied pe tro leum gas (LPG): a light-end          
mixture used for fuel in a wide range of sectors
comprised primarily of propane
Natural gas plant:ethane, propane, iso and normal
butane, and pentanes plus (natural gasoline)
Pet ro chem i cal feedstocks
Other: as phalt and road oil, still gas, (refinery fuel)
pe tro leum coke, lu bes and waxes, special naphthas

1) Crude Oil Dis til la tion 
         a. At mo spheric Crude Unit
         b. Vac uum Crude Unit

2) Re sid ual Oil Up grad ing
         a. Coker - De layed, fluid
         b. Ther mal Cracker/Visbreaker
         c. Re sid uum Hydrocradker
         d. Sol vent Deasphalting

3) Crack ing
         a. Fluidized Cat a lytic Cracker
         b. Hydrocracker

4) Fi nal Prod uct Treat ing/Up grad ing
         a. Tra di tional Hydrotreating
         b. Mod ern Hydrotreating
         c. Alkylation
         d. Jet Fuel Pro duc tion
         e. Ben zene Sat u ra tion
         f. Cat a lytic Re form ing

5) Light End Treat ing
         a. Sat u rated Gas Plant
         b. Isomerization
         c. Dimerization/Poly mer iza tion
         d. C2-C5 Dehydrogenation

6) Non-Fuel Pro duc tion
         a. Sul fur Plant
         b. Meth a nol Pro duc tion
         c. Oxgenate Pro duc tion
         d. Lube and Wax Pro duc tion
         e. Steam/Power Gen er a tion
         f.  Hy dro gen Pro duc tion
         g.  Aromatics Pro duc tion

7) Spe cialty Unit Op er a tions
         a. Olefins to Gas o line/Die sel
         b. Meth a nol to Olefins

8) Mer chant Fa cil i ties
         a. Coal/Gas/Bio mass to Liq uids
         b. Nat u ral Gas Plant
         c. Eth a nol Pro duc tion
         d. Biodiesel Plant



Biofuels

PMM con tains submodules which pro vide re gional sup -

plies and prices for biofuels: eth a nol (con ven -

tional/corn, ad vanced, cel lu losic) and var i ous forms of

bio mass-based die sel: FAME (methyl es ter), bio -

mass-to-liq uid (Fisher-Tropsch), and re new able

(“green”) die sel (hy dro ge na tion of veg e ta ble oils or

fats). Eth a nol is as sumed to be blended ei ther at 10

per cent into gas o line (con ven tional or re for mu lated) or

as E85. Food feedstock sup ply curves (corn, soy bean

oil, etc.) are up dated to USDA base line pro jec tions; bio -

mass feedstocks are drawn from the same sup ply

curves that also sup ply bio mass fuel to re new able

power gen er a tion within the Re new able Fu els Mod ule

of NEMS. The mer chant pro cess ing units which gen er -

ate the biofuels sup plies sum these feedstock costs

with other cost in puts (e.g., cap i tal, op er at ing). A ma jor

driv ing force be hind the pro duc tion of these biofuels is

the Re new able Fu els Stan dard un der EISA2007. De -

tails on the mar ket pen e tra tion of the ad vanced biofuels 

pro duc tion ca pac ity (such as cel lu losic eth a nol and

BTL) which are not yet com mer cial ized can be found in

the PMM doc u men ta tion. 

End-Use Mark ups

The lin ear pro gram ming por tion of the model pro vides unit

prices of prod ucts sold in the re fin ery re gions (re fin ery

gate) and in the de mand re gions (whole sale). End use

mark ups are added to pro duce a re tail price for each of

the Cen sus Di vi sions. The mark ups are based on an av -

er age of his tor i cal mark ups, de fined as the dif fer ence be -

tween the end-use prices by sec tor and the

cor re spond ing whole sale price for that prod uct. The av er -

age is cal cu lated us ing data from 2000 to the pres ent. Be -

cause of the lack of any con sis tent trend in the his tor i cal

end-use mark ups, the mark ups re main at the his tor i cal av -

er age level over the projection period.

State and Fed eral taxes are also added to transportation

fuel prices to de ter mine fi nal end-use prices.  Pre vi ous

tax trend anal y sis in di cates that state taxes in crease at

the rate of in fla tion, while Fed eral taxes do not.  In

PMM, there fore state taxes are held con stant in real

terms through out the pro jec tion while Fed eral taxes are 

felated at the rate of in fla tion.18

Gas o line Types

Mo tor ve hi cle fuel in PMM is cat e go rized into four gas o -

line blends (con ven tional, ox y gen ated con ven tional, re -

for mu lated, and Cal i for nia re for mu lated) and also E85.

While fed eral law does not man date gas o line to be ox y -

gen ated, all gas o line com ply ing with the Fed eral re for -

mu lated gas o line pro gram is as sumed to con tain 10

per cent eth a nol, while con ven tional gas o line may be

“clear” (no eth a nol) or used as E10. As the man date for

biofuels grows un der the Re new able Fu els Stan dard,

the pro por tion of con ven tional gas o line that is E10 also

gen er ally grows. Cal i for nia re for mu lated mo tor gas o -

line is as sumed to con tain 5.7% eth a nol in 2009 and 10

per cent there af ter in line with its ap proval of the use of

California’s Phase 3 reformulated gasoline.

EIA de fines E85 as a gas o line type but is treated as a

sep a rate fuel in PMM. The trans por ta tion mod ule in

NEMS pro vides PMM with a flex fuel ve hi cle (FFV) de -

mand, and PMM com putes a sup ply curve for E85. This 

curve in cor po rates E85 in fra struc ture and sta tion costs, 

as well as a logit re la tion ship be tween the E85 sta tion

avail abil ity and de mand of E85. In fra struc ture costs dic -

tate that the E85 sup plies emerge in the Mid west first,

fol lowed by an ex pan sion to the coasts.  

Ul tra–Low–Sul fur Die sel 

By def i ni tion, Ul tra Low Sul fur Die sel (ULSD) is high -

way die sel fuel that con tains no more than 15 ppm sul -

fur at the pump.  As of June 2006, 80 per cent of all

high way die sel pro duced or im ported into the United

States was re quired to be ULSD, while the re main ing

20 per cent con tained a max i mum of 500 parts per mil -

lion.  By De cem ber 1, 2010 all high way fuel sold at the

pump will be re quired to be ULSD.  Ma jor as sump tions

re lated to the ULSD rule are as fol lows:

• Highway die sel at the re fin ery gate will con tain a max i -

mum of 7-ppm sul fur. Al though sul fur con tent is lim ited

to 15 ppm at the pump, there is a gen eral consensus that 

re fin er ies will need to pro duce diesel be low 10 ppm sul -

fur in or der to al low for contamination dur ing the dis tri -

bu tion pro cess.

• De mand for high way grade die sel, both 500 and 15 ppm

com bined, is as sumed to be equiv a lent to the total

trans por ta tion dis til late de mand. His tor i cally, highway 

grade die sel sup plied has nearly matched to tal trans por -

ta tion dis til late sales, al though some high way grade

Petroleum Market Module
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18 http://www.eia.doe.gov/oiaf/archive/aeo07/leg_reg.html.



die sel has gone to non-transportation uses such as

con struc tion and ag ri cul ture.

Gas, Coal and Bio mass to Liq uids

Nat u ral gas, coal, and bio mass con ver sion to liq uid fu -

els is mod eled in the PMM based on a three step pro -

cess known as in di rect liq ue fac tion. This pro cess is

some times called Fischer-Tropsch (FT) liq ue fac tion af -

ter the in ven tors of the sec ond step. 

The liq uid fu els pro duced in clude four sep a rate prod -

ucts: FT light naph tha, FT heavy naph tha, FT ker o -

sene, and FT die sel. The FT des ig na tion is used to

dis tin guish these liq uid fu els from their pe tro leum coun -

ter parts. This is nec es sary due to the dif fer ent phys i cal

and chem i cal prop er ties of the FT fu els. For ex am ple,

FT die sel has a typ i cal cetane rat ing of ap prox i mately

70-75 while that of pe tro leum die sel is typ i cally much

lower (about 40). In ad di tion, the above pro duc tion

meth ods have dif fer ing im pacts with re gard to cur rent

and po ten tial leg is la tion, par tic u larly RFS and CO2.
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The coal mar ket mod ule (CMM) rep re sents the mining,

transportation, and pricing of coal, subject to end-use

demand. Coal supplies are differentiated by ther mal

grade, sul fur con tent, and min ing method (un der ground

and sur face). CMM also determines the minimum cost

pattern of coal supply to meet exogenously defined U.S.

coal export demands as a part of the world coal market.

Coal dis tri bu tion, from sup ply re gion to de mand re gion, is

projected on a cost-minimizing ba sis. The domestic

production and distribution of coal is pro jected for 14

demand regions and 14 supply regions (Figures 18 and

19).

The CMM com po nents are solved si mul ta neously. The

se quence of so lu tion among com po nents can be sum -

ma rized as fol lows. Coal sup ply curves are produced by

the coal pro duc tion submodule and in put to the coal dis tri -

bu tion submodule. Given the coal supply curves, dis tri bu -

tion costs, and coal de mands, the coal dis tri bu tion

submodule pro jects de liv ered coal prices.  The mod ule

is it er ated to con ver gence with re spect to equi lib rium

prices to all de mand sec tors. The struc ture of the CMM is 

shown in Figure 20.

Coal Production Submodule

This submodule pro duces an nual coal sup ply curves, re -

lat ing an nual pro duc tion to minemouth prices. The sup -

ply curves are con structed from an economet ric

anal y sis of prices as a func tion of pro duc tive ca pac ity,

ca pac ity uti li za tion, pro duc tiv ity, and var i ous fac tor in put

costs. A sep a rate sup ply curve is pro vided for sur face

and un derground min ing for all sig nif i cant pro duc tion by

coal ther mal grade (met al lur gi cal, bi tu mi nous,

subbituminous and lig nite), and sul fur level in each sup -

ply re gion. Each supply curve is as signed a unique heat,

sul fur, and mer cury con tent, and car bon di ox ide emis -

sions fac tor.  Con struct ing curves for the coal types avail -

able in each re gion yields a to tal of 40 curves that are

used as inputs to the coal distribution submodule.

Supply curves are updated for each year in the pro jec tion

pe riod.  Coal sup ply curves are shared with both the EMM 

and the PMM.  For de tailed as sump tions, please see the

As sump tions to the An nual En ergy Out look up dated each 

year with the re lease of the AEO. 

Coal Distribution Submodule: Domestic Component

The coal dis tri bu tion submodule is a lin ear pro gram that

de ter mines the least-cost sup plies of coal for a given set

of coal de mands by de mand re gion and sector, ac count -

ing for trans por ta tion costs from the different sup ply

curves, heat and sul fur con tent, and ex isting coal sup ply

con tracts. Ex ist ing sup ply con tracts be tween coal pro -

duc ers and elec tric ity gen er a tors are in cor po rated in

the model as min i mum flows for sup ply curves to coal

de mand re gions.  De pend ing on the spe cific sce nario,

coal dis tri bu tion may also be af fected by any re stric -

tions on sul fur di ox ide, mer cury, or car bon di ox ide

emis sions.

Coal trans por ta tion costs are sim u lated us ing interre -

gional coal trans por ta tion costs de rived by subtracting

re ported minemouth costs for each sup ply curve from

re ported de liv ered costs for each de mand type in each

de mand re gion. For the elec tric ity sec tor, higher trans -

por ta tion costs are as sumed for mar ket ex pan sion in

cer tain sup ply and de mand re gion com bi na tions.

Trans por ta tion rates are modified over time us ing

econometrically based mul ti pli ers which con sid ers the

im pact of chang ing pro duc tiv ity and equip ment costs.

When die sel fuel prices are suf fi ciently high, a fuel sur -

charge is also added to the trans por ta tion costs.

Coal Distribution Submodule: International
Component

The in ter na tional com po nent of the coal dis tri bu tion

submodule pro jects quan ti ties of coal im ported and ex -

ported from the United States. The quan ti ties are de ter -

mined within a world trade con text, based on as sumed

char ac ter is tics of for eign coal sup ply and de mand. The

com po nent disaggregates coal into 17 ex port re gions

and 20 im port re gions, as shown inTable 13.  The sup -

ply and de mand com po nents of world coal trade are
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CMM Outputs Inputs from NEMS Exogenous Inputs

Coal pro duc tion and dis tri bu tion
Minemouth coal prices
End-use coal prices
U.S. coal ex ports and im ports
Trans por ta tion rates
Coal qual ity by source, des ti na tion, and end-use sec tor
World coal flows

Coal de mand
In ter est rates
Price in di ces and de fla tors
Die sel fuel prices
Elec tric ity prices

Base year pro duc tion, pro duc tive ca pac ity, ca pac ity 
   uti li za tion,  prices, and coal qual ity pa ram e ters
Con tract quan ti ties
La bor pro duc tiv ity
La bor costs
Do mes tic trans por ta tion costs
In ter na tional trans por ta tion costs
In ter na tional sup ply curves
In ter na tional coal im port demands



seg mented into two sep a rate mar kets: 1) cok ing coal,

which is used for the pro duc tion of coke for the

steelmaking pro cess; and 2) steam coal, which is pri -

mar ily con sumed in the elec tric ity and in dus trial

sec tors.

The in ter na tional com po nent is solved as part of the lin ear

pro gram that optimizes U.S. coal sup ply. It de ter mines

world coal trade dis tri bu tion by min i miz ing over all costs

for coal, sub ject to coal sup ply prices in the United 

States and other coal ex port ing re gions plus trans por -

ta tion costs.  The com po nent also in cor po rates sup ply

di ver sity con straints that re flect the ob served tendency

of coal-im port ing coun tries to avoid ex ces sive de pend -

ence upon one source of sup ply, even at a some what

higher cost.
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Fig ure 18. Coal Mar ket Mod ule De mand Regions
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Fig ure 19. Coal Mar ket Mod ule Sup ply Regions
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Coal Export Regions Coal Import Regions

U.S. East Coast U.S. East Coast

U.S. Gulf Coast U.S. Gulf Coast

U.S. Southwest and West U.S. Northern Interior

U.S. Northern Interior U.S. Noncontiguous

U.S. Noncontiguous Eastern Canada

Australia Interior Canada

Western Canada Scandinavia

Interior Canada United Kingdom and Ireland

Southern Africa Germany and Austria

Poland Other Northwestern Europe

Eurasia-exports to Europe Iberia

Eurasia-exports to Asia Italy

China Mediterranean and Eastern Europe

Colombia Mexico

Indonesia South America

Venezuela Japan

Vietnam East Asia

China and Hong Kong

ASEAN (Association of Southeast Asian Nations)

India and South Asia

Ta ble 13. Coal Ex port Component
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Contact Information

The Natural Gas Transmission and Distribution Module (NGTDM) of the National Energy 
Modeling System is developed and maintained by the U.S. Energy Information Administration 
(EIA), Office of Petroleum, Gas, and Biofuels Analysis.  General questions about the use of the 
model can be addressed to Michael Schaal (202) 586-5590, Director of the Office of Petroleum, 
Gas, and Biofuels Analysis.  Specific questions concerning the NGTDM may be addressed to:

Joe Benneche, EI-33
Forrestal Building, Room 2H026
1000 Independence Ave., S.W.
Washington, DC 20585
(202/586-6132)
Joseph.Benneche@eia.doe.gov

This report documents the archived version of the NGTDM that was used to produce the natural 
gas forecasts presented in the Annual Energy Outlook 2011, (DOE/EIA-0383(2011).  The 
purpose of this report is to provide a reference document for model analysts, users, and the 
public that defines the objectives of the model, describes its basic approach, and provides detail 
on the methodology employed. 

The model documentation is updated annually to reflect significant model methodology and 
software changes that take place as the model develops.  The next version of the documentation 
is planned to be released in the first quarter of 2012.
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Update Information

This edition of the model documentation of the Natural Gas Transmission and Distribution 
Module (NGTDM) reflects changes made to the module over the past year for the Annual 

Energy Outlook 2011.  Aside from general data and parameter updates, the notable changes 
include the following:

Reestimated equations for distributor and pipeline tariffs.

Updated coalbed and shale undiscovered resource assumptions in Canada.

Moved representation of conventional and tight natural gas production in Western 
Canada from the Oil and Gas Supply Module to the NGTDM.



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module iii

Contents

1. Background/Overview .........................................................................................................1
NGTDM Overview ..............................................................................................................2
NGTDM Objectives.............................................................................................................4
Overview of the Documentation Report ..............................................................................5

2. Demand and Supply Representation .................................................................................7
A Brief Overview of NEMS and the NGTDM....................................................................7
Natural Gas Demand Representation.................................................................................11
Domestic Natural Gas Supply Interface and Representation.............................................15
Natural Gas Imports and Exports Interface and Representation........................................22
Alaska Natural Gas Routine...............................................................................................32

3. Overview of Solution Methodology ..................................................................................38
NGTDM Regions and the Pipeline Flow Network............................................................38
Overview of the NGTDM Submodules and Their Interrelationships................................44

4. Interstate Transmission Submodule Solution Methodology..........................................52
Network Characteristics in the ITS....................................................................................52
Input Requirements of the ITS...........................................................................................54
Heuristic Process................................................................................................................56

5. Distributor Tariff Submodule Solution Methodology....................................................83
Residential and Commercial Sectors .................................................................................83
Industrial Sector .................................................................................................................86
Electric Generation Sector .................................................................................................87
Transportation Sector.........................................................................................................89

6. Pipeline Tariff Submodule Solution Methodology..........................................................94
Historical Year Initialization Phase ...................................................................................97
Forecast Year Update Phase ............................................................................................112
Storage Tariff Routine Methodology...............................................................................136
Alaska and MacKenzie Delta Pipeline Tariff Routine ....................................................152

7. Model Assumptions, Inputs, and Outputs .....................................................................157
Assumptions.....................................................................................................................157
Model Inputs ....................................................................................................................162
Model Outputs .................................................................................................................165

Appendix A.  NGTDM Model Abstract .............................................................................167
Appendix B.  References......................................................................................................175
Appendix C.  NEMS Model Documentation Reports.......................................................177
Appendix D.  Model Equations...........................................................................................178
Appendix E.  Model Input Variables Mapped to Input Data Files .................................181
Appendix F.  Derived Data..................................................................................................188
Appendix G.  Variable Cross Reference Table .................................................................238
Appendix H.  Coal-to-Gas Submodule...............................................................................240



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module iv

Tables

Table 2-1. LNG Regasification Regions ....................................................................................32
Table 3-1. Demand and Supply Types at Each Transshipment Node in the Network...............42
Table 6-1. Illustration of Fixed and Variable Cost Classification............................................106
Table 6-2. Approaches to Rate Design.....................................................................................107
Table 6-3a. Illustration of Allocation of Fixed Costs to Rate Components...............................108
Table 6-3b. Illustration of Allocation of Variable Costs to Rate Components ..........................108
Table 6-4. Approach to Projection of Rate Base and Capital Costs.........................................115
Table 6-5. Approach to Projection of Revenue Requirements.................................................125
Table 6-6. Percentage Allocation Factors for a Straight Fixed Variable (SFV) Rate Design..131
Table 6-7. Approach to Projection of Storage Cost-of-Service ...............................................137

Figures

Figure 1-1. Schematic of the National Energy Modeling System.................................................2
Figure 1-2. Natural Gas Transmission and Distribution Module (NGTDM) Regions..................4
Figure 2-1. Primary Data Flows Between Oil and Gas Modules of NEMS..................................8
Figure 2-2. Electricity Market Module (EMM) Regions.............................................................13
Figure 2-3. Natural Gas Transmission and Distribution Module/Electricity Market Module 

(NGTDM/EMM) Regions ........................................................................................14
Figure 2-4. Oil and Gas Supply Module (OGSM) Regions ........................................................17
Figure 2-5. Natural Gas Transmission and Distribution Module/Oil and Gas Supply Module 

(NGTDM/OGSM) Regions ......................................................................................17
Figure 2-7. Generic Supply Curve...............................................................................................18
Figure 3-1. Natural Gas Transmission and Distribution Module Network .................................39
Figure 3-2. Transshipment Node .................................................................................................40
Figure 3-3. Variables Defined and Determined for Network Arc ...............................................43
Figure 3-4. NGTDM Process Diagram........................................................................................46
Figure 3-5. Principal Buyer/Seller Transaction Paths for Natural Gas Marketing......................48
Figure 4-1. Network “Tree” or Hierarchical, Acyclic Network of Primary Arcs .......................53
Figure 4-2. Simplified Example of Supply and Storage Links Across Networks .......................54
Figure 4-3. Interstate Transmission Submodule System Diagram ..............................................59
Figure 6-1. Pipeline Tariff Submodule System Diagram ............................................................95



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module v

Abbreviations and Acronyms

AEO Annual Energy Outlook
Bcf Billion cubic feet
Bcfd Billion cubic feet per day
BTU British Thermal Unit
DTS Distributor Tariff Submodule
EMM Electricity Market Module
GAMS Gas Analysis Modeling System
IFFS Integrated Future Forecasting System
ITS Interstate Transmission Submodule
MEFS Mid-term Energy Forecasting System
MMBTU Million British thermal units
Mcf Thousand cubic feet
MMcf Million cubic feet
MMcfd Million cubic feet per day
MMBBL Million barrels
NEMS National Energy Modeling System
NGA Natural Gas Annual
NGM Natural Gas Monthly
NGTDM Natural Gas Transmission and Distribution Module
OGSM Oil and Gas Supply Module
PIES Project Independence Evaluation System
PMM Petroleum Market Module
PTS Pipeline Tariff Submodule
STEO Short-Term Energy Outlook
Tcf Trillion cubic feet
WCSB Western Canadian Sedimentary Basin



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module 1

1. Background/Overview

The Natural Gas Transmission and Distribution Module (NGTDM) is the component of the 
National Energy Modeling System (NEMS) that is used to represent the U.S. domestic natural 
gas transmission and distribution system.  NEMS was developed by the former Office of 
Integrated Analysis and Forecasting of the U.S. Energy Information Administration (EIA) and is 
the third in a series of computer-based, midterm energy modeling systems used since 1974 by the 
EIA and its predecessor, the Federal Energy Administration, to analyze and project U.S. 
domestic energy-economy markets. From 1982 through 1993, the Intermediate Future 
Forecasting System (IFFS) was used by the EIA for its integrated analyses.  Prior to 1982, the 
Midterm Energy Forecasting System (MEFS), an extension of the simpler Project Independence 
Evaluation System (PIES), was employed.  NEMS was developed to enhance and update EIA’s 
modeling capability.  Greater structural detail in NEMS permits the analysis of a broader range 
of energy issues.  While NEMS was initially developed in 1992 the model is updated each year, 
from simple historical data updates to complete replacements of submodules.

The time horizon of NEMS is the midterm period that extends approximately 25 years to year 
2035.  In order to represent the regional differences in energy markets, the component modules 
of NEMS function at regional levels appropriate for the markets represented, with subsequent 
aggregation/disaggregation to the Census Division level for reporting purposes.  The projections 
in NEMS are developed assuming that energy markets are in equilibrium1 using a recursive price 
adjustment mechanism.2.  For each fuel and consuming sector, NEMS balances energy supply 
and demand, accounting for the economic competition between the various fuels and sources.  
NEMS is organized and implemented as a modular system.3 The NEMS modules represent each 
of the fuel supply markets, conversion sectors (e.g., refineries and power generation), and end-
use consumption sectors of the energy system.  NEMS also includes macroeconomic and 
international modules.  A routine was also added to the system that simulates a carbon emissions 
cap and trade system with annual fees to limit carbon emissions from energy-related fuel 
combustion. The primary flows of information between each of these modules are the delivered 
prices of energy to the end user and the quantities consumed by product, Census Division, and 
end-use sector.  The delivered fuel prices encompass all the activities necessary to produce, 
import, and transport fuels to the end user.  The information flows also include other data such as 
economic activity, domestic production activity, and international petroleum supply availability.

The integrating routine of NEMS controls the execution of each of the component modules.  The 
modular design provides the capability to execute modules individually, thus allowing 
independent analysis with, as well as development of, individual modules.  This modularity 
allows the use of the methodology and level of detail most appropriate for each energy sector.  
Each forecasting year, NEMS solves by iteratively calling each module in sequence (once in 
each NEMS iteration) until the delivered prices and quantities of each fuel in each region have 

1
Markets are said to be in equilibrium when the quantities demanded equal the quantities supplied at the same price; that is, at a 

price that sellers are willing to provide the commodity and consumers are willing to purchase the commodity. 
2The central theme of the approach used is that supply and demand imbalances will eventually be rectified through an 

adjustment in prices that eliminates excess supply or demand. 
3The NEMS is composed of 13 modules including a system integration routine. 
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converged within tolerance between the various modules, thus achieving an economic 
equilibrium of supply and demand in the consuming sectors.  Module solutions are reported 
annually through the midterm horizon.  A schematic of the NEMS is provided in Figure 1-1,
while a list of the associated model documentation reports is in Appendix C, including a report 
providing an overview of the whole system.

Figure 1-1. Schematic of the National Energy Modeling System
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NGTDM Overview

The NGTDM module within the NEMS represents the transmission, distribution, and pricing of 
natural gas.  Based on information received from other NEMS modules, the NGTDM also 
includes representations of the end-use demand for natural gas, the production of domestic 
natural gas, and the availability of natural gas traded on the international market.  The NGTDM 
links natural gas suppliers (including importers) and consumers in the lower 48 States and across 
the Mexican and Canadian borders via a natural gas transmission and distribution network, while 
determining the flow of natural gas and the regional market clearing prices between suppliers 
and end-users.  For two seasons of each forecast year, the NGTDM determines the production,
flows, and prices of natural gas within an aggregate representation of the U.S./Canadian pipeline 
network, connecting domestic and foreign supply regions with 12 U.S. and 2 Canadian demand 
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regions.  Since the NEMS operates on an annual (not a seasonal) basis, NGTDM results are 
generally passed to other NEMS modules as annual totals or quantity-weighted annual averages.  
Since the Electricity Market Module has a seasonal component, peak and off-peak4 prices are 
also provided for natural gas to electric generators. 

Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the 
three main elements of the natural gas market:  the supply element, the demand element, and the 
transmission and distribution network that links them.  The methodology employed allows for 
the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline 
network and the identification of primary pipeline and storage capacity expansion requirements.  
Key components of interstate pipeline tariffs are projected, along with distributor tariffs.

The lower-48 demand regions represented are the 12 NGTDM regions (Figure 1-2).  These 
regions are an extension of the 9 Census Divisions, with Census Division 5 split into South 
Atlantic and Florida, Census Division 8 split into Mountain and Arizona/New Mexico, Census 
Division 9 split into California and Pacific, and Alaska and Hawaii handled independently.  
Within the U.S. regions, consumption is represented for five end-use sectors:  residential, 
commercial, industrial, electric generation, and transportation (or natural gas vehicles), with the 
industrial and electric generator sectors further distinguished by core and noncore segments.  
One or more domestic supply region is represented in each of the 12 NGTDM regions.  Canadian 
supply and demand are represented by two interconnected regions -- East Canada and West 
Canada -- which connect to the lower 48 regions via seven border crossing nodes.  The 
demarcation of East and West Canada is at the Manitoba/Ontario border.  In addition, the model 
accounts for the potential construction of a pipeline from Alaska to Alberta and one from the 
MacKenzie Delta to Alberta, if market prices are high enough to make the projects economic.  
The representation of the natural gas market in Canada is much less detailed than for the United 
States since the primary focus of the model is on the domestic U.S. market.  Potential liquefied 
natural gas (LNG) imports into North America are modeled for each of the coastal regions 
represented in the model, including seven regions in the United States, a potential import point in 
the Bahamas, potential import points in eastern and western Canada, and in western Mexico (if 
destined for the United States).5 Any LNG facilities in existence or under construction are 
represented in the model.  However, the model does not project the construction of any 
additional facilities. Finally, LNG exports from Alaska’s Nikiski plant are included, as well as 
three import/export border crossings at the Mexican border.

The module consists of three major components:  the Interstate Transmission Submodule (ITS), 
the Pipeline Tariff Submodule (PTS), and the Distributor Tariff Submodule (DTS).  The ITS is 
the integrating submodule of the NGTDM.  It simulates the natural gas price determination 
process by bringing together all major economic factors that influence regional natural gas trade 
in the United States, including pipeline and storage capacity expansion decisions.  The Pipeline 
Tariff Submodule (PTS) generates a representation of tariffs for interstate transportation and 
storage services, both existing and expansions.  The Distributor Tariff Submodule (DTS) 
generates markups for distribution services provided by local distribution companies and for 

4The peak period covers the period from December through March; the off-peak period covers the remaining months.
5The LNG imports into Mexico to serve the Mexico market are set exogenously.
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transmission services provided by intrastate pipeline companies.  The modeling techniques 
employed are a heuristic/iterative process for the ITS, an accounting algorithm for the PTS, and a 
series of historically based and econometrically based equations for the DTS.

Figure 1-2. Natural Gas Transmission and Distribution (NGTDM) Regions

NGTDM Objectives

The purpose of the NGTDM is to derive natural gas delivered and wellhead prices, as well as 
flow patterns for movements of natural gas through the regional interstate network.  Although 
the NEMS operates on an annual basis, the NGTDM was designed to be a two-season model, to 
better represent important features of the natural gas market.  The prices and flow patterns are 
derived by obtaining a market equilibrium across the three main elements of the natural gas 
market:  the supply element, the demand element, and the transmission and distribution network 
that links them.  The representations of the key features of the transmission and distribution 
network are the focus of the various components of the NGTDM.  These key modeling 
objectives/capabilities include:
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Represent interregional flows of gas and pipeline capacity constraints

Represent regional and import supplies

Determine the amount and the location of required additional pipeline and storage 
capacity on a regional basis, capturing the economic tradeoffs between pipeline and 
storage capacity additions

Provide a peak/off-peak, or seasonal analysis capability

Represent transmission and distribution service pricing

Overview of the Documentation Report

The archived version of the NGTDM that was used to produce the natural gas forecasts used in 
support of the Annual Energy Outlook 2011, DOE/EIA-0383(2011) is documented in this report.  
The purpose of this report is to provide a reference document for model analysts, users, and the 
public that defines the objectives of the model, describes its basic design, provides detail on the 
methodology employed, and describes the model inputs, outputs, and key assumptions.  It is 
intended to fulfill the legal obligation of the EIA to provide adequate documentation in support 
of its models (Public Law 94-385, Section 57.b.2).  Subsequent chapters of this report provide:

A description of the interface between the NEMS and the NGTDM and the representation 
of demand and supply used in the module (Chapter 2)

An overview of the solution methodology of the NGTDM (Chapter 3)

The solution methodology for the Interstate Transmission Submodule (Chapter 4)

The solution methodology for the Distributor Tariff Submodule (Chapter 5)

The solution methodology for the Pipeline Tariff Submodule (Chapter 6)

A description of module assumptions, inputs, and outputs (Chapter 7).

The archived version of the model is available through the National Energy Information Center 
(202-586-8800, infoctr@eia.doe.gov) and is identified as NEMS2011 (part of the National 
Energy Modeling System archive package as archived for the Annual Energy Outlook 2011,
DOE/EIA-0383(2011)).

The document includes a number of appendices to support the material presented in the main 
body of the report.  Appendix A presents the module abstract.  Appendix B lists the major 
references used in developing the NGTDM.  Appendix C lists the various NEMS Model 
Documentation Reports for the various modules that are mentioned throughout the NGTDM 
documentation.  A mapping of equations presented in the documentation to the relevant 
subroutine in the code is provided in Appendix D.  Appendix E provides a mapping between the 
variables that are assigned values through READ statements in the module and the data input 
files that are read.  The input files contain detailed descriptions of the input data, including 
variable names, definitions, sources, units and derivations.6

6The NGTDM data files are available upon request by contacting Joe Benneche at Joseph.Benneche@eia.doe.gov or (202) 586-
6132.  Alternatively an archived version of the NEMS model (source code and data files) can be downloaded from
ftp://ftp.eia.doe.gov/pub/forecasts/aeo.

Appendix F documents the 
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derivation of all empirical estimations used in the NGTDM.  Variable cross-reference tables are 
provided in Appendix G.  Finally, Appendix H contains a description of the algorithm used to 
project new coal-to-gas plants and the pipeline quality gas produced.



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module 7

2. Demand and Supply Representation

This chapter describes how supply and demand are represented within the NGTDM and the basic 
role that the Natural Gas Transmission and Distribution Module (NGTDM) fulfills in the NEMS.  
First, a general description of the NEMS is provided, along with an overview of the NGTDM.  
Second, the data passed to and from the NGTDM and other NEMS modules is described along 
with the methodology used within the NGTDM to transform the input values prior to their use in 
the model.  The natural gas demand representation used in the module is described, followed by 
a section on the natural gas supply interface and representation, and concluding with a section on 
the representation of demand and supply in Alaska.  

A Brief Overview of NEMS and the NGTDM

The NEMS represents all of the major fuel markets (crude oil and petroleum products, natural 
gas, coal, electricity, and imported energy) and iteratively solves for an annual supply/demand 
balance for each of the nine Census Divisions, accounting for the price responsiveness in both 
energy production and end-use demand, and for the interfuel substitution possibilities.  NEMS 
solves for an equilibrium in each forecast year by iteratively operating a series of fuel supply and 
demand modules to compute the end-use prices and consumption of the fuels represented, 
effectively finding the intersection of the theoretical supply and demand curves reflected in these 
modules.7 The end-use demand modules (for the residential, commercial, industrial, and 
transportation sectors) are detailed representations of the important factors driving energy 
consumption in each of these sectors.  Using the delivered prices of each fuel, computed by the 
supply modules, the demand modules evaluate the consumption of each fuel, taking into 
consideration the interfuel substitution possibilities, the existing stock of fuel and fuel conversion 
burning equipment, and the level of economic activity.  Conversely, the fuel conversion and 
supply modules determine the end-use prices needed in order to supply the amount of fuel 
demanded by the customers, as determined by the demand modules.  Each supply module 
considers the factors relevant to that particular fuel, for example:  the resource base for oil and 
gas, the transportation costs for coal, or the refinery configurations for petroleum products.  
Electric generators and refineries are both suppliers and consumers of energy.

Within the NEMS system, the NGTDM provides the interface for natural gas between the Oil 
and Gas Supply Module (OGSM) and the demand modules in NEMS, including the Electricity 
Market Module (EMM).  Since the other modules provide little, if any, information on markets 
outside of the United States, the NGTDM uses supply curves for liquefied natural gas (LNG) 
imports based on output results from EIA’s separate International Natural Gas Model (INGM)
and includes a simple representation of natural gas markets in Canada and Mexico in order to 
project LNG and pipeline import levels into the United States.  The NGTDM estimates the price 
and flow of dry natural gas supplied internationally from the contiguous U.S. border8

7A more detailed description of the NEMS system, including the convergence algorithm used, can be found in “Integrating 
Module of the National Energy Modeling System:  Model Documentation 2010.”  DOE/EIA-M057(2010), May 2010 or “The 
National Energy Modeling System:  An Overview 2009,” DOE/EIA-0581(2009), October 2009.

or 

8Natural gas exports are also accounted for within the model.
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domestically from the wellhead (and indirectly from natural gas processing plants) to the 
domestic end-user. In so doing, the NGTDM models the markets for the transmission (pipeline 
companies) and distribution (local distribution companies) of natural gas in the contiguous 
United States.9 The primary data flows between the NGTDM and the other oil and gas modules
in NEMS, the Petroleum Market Module (PMM) and the OGSM are depicted in Figure 2-1.

9Because of the distinct separation in the natural gas market between Alaska, Hawaii, and the contiguous United States, natural
gas consumption in, and the associated supplies from, Alaska and Hawaii are modeled separately from the contiguous United 
States within the NGTDM.

Figure 2-1. Primary Data Flows between Oil and Gas Modules of NEMS
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In each NEMS iteration, the demand modules in NEMS provide the level of natural gas that 
would be consumed at the burner-tip in each region by the represented sector at the delivered 
price set by the NGTDM in the previous NEMS iteration.  At the beginning of each forecast year
during a model run, the OGSM provides an expected annual level of natural gas produced at the 
wellhead in each region represented, given the oil and gas wellhead prices from the previous 
forecast year.  (Some supply sources (e.g., Canada) are modeled directly in the NGTDM.)  The 
NGTDM uses this information to build “short-term” (annual or seasonal) supply and demand 
curves to approximate the supply or demand response to price.  Given these short-term demand 
and supply curves, the NGTDM solves for the delivered, wellhead, and border prices that 
represent a natural gas market equilibrium, while accounting for the costs and market for 
transmission and distribution services (including its physical and regulatory constraints).10

These solution prices, and associated production levels, are in turn passed to the OGSM and the 
demand modules, including the EMM, as primary input variables for the next NEMS iteration 
and/or forecast year.  Most of the calculations within OGSM are performed only once each 
NEMS iteration, after the NEMS has converged to an equilibrium solution.  Information from
OGSM is passed as needed to the NGTDM to solve for the following forecast year.

The NGTDM is composed of three primary components or submodules:  the Interstate 
Transmission Submodule (ITS), the Pipeline Tariff Submodule (PTS), and the Distributor Tariff
Submodule (DTS).  The ITS is the central module of the NGTDM, since it is used to derive 
network flows and prices of natural gas in conjunction with a peak11 and off-peak natural gas 
market equilibrium.  Conceptually the ITS is a simplified representation of the natural gas 
transmission and distribution system, structured as a network composed of nodes and arcs.  The 
other two primary components serve as satellite submodules to the ITS, providing parameters 
which define the tariffs to be charged along each of the interregional, intraregional, intrastate, 
and distribution segments.  Data are also passed back to these satellite submodules from the ITS.  
Other parameters for defining the natural gas market (such as supply and demand curves) are 
derived based on information passed primarily from other NEMS modules.  However in some 
cases, supply (e.g., synthetic gas production) and demand components (e.g., pipeline fuel) are 
modeled exclusively in the NGTDM.

The NGTDM is called once each NEMS iteration, but all submodules are not run for every call.  
The PTS is executed only once for each forecast year, on the first iteration for each year.  The 
ITS and the DTS are executed once every NEMS iteration.  The calling sequence of and the 
interaction among the NGTDM modules is as follows for each forecast year executed in NEMS: 

First Iteration:
a. The PTS determines the revenue requirements associated with interregional / interstate 

pipeline company transportation and storage services, using a cost based approach, and
uses this information and cost of expansion estimates as a basis in establishing fixed rates 
and volume dependent tariff curves (variable rates) for pipeline and storage usage.

10Parameters are provided by OGSM for the construction of supply curves for domestic non-associated natural gas production.  
The NGTDM establishes a supply curve for conventional Western Canada.  The use of demand curves in the NGTDM is an 
option; the model can also respond to fixed consumption levels.

11The peak period covers the period from December through March; the off-peak period covers the remaining months.
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b. The ITS establishes supply levels (e.g., for supplemental supplies) and supply curves for 
production and LNG imports based on information from other modules.

Each Iteration:
a. The DTS sets markups for intrastate transmission and for distribution services using 

econometric relationships based on historical data, largely driven by changes in 
consumption levels.

b. The ITS processes consumption levels from NEMS demand modules as required, (e.g., 
annual consumption levels are disaggregated into peak and off-peak levels) before 
determining a market equilibrium solution across the two-period NGTDM network.

c. The ITS employs an iterative process to determine a market equilibrium solution which 
balances the supply and demand for natural gas across a U.S./Canada network, thereby 
setting prices throughout the system and production and import levels.  This operation is 
performed simultaneously for both the peak and off-peak periods.

Last Iteration:
a. In the process of establishing a network/market equilibrium, the ITS also determines the 

associated pipeline and storage capacity expansion requirements.  These expansion levels 
are passed to the PTS and are used in the revenue requirements calculation for the next 
forecast year. One of the inputs to the NGTDM is “planned” pipeline and storage 
expansions.  These are based on reported pending and commenced construction projects 
and analysts’ judgment as to the likelihood of the project’s completion.  For the first two 
forecast years, the model does not allow builds beyond these planned expansion levels.

b. Other outputs from NGTDM are passed to report writing routines.

For the historical years (1990 through 2009), a modified version of the above process is followed 
to calibrate the model to history.  Most, but not all, of the model components are known for the 
historical years.  In a few cases, historical levels are available annually, but not for the peak and 
off-peak periods (e.g., the interstate flow of natural gas and regional wellhead prices).  The 
primary unknowns are pipeline and storage tariffs and market hub prices.  When prices are 
translated from the supply nodes, through the network to the end-user (or city gate) in the 
historical years, the resulting prices are compared against published values for city gate prices.  
These differentials (benchmark factors) are carried through and applied during the forecast years 
as a calibration mechanism.  In the most recent historical year (2009) even fewer historical 
values are known; and the process is adjusted accordingly.

The primary outputs from the NGTDM, which are used as input in other NEMS modules, result 
from establishing a natural gas market equilibrium solution:  delivered prices, wellhead and 
border crossing prices, non-associated natural gas production, and Canadian and LNG import 
levels.  In addition, the NGTDM provides a forecast of lease and plant fuel consumption, 
pipeline fuel use, as well as pipeline and distributor tariffs, pipeline and storage capacity 
expansion, and interregional natural gas flows.  
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Natural Gas Demand Representation

Natural gas produced within the United States is consumed in lease and plant operations, 
delivered to consumers, exported internationally, or consumed as pipeline fuel.  The 
consumption of gas as lease, plant, and pipeline fuel is determined within the NGTDM.  Gas 
used in well, field, and lease operations and in natural gas processing plants is set equal to a 
historically observed percentage of dry gas production.12 Pipeline fuel use depends on the 
amount of gas flowing through each region, as described in Chapter 4.  The representation in the 
NGTDM of gas delivered to consumers is described below.

Classification of Natural Gas Consumers

Natural gas that is delivered to consumers is represented within the NEMS at the Census 
Division level and by five primary end-use sectors:  residential, commercial, industrial, 
transportation, and electric generation.13 These demands are further distinguished by customer 
class (core or non-core), reflecting the type of natural gas transmission and distribution service 
that is assumed to be predominately purchased.  A “core” customer is expected to generally 
require guaranteed or firm service, particularly during peak days/periods during the year.  A 
“non-core” customer is expected to require a lower quality of transmission services (non-firm 
service) and therefore, consume gas under a less certain and/or less continuous basis.  While 
customers are distinguished by customer class for the purpose of assigning different delivered 
prices, the NGTDM does not explicitly distinguish firm versus non-firm transmission service.  
Currently in NEMS, all customers in the transportation, residential, and commercial sectors are 
classified as core.14 Within the industrial sector the non-core segment includes the industrial 
boiler market and refineries; the core makes up the rest. The electric generating units defining 
each of the two customer classes modeled are as follows:  (1) core 
combined cycle units, (2) non-core -fired turbine units, gas turbine units, or dual-fired 
steam plants (consuming both natural gas and residual fuel oil). 15

For any given NEMS iteration and forecast year, the demand modules in NEMS determine the 
level of natural gas consumption for each region and customer class given the delivered price for 
the same region, class, and sector, as calculated by the NGTDM in the previous NEMS iteration.  
Within the NGTDM, each of these consumption levels (and its associated price) is used in 

12The regional factors used in calculating lease and plant fuel consumption (PCTLP) are initially based on historical averages 
(1996 through 2009) and held constant throughout the forecast period.  However, a model option allows for these factors to be
scaled in the first one or two forecast years so that the resulting national lease and plant fuel consumption will match the annual 
published values  presented in the latest available Short-Term Energy Outlook (STEO), DOE/EIA-0202), (Appendix E, 
STQLPIN).  The adjustment attributable to benchmarking to STEO (if selected as an option) is phased out by the year 
STPHAS_YR (Appendix E).  For AEO2011 these factors were phased out by 2014.  A similar adjustment is performed on the 
factors used in calculating pipeline fuel consumption using STEO values from STQGPTR (Appendix E).

13Natural gas burned in the transportation sector is defined as compressed natural gas or liquefied natural gas that is burned in 
natural gas vehicles; and the electric generation sector includes all electric power generators whose primary business is to sell 
electricity, or electricity and heat, to the public, including combined heat and power plants, small power producers, and exempt 
wholesale generators.

14The NEMS is structurally able to classify a segment of these sectors as non-core, but currently sets the non-core consumption 
at zero for the residential, commercial, and transportation sectors.

15Currently natural gas prices for the core and non-core segments of the electric generation sector are set to the same average 
value.
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conjunction with an assumed price elasticity as a basis for building an annual demand curve.  
[The price elasticities are set to zero if fixed consumption levels are to be used.]  These curves 
are used within the NGTDM to minimize the required number of NEMS iterations by 
approximating the demand response to a different price.  In so doing, the price where the implied 
market equilibrium would be realized can be approximated.  Each of these market equilibrium 
prices is passed to the appropriate demand module during the next NEMS iteration to determine 
the consumption level that the module would actually forecast at this price.  Once the NEMS 
converges, the difference between the actual consumption, as determined by the NEMS demand 
modules, and the approximated consumption levels in the NGTDM are insignificant.

For all but the electric sector, the NGTDM disaggregates the annual Census division regional 
consumption levels into the regional and seasonal representation that the NGTDM requires.  The 
regional representation for the electric generation sector differs from the other NEMS sectors as 
described below.

Regional/Seasonal Representations of Demand

Natural gas consumption levels by all non-electric16 sectors are provided by the NEMS demand 
modules for the nine Census divisions, the primary integrating regions represented in the NEMS.  
Alaska and Hawaii are included within the Pacific Census Division.  The EMM represents the 
electricity generation process for 13 electricity supply regions, the nine North American Electric 
Reliability Council (NERC) Regions and four selected NERC Subregions (Figure 2-2).  Within 
the EMM, the electric generators’ consumption of natural gas is disaggregated into subregions 
that can be aggregated into Census Divisions or into the regions used in the NGTDM.  

With the few following exceptions, the regional detail provided at a Census division level is 
adequate to build a simple network representative of the contiguous U.S. natural gas pipeline 
system. First, Alaska is not connected to the rest of the Nation by pipeline and is therefore 
treated separately from the contiguous Pacific Division in the NGTDM.  Second, Florida 
receives its gas from a distinctly different route than the rest of the South Atlantic Division and is 
therefore isolated.  A similar statement applies to Arizona and New Mexico relative to the 
Mountain Division. Finally, California is split off from the contiguous Pacific Division because 
of its relative size coupled with its unique energy related regulations.  The resulting 12 primary 
regions represented in the NGTDM are referred to as the “NGTDM Regions” (as shown in 
Figure 1-2).  

The regions represented in the EMM do not always align with State borders and generally do not 
share common borders with the Census divisions or NGTDM regions.  Therefore, demand in the 
electric generation sector is represented in the NGTDM at a seventeen subregional 
(NGTDM/EMM) level which allows for a reasonable regional mapping between the EMM and 
the NGTDM regions (Figure 2-3).  The seventeenth region is Alaska.  Within the EMM, the 
disaggregation into subregions is based on the relative geographic location (and natural gas-fired 
generation capacity) of the current and proposed electricity generation plants within each region.

16The term “non-electric” sectors refer to sectors (other than commercial and industrial combined heat and power generators) 
that do not produce electricity using natural gas (i.e., the residential, commercial, industrial, and transportation demand sectors). 
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Figure 2-2. Electricity Market Module (EMM) Regions

Annual consumption levels for each of the non-electric sectors are disaggregated from the nine 
Census divisions to the two seasonal periods and the twelve NGTDM regions by applying 
average historical shares (2001 to 2009) that are held constant throughout the forecast (census 
NG_CENSHR, seasons 
estimates for Alaska are first subtracted to establish a consumption level for just the contiguous 
Pacific Division before the historical share is applied.  The consumption of gas in Hawaii was 
considered to be negligible and is not handled separately.  Within the NGTDM, a relatively 
simple series of equations (described later in the chapter) was included for approximating the 
consumption of natural gas by each non-electric sector in Alaska.  These estimates, combined 
with the levels provided by the EMM for consumption by electric generators in Alaska, are used 
in the calculation of the production of natural gas in Alaska.

Unlike the non-electric sectors, the factors (core -core 
PKSHR_UDMD_I) for disaggregating the annual electric generator sector consumption levels
(for each NGTDM/EMM region and customer type -core) into seasons are
adjusted over the forecast period.   Initially average historical shares (1994 to 2009, except New 
England 9) are established as base level shares (core 
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non-core peak period shares are increased each year of the forecast 
by 0.5 percent (with a corresponding decrease in the off-peak shares) not to exceed 32 percent of 
the year.17

Natural Gas Demand Curves

While the primary analysis of energy demand takes place in the NEMS demand modules, the 
NGTDM itself directly incorporates price responsive demand curves to speed the overall 
convergence of NEMS and to improve the quality of the results obtained when the NGTDM is 
run as a stand-alone model.  The NGTDM may also be executed to determine delivered prices 
for fixed consumption levels (represented by setting the price elasticity of demand in the demand
curve equation to zero).  The intent is to capture relatively minor movements in consumption 
levels from the provided base levels in response to price changes, not to accurately mimic the 
expected response of the NEMS demand modules.  The form of the demand curves for the firm 
transmission service type for each non-electric sector and region is:

17The peak period covers 33 percent of the year.

Figure 2-3. NGTDM/EMM Regions
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)FBASPR_ / (PR*FBASQTY_=CRVFNGDMD_
FNONU_ELAS_

rs,rs,rs,
s (1)

where,
BASPR_Fs,r = delivered price to core sector s in NGTDM region r in the previous 

NEMS iteration (1987 dollars per Mcf)
BASQTY_Fs,r = natural gas quantity which the NEMS demand modules indicate 

would be consumed at price BASPR_F by core sector s in 
NGTDM region r (Bcf)

NONU_ELAS_Fs = short-term price elasticity of demand for core sector s (set to zero 
for AEO2011 or to represent fixed consumption levels)

PR = delivered price at which demand is to be evaluated (1987 dollars 
per Mcf)

NGDMD_CRVFs,r = estimate of the natural gas which would be consumed by core 
sector s in region r at the price PR (Bcf)

s = core sector (1-residential, 2-commercial, 3-industrial, 4-
transportation)

The form of the demand curve for the non-electric interruptible transmission service type is 
identical, with the following variables substituted:  NGDMD_CRVI, BASPR_I, BASQTY_I, and 
NONU_ELAS_I (all set to zero for AEO2011).  For the electric generation sector the form is 
identical as well, except there is no sector index and the regions represent the 16 NGTDM/EMM 
lower 48 regions, not the 12 NGTDM regions.  The corresponding set of variables for the core 
and non-core electric generator demand curves are [NGUDMD_CRVF, BASUPR_F, 
BASUQTY_F, UTIL_ELAS_F] and [NGUDMD_CRVI, BASUPR_I, BASUQTY_I, 
UTIL_ELAS_I], respectively.  For the AEO2011 all of the electric generator demand curve 
elasticities were set to zero.

Domestic Natural Gas Supply Interface and Representation

The primary categories of natural gas supply represented in the NGTDM are non-associated and 
associated-dissolved gas from onshore and offshore U.S. regions; pipeline imports from Mexico; 
Eastern, Western (conventional and unconventional), and Arctic Canada production; LNG 
imports; natural gas production in Alaska (including that which is transported through Canada 
via pipeline18); synthetic natural gas produced from coal and from liquid hydrocarbons; and 
other supplemental supplies.  Outside of Alaska (which is discussed in a later section) the only 
supply categories from this list that are allowed to vary within the NGTDM in response to a 
change in the current year’s natural gas price are the non-associated gas from onshore and 
offshore U.S. regions, conventional gas from the Western Canada region, and LNG imports.19

18 Several different options have been proposed for bringing stranded natural gas in Alaska to market (i.e., by pipeline, as LNG,
and as liquids).  Previously, the LNG option was deemed the least likely and is not considered in this version of the model, but 
will be reassessed in the future.  The Petroleum Market Module forecasts the potential conversion of Alaska natural gas into 
liquids.  The NGTDM allows for the building of a generic pipeline from Alaska into Alberta, although not at the same time as a 
MacKenzie Valley pipeline.  The pipeline is assumed to have first access to the currently proved reserves in Alaska which are
assumed to be producible at a relatively low cost given their association with oil production.

19Liquefied natural gas imports are set based on the price in the previous NEMS iteration and are effectively “fixed” when the 
NGTDM determines a natural gas market equilibrium solution; whereas the other two categories are determined as a part of the 
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The supply levels for the remaining categories are fixed at the beginning of each forecast year 
(i.e., before market clearing prices are determined), with the exception of associated-dissolved 
gas (determined in OGSM).20 With the exception of LNG, the NGTDM applies average 
historical relationships to convert annual “fixed” supply levels to peak and off-peak values.  
These factors are held constant throughout the forecast period.

Within the OGSM, natural gas supply activities are modeled for 12 U.S. supply regions (6 
onshore, 3 offshore, and 3 Alaskan geographic areas).  The six onshore OGSM regions within 
the contiguous United States, shown in Figure 2-4, do not generally share common borders with 
the NGTDM regions.  The NGTDM represents onshore supply for the 17 regions resulting from 
overlapping the OGSM and NGTDM regions (Figure 2-5).  A separate component of the 
NGTDM models the foreign sources of gas that are transported via pipeline from Canada and 
Mexico.  Seven Canadian and three Mexican border crossings demarcate the foreign pipeline 
interface in the NGTDM. Potential LNG imports are represented at each of the coastal NGTDM 
regions; however, import volumes will only be projected based on where existing or exogenously 
set additional regasification capacity exists (e.g., if a facility is under construction or deemed
highly likely to be constructed).21

“Variable” Dry Natural Gas Production Supply Curve

The two “variable” (or price responsive) natural gas supply categories represented in the model 
are domestic non-associated production and total production from the Western Canadian 
Sedimentary Basin (WCSB).  Non-associated natural gas is largely defined as gas that is 
produced from gas wells, and is assumed to vary in response to a change in the natural gas price.  
Associated-dissolved gas is defined as gas that is produced from oil wells and can be classified 
as a byproduct in the oil production process.  Each domestic supply curve is defined through its 
associated parameters as being net of lease and plant fuel consumption (i.e., the amount of dry 
gas available for market after any necessary processing and before being transported via 
pipeline).  For both of these categories, the supply curve represents annual production levels.  
The methodology for translating this annual form into a seasonal representation is presented in 
Chapter 4.

The supply curve for regional non-associated lower 48 natural gas production and for WCSB
production is built from a price/quantity (P/Q) pair, where quantity is the “expected” production
(XQBASE) or the base production level as defined by the product of reserves times the 
“expected” production-to-reserves ratio (as set in the OGSM) and price is the projected wellhead 
price (XPBASE, presented below) for the expected production.  The basic assumption behind the
curve is that the realized market price will increase from the base price if the current year’s
production levels exceed the expected production; and the opposite will occur if current
production is less In addition, it is assumed that the relative price response will likely be greater
for a marginal increase in production above the expected production, compared to below.  To

market equilibrium process in the NGTDM.
20For programming convenience natural gas produced with oil shales (OGSHALENG) is also added to this category.
21Structurally an LNG regasification terminal in the Bahamas would be represented as entering into Florida and be reported as 

pipeline imports, although modeled as LNG imports.  No regasification terminals are considered for Alaska or Hawaii.
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Figure 2-4. Oil and Gas Supply Module (OGSM) Regions

Figure 2-5. NGTDM/OGSM Regions
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represent these assumptions, five segments of the curve are defined from the base point.  The 
middle segment is centered around the base point, extends plus or minus a percent 
(PARM_SUPCRV3, Appendix E) from the base quantity, and if activated, is generally set nearly 
horizontal (i.e., there is little price response to a quantity change).  The next two segments, on 
either side of the middle, extend more vertically (with a positive slope), and reach plus or minus 
a percent (PARM_SUPCRV5, Appendix E) beyond the end of the middle segment.  The 
remaining two segments extend the curve above and below even further for the case with 
relatively large annual production changes, and can be assigned the same or different slopes from 
their adjacent segments.  The slope of the upper segment(s) is generally set greater than or equal 
to that of the lower segment(s).  An illustrative presentation of the supply curve is provided in 
Figure 2-6.  The general structure for all five segments of the supply curve, in terms of defining 
price (NGSUP_PR) as a function of the quantity or production level (QVAR), is:

)1+))
QBASE

QBASE-QVAR
(*)

ELAS

1
(((*PBASE=NGSUP_PR (2)

Figure 2-6. Generic Supply Curve
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A more familiar form o o o), 

o and Po represent a base level price/quantity pair.

Each of the five segments is assigned different values for the variables ELAS, PBASE, and 
QBASE: 

Lowest segment:

UPELAS2)RV5/PARM_S(PARM_SUPC

(1*APBASECPBASEPBASE
(3)

V5)PARM_SUPCR(1*AQBASECQBASEQBASE (4)

0.40AS1PARM_SUPELELAS (5)

Lower segment:

UPELAS3))RV3/PARM_S(PARM_SUPC(1

*XPBASEAPBASEPBASE
(6)

V3)PARM_SUPCR(1*XQBASEAQBASEQBASE (7)

0.35AS2PARM_SUPELELAS (8)

Middle segment:
(in historical years)

pricewellheadhistoricalXPBASEPBASE (9)

)PERCNT/(1QSUPXQBASEQBASE ns (10)

(in forecast years)

s ZWPRLAGXPBASEPBASE (11)

ss ZOGPRRNG*ZOGRESNGXQBASEQBASE (12)

1.00AS3PARM_SUPELELAS (13)

Upper segment:

UPELAS3))RV3/PARM_S(PARM_SUPC(1

*XPBASEBPBASEPBASE
(14)

V3)PARM_SUPCR(1*XQBASEBQBASEQBASE (15)

0.25AS4PARM_SUPELELAS (16)
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Uppermost segment:

UPELAS4))RV5/PARM_S(PARM_SUPC(1

*BPBASEDPBASEPBASE
(17)

V5)PARM_SUPCR(1*BQBASEDQBASEQBASE (18)

0.20AS5PARM_SUPELELAS (19)

where,
NGSUP_PR = Wellhead price (1987$/Mcf)

QVAR = Production, including lease & plant (Bcf)
XPBASE = Base wellhead price on the supply curve (1987$/Mcf)
XQBASE = Base wellhead production on the supply curve (Bcf)

PBASE = Base wellhead price on a supply curve segment (1987$/Mcf)
QBASE = Base wellhead production on a supply curve segment (Bcf)

AQBASE, BQBASE, 
CQBASE, DQBASE = Production levels defining the supply curve in Figure 2-6 (Bcf)
APBASE, BPBASE,
CPBASE, DPBASE = Price levels defining the supply curve in Figure 2-6 (Bcf)

ELAS = Elasticity (percent change in quantity over percent change in price) 
(analyst judgment)

PARM_SUPCRV3 = (defined in preceding paragraph)
PARM_SUPCRV5 = (defined in preceding paragraph)

PARM_SUPELAS# = Elasticity (percentage change in quantity over percentage change 
in price) on different segments (#) of supply curve

ZWPRLAGs = Lagged (last year’s) wellhead price for supply source s (1987/Mcf)
ZOGRESNGs = Natural gas proved reserves for supply source s at the beginning of 

the year (Bcf)
ZOGPRRNGs = Natural gas production to reserves ratio for supply sources 

(fraction)
PERCNTn = Percent lease and plant

s = supply source
n = region/node
t = year

The parameters above will be set depending on the location of QVAR relative to the base 
quantity (XQBASE) (i.e., on which segment of the curve that QVAR falls).  In the above 
equation, the QVAR variable includes lease and plant fuel consumption.  Since the ITM 
domestic production quantity (VALUE) represents supply levels net of lease and plant, this value 
must be adjusted once it is sent to the supply curve function, and before it can be evaluated, to 
generate a corresponding supply price.  The adjustment equation is:

QVAR = (VALUE - FIXSUP) / (1.0 - PERCNTn )
[where, FIXSUP = ZOGCCAPPRDs * (1.0 - PERCNTn )  ]

where,
QVAR = Production, including lease and plant consumption

VALUE = Production, net of lease and plant consumption
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PERCNTn = Percent lease and plant consumption in region/node n (set to 
PCTLP, set to zero for Canada)

ZOGCCAPPRDs = Coalbed gas production related to the Climate Change Action Plan 
(from OGSM)22

FIXSUP = ZOGCCAPPRD net of lease and plant consumption
s = NGTDM/OGSM supply region
n = region/node

Associated-Dissolved Natural Gas Production

Associated-dissolved natural gas refers to the natural gas that occurs in crude oil reservoirs either 
as free gas (associated) or as gas in solution with crude oil (dissolved).  The production of 
associated-dissolved natural gas is tied directly with the production (and price) of crude oil.  The 
OGSM projects the level of associated-dissolved natural gas production and the results are 
passed to the NGTDM for each iteration and forecast year of the NEMS.  Within the NGTDM, 
associated-dissolved natural gas production is considered “fixed” for a given forecast year and is 
split into peak and off-peak values based on average (1994-2009) historical shares of total 
(including non-associated) peak production in the year (PKSHR_PROD).

Supplemental Gas Sources

Existing sources for synthetically produced pipeline-quality, natural gas and other supplemental 
supplies are assumed to continue to produce at historical levels.  While the NGTDM has an
algorithm (see Appendix H) to project potential new coal-to-gas plants and their gas production, 
the annual production of synthetic natural gas from coal at the existing plant is exogenously 
specified (Appendix E, SNGCOAL), independent of the price of natural gas in the current 
forecast year.  The AEO2011 forecast assumes that the sole existing plant (the Great Plains Coal 
Gasification Plant in North Dakota) will continue to operate at recent historical levels 
indefinitely.  Regional forecast values for other supplemental supplies (SNGOTH) are set at 
historical averages (2003 to 2008) and held constant over the forecast period.  Synthetic natural 
gas is no longer produced from liquid hydrocarbons in the continental United States; although 
small amounts were produced in Illinois in some historical years.  This production level 
(SNGLIQ) is set to zero for the forecast.  The small amount produced in Hawaii is accounted for 
in the output reports (set to the historical average from 1997 to 2008).  If the option is set for the 
first two forecast years of the model to be calibrated to the Short Term Energy Outlook (STEO)

forecast, then these three categories of supplemental gas are similarly scaled so that their sum 
will equal the national annual forecast for total supplemental supplies published in the STEO

(Appendix E, STOGPRSUP).  To guarantee a smooth transition, the scaling factor in the last 
STEO year can be progressively phased out over the first STPHAS_YR (Appendix E) forecast 
years of the NGTDM.  Regional peak and off-peak supply levels for the three supplemental gas 
supplies are generated by applying the same average (1990-2009) historical share 
(PKSHR_SUPLM) of national supplemental supplies in the peak period.

22This special production category is not included in the reserves and production-to-reserve ratios calculated in the OGSM, so it 
was necessary to account for it separately when relevant.  It is no longer relevant and is set to zero.
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Natural Gas Imports and Exports Interface and Representation

The NGTDM sets the parameters for projecting gas imported through LNG facilities, the 
parameters and forecast values associated with the Canada gas market, and the projected values 
for imports from and exports to Mexico.

Canada

A node for east and west Canada is included in the NGTDM equilibration network, as well as 
seven border crossings.  The model includes a representation/accounting of the U.S. border 
crossing pipeline capacity, east and west seasonal storage transfers, east and west consumption, 
east and west LNG imports (described in a later section), eastern production, conventional/tight 
sands production in the west, and coalbed/shale production. The ultimate determination of the 
import volumes into the United States occurs in the equilibration process of the NGTDM.

Base level consumption of natural gas in Eastern and Western Canada (Appendix E, CN_DMD), 
including gas used in lease, plant, and pipeline operations, is set exogenously,23 and ultimately 
split into seasonal periods using PKSHR_CDMD (Appendix E).  The projected level of oil 
produced from oil sands is also set exogenously to the NGTDM (based on the same source) and 
varies depending on the world oil price case. Starting in a recent historical year (Appendix E, 
YDCL_GASREQ), the natural gas required to support the oil sands production is set at an 
assumed ratio (Appendix E, INIT_GASREQ) of the oil sands production. Over the projection 
period this ratio is assumed to decline with technological improvements and as other fuel options 
become viable.  The applied ratio in year t is set by multiplying the initially assumed rate by (t-
YDCL_GASREQ+1)DECL_GASREQ, where DECL_GASREQ is assumed based on anecdotal 
information (Appendix E). The oil sands related gas consumption under reference case world oil 
prices is subtracted from the base level total consumption and the remaining volumes are 
adjusted slightly based on differences in the world oil price in the model run versus the world oil 
price used in setting the base level consumption, using an assumed elasticity (Appendix E, 
CONNOL_ELAS).   Finally, total consumption is set to this adjusted value plus the calculated 
gas consumed for oil sands production under the world oil price case selected. Oil sands 
production is assumed to just occur in Western Canada.

Currently, the NGTDM exogenously sets a forecast of the physical capacity of natural gas 
pipelines crossing at seven border points from Canada into the United States (excluding any 
expansion related to the building of an Alaska pipeline).  This option can also be used within the 
model, if border crossing capacity is set endogenously, to establish a minimum pipeline build 
level (Appendix E, ACTPCAP and PLANPCAP).  The model allows for an endogenous setting 
of annual Canadian pipeline expansion at each Canada/U.S. border crossing point based on the 
annual growth rate of consumption in the U.S. market it predominately serves.  The resulting 
physical capacity limit is then multiplied by a set of exogenously specified maximum utilization 
rates for each seasonal period to establish maximum effective capacity limits for these pipelines 
(Appendix E, PKUTZ and OPUTZ). “Effective capacity” is defined as the maximum seasonal, 

23se values were based on projections taken from the International Energy Outlook 2010.
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physically sustainable, capacity of a pipeline times the assumed maximum utilization rate.  It 
should be noted that some of the natural gas on these lines passes through the United States only 
temporarily before reentering Canada, and therefore is not classified as imports.24 If a decision 
is made to construct a pipeline from Alaska (or the MacKenzie Delta) to Alberta, the import 
pipeline capacity added from the time the decision is made until the pipeline is in service is 
tracked.  This amount is subtracted from the size of the pipeline to Alberta to arrive at an 
approximation for the amount of additional import capacity that will be needed to bring the 
Alaska or MacKenzie25 gas to the United States.  This total volume is apportioned to the pipeline 
capacity at the western import border crossings according to their relative size at the time. 

Conventional Western Canada

The vast majority of natural gas produced in Canada currently is from the WCSB.  Therefore, a 
different approach was used in modeling supplies from this region.  The model consists of a
series of estimated and reserves accounting equations for forecasting conventional (including 
from tight formations)26 wells drilled, reserves added, reserve levels, and expected production-
to-reserve ratios in the WCSB. Drilling activity, measured as the number of successful natural 
gas wells drilled, is estimated directly as a function of various market drivers rather than as a 
function of expected profitability.  No distinction is made between wells for exploration and 
development.  Next, an econometrically specified finding rate is applied to the successful wells 
to determine reserve additions; a reserves accounting procedure yields reserve estimates 
(beginning of year reserves).  Finally an estimated extraction rate determines production 
potential [production-to-reserves ratio (PRR)].

Wells Determination 

The total number of successful conventional natural gas wells drilled in Western Canada each 
year is forecasted econometrically as a function of the Canadian natural gas wellhead price, 
remaining undiscovered resources, last year’s production-to-reserve ratio, and a proxy term for 
the drilling cost per well, as follows:

)CURPRRCAN*33.6237exp(*GCST_PRXYLA*

URRCAN*CN_PRC00*1.85639)exp(SUCWELL

1-t

0.86063

1.57373

t

1.09939

tt
(20)

where,

24A significant amount of natural gas flows into Minnesota from Canada on an annual basis only to be routed back to Canada 
through Michigan.  The levels of gas in this category are specified exogenously (Appendix E, FLOW_THRU_IN) and split into 
peak and off-peak levels based on average (1990-2009 historically based shares for general Canadian imports (PKSHR_ICAN).

25All of the gas from the MacKenzie Delta is not necessarily targeted for the U.S. market directly.  Although it is anticipated 
that the additional supply in the Canadian system will reduce prices and increase the demand for Canadian gas in the United 
States.  The methodology for representing natural gas production in the MacKenzie Delta and the associated pipeline is described 
in the section titled “Alaskan Natural Gas Routine.”

26Since current data tend to combine statistics for drilling and production from conventional sources and that from tight gas 
formations, the model does not distinguish the two at present.  The conventional resource estimate was increased by 1.5 percent 
per year as a rough estimate of the future contribution from resource appreciation and from tight formations until more reliable 
estimates can be generated.  For the rest of the discussion on Canada, the use of the term “conventional” should be assumed to 
include gas from tight formations.
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SUCWELLt = total conventional successful gas wells completed in Western 
Canada in year t

CN_PRC00t = average Western Canada wellhead price per Mcf of natural gas in 
2000 US dollars in year t

URRCANt = remaining conventional undiscovered recoverable gas resources in 
the beginning of year t in Western Canada in (Bcf), specified 
below

CST_PRXYLAG = proxy term to reflect the change in drilling costs per well, projected 
into the future based on projections for the average lower 48 
drilling costs the previous forecast year

CURPRRCAN = expected production-to-reserve ratio from the previous forecast
year, specified below 

Parameter values and details about the estimation of this equation can be found in Table F11 of 
Appendix F. The number of wells is restricted to increase by no more than 30 percent annually.  

Reserve Additions 

The reserve additions algorithm calculates units of gas added to Western Canadian Sedimentary 
Basin proved reserves. The methodology for conversion of gas resources into proved reserves is 
a critically important aspect of supply modeling. The actual process through which gas becomes 
proved reserves is a highly complex one. This section presents a methodology that is 
representative of the major phases that occur; although, by necessity, it is a simplification from a 
highly complex reality.  

Gas reserve additions are calculated using a finding rate equation.  Typical finding rate equations 
relate reserves added to 1) wells or feet drilled in such a way that reserve additions per well 
decline as more wells are drilled, and/or 2) remaining resources in such a way that reserve 
additions per well decline as remaining resources deplete.  The reason for this is, all else being 
equal, the larger prospects typically are drilled first.  Consequently, the finding rate can be 
expected to decline as a region matures, although the rate of decline and the functional forms are 
a subject of considerable debate.  In previous versions of the model the finding rate (reserves 
added per well) was assumption based, while the current version is econometrically estimated 
using the following:

]URRCAN*FRLAG

*URRCAN*25.3204}*0.428588)exp{(1FRCAN

2.13897*0.428588

1t

0.428588

2.13897

tt
(21)

where,
FRCANt = finding rate in year t (Bcf per well)
FRLAG = finding rate in year t-1 (Bcf per well)

URRCANt = remaining conventional gas recoverable resources in year t in 
Western Canada in (Bcf)
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Parameter values and details about the estimation of this equation can be found in Table F12 of 
Appendix F.  Remaining conventional plus tight gas recoverable resources are initialized in 2004 
and set each year thereafter as follows:

CUMRCAN)RESTECH1(*RESBASEURRCAN T

t (22)

where,
RESBASE = initial recoverable resources in 2004 (set at 92,800 Bcf) 27

RESTECH = assumed rate of increase, primarily due to the contribution from 
tight gas formations, but also attributable to technological 
improvement (1.5 percent or 0.015)

CUMRCANt = cumulative reserves added since initial year of 2004 in Bcf
T = the forecast year (t) minus the base year of 2004.

Total reserve additions in period t are given by:

ttt SUCWELL*FRCANRESADCAN (23)

where,
RESADCANt = reserve additions in year t, in BCF

FRCANt-1 = finding rate in the previous year, in BCF per well
SUCWELLt = successful gas wells drilled in year t

Total end-of-year proved reserves for each period equal proved reserves from the previous 
period plus new reserve additions less production.

ttt1t OGPRDCANRESADCANCURRESCANRESBOYCAN (24)

where,
RESBOYCANt+1 = beginning of year reserves for year t+1, in BCF

CURRESCANt = beginning of year reserves for t, in BCF
RESADCANt = reserve additions in year t, in BCF
OGPRDCANt = production in year t, in BCF

t = forecast year

When rapid and slow technological progress cases are run, the forecasted values for the number 
of successful wells and for the expected production-to-reserve ratio for new wells are adjusted 
accordingly. 

Gas Production 

Production is commonly modeled using a production-to-reserves ratio. A major advantage to this 
approach is its transparency. Additionally, the performance of this function in the aggregate is 

27Source:  National Energy Board, “Canada’s Conventional Natural Gas Resources:  A Status Report,” Table 1.1A, April 2004.
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consistent with its application on the micro level. The production-to-reserves ratio, as the relative 
measure of reserves drawdown, represents the rate of extraction, given any stock of reserves.

Conventional gas production in the WCSB in year t is determined in the NGTDM through a 
market equilibrium mechanism using a supply curve based on an expected production level 
provided by the OGSM. The realized extraction is likely to be different.  The expected or normal 
operating level of production is set as the product of the beginning-of-year reserves 
(RESBOYCAN) and an expected extraction rate under normal operating conditions.  This 
expected production-to-reserve ratio is estimated as follows:

1))LYR0.03437*(RFRCANln*0.041469SUCWELLln*0.11791172.1364*(0.916835

0.916835

1t

1t

RLYR0.03437*FRCANln*0.041469SUCWELln*0.11791172.1364

RLYR0.03437*FRCANln*0.041469SUCWELLln*0.11791172.1364

t

1t1t

tt

tt

e*

PRRATCAN1

PRRATCAN
*

e1

e
PRRATCAN

(25)

where,

PRRATCANt = expected production-to-reserve natural gas ratio in Western 
Canada for conventional and tight gas

FRCANt = finding rate in year t, in BCF per well
SUCWELLt = successful gas wells drilled in year t

RLYR = calendar year

Parameter values and details about the estimation of this equation can be found in Table F13 of 
Appendix F. The resulting production-to-reserve ratio is limited, so as not to increase or 
decrease more than 5 percent from one year to the next and to stay within the range of 0.7 to 
0.12.

The potential or expected production level is used within the NGTDM to build a supply curve for 
conventional and tight natural gas production in Western Canada.  The form of this supply curve 
is effectively the same as the one used to represent non-associated natural gas production in 
lower 48 regions.  This curve is described later in this chapter, with the exceptions related to 
Canada noted.  A primary difference is that the supply curve for the lower 48 States represents 
non-associated natural gas production net of lease and plant fuel consumption; whereas the 
Western Canada supply curve represents total conventional and tight natural gas production 
inclusive of lease and plant fuel consumption.

Canada Shale and Coalbed

Natural gas produced from other unconventional sources (coal beds and shale) in Western
Canada (PRD2) is based on an assumed production profile, with the area under the curve equal 
to the assumed ultimate recovery (CUR_ULTRES).  The production level is initially specified in 
terms of the forecast year and is set using one functional form before reaching its peak 
production level and a second functional form after reaching its peak production level.  Before 
reaching peak production, the production levels are assumed to follow a quadratic form, where 
the level of production is zero in the first year (LSTYR0) and reaches its peak level (PKPRD) in 
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the peak year (PKIYR). The area under the assumed production function equals the assumed 
technically recoverable resource level (CUR_ULTRES) times the assumed percentage 
(PERRES) produced before hitting the peak level.  After peak production the production path is 
assumed to decline linearly to the last year (LSTYR) when production is again zero.  The two 
curves meet in the peak year (PKIYR) when both have a value equal to the peak production level 
(PKPRD).  The actual production volumes are adjusted to reflect assumed technological 
improvement and by a factor that depends on the difference between an assumed price trajectory 
and the actual price projected in the model.  The specifics follow:  

Before Peak Production

Assumptions:
production function

PARMBPKIYR)(PRDIYR*PARMAPRD2 2 (26)

area under the production function

PKIYR

LSTYR0

2 dPRDIYRPARMB]PKIYR)(PRDIYR*[PARMA

PERRES*CUR_ULTRES

(27)

production in year LSTYR0: 

PARMBPKIYR)(LSTYR0*PARMA0 2 (28)

production in peak year when PRDIYR = PKIYR

PARMBPARMBPKIYR)(PKIYR*PARMAPKPRD 2 (29)

Derived from above:

3LSTYRO)(PKIYR

PERRES*CUR_ULTRES
*

2

3
PARMA (30)

2PKIYR)(LSTYRO*PARMAPARMB (31)

After Peak Production

Assumptions:
production function

PARMD)PRDIYR*PARMC(PRD2 (32)

area under the production function

dPRDIYRPARMD]PRDIYR)*[(PARMCPERRES)1(*CUR_ULTRES
LSTYR

PKIYR

(33)
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production in peak year when PRDIYR = PKIYR

PARMDPKIYR)*(PARMCPARMBPKPRD (34)

production in last year LSTYR

PARMDLSTYR)*(PARMC0 (35)

Derived from above:

PERRES)(1*CUR_ULTRES*2

PARMB
PARMC

2

(36)

PKIYR
PARMB

PERRES)(1*CUR_ULTRES*2
LSTYR (37)

LSTYR*PARMCPARMD (38)

given,

RESADJ)(1*RESTECH)(1*ULTRESCUR_ULTRES RESBASE)(MODYR (39)

and,
PRD2 = Unadjusted Canada unconventional gas production (Bcf)

PKPRD = Peak production level in year PKIYR
CUR_ULTRES = Estimate of ultimate recovery of natural gas from unconventional 

Canada sources in the current forecast year (Bcf)
ULTRES = Estimate of ultimate recovery of natural gas from unconventional 

Canada sources in the year RESBASE (8,000 Bcf for coalbed in 
2008 and 153,000 Bcf for shale in 2011, based on assumed 
resource levels used in EIA’s International Natural Gas Model for 
the International Energy Outlook 2010.

RESBASE = Year associated with CUR_ULTRES
RESTECH = Technology factor to increase resource estimate over time (1.0)

MODYR = Current forecast year
RESADJ = Scenario specific resource adjustment factor (default value of 0.0)
PERRES = Percent of ultimate resource produced before the peak year of 

production (0.50, fraction)
PKIYR = Assumed peak year of production (2045)

LSTYR0 = Last year of zero production (2004)
PRDIYR = Implied year of production along cumulative production path after 

price adjustment

The actual production is set by taking the unadjusted unconventional gas production (PRD2) and 
multiplying it by a price adjustment factor, as well as a technology factor.  The price adjustment 
factor (PRCADJ) is based on the degree to which the actual price in the previous forecast year 
compares against a prespecified expected price path (exprc), represented by the functional form:  
exprc = (2.0 + [0.08*(MODYR-2008)].  The price adjustment factor is set to the price in the 
previous forecast year divided by the expected price, all raised to the 0.1 power.  Technology is 
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assumed to progressively increase production by 1 percent per year (TECHGRW) more than it 
would have been otherwise (e.g., in the fifth forecast year production is increased by 5 percent 
above what it would have been otherwise). 28 Once the production is established for a given 
forecast year, the value of PRDIYR is adjusted to reflect the actual production in the previous 
year and incremented by 1 for the next forecast year.

The remaining forecast elements used in representing the Canada gas market are set exogenously 
in the NGTDM.  When required, such annual forecasts are split into peak and off-peak values 
using historically based or assumed peak shares that are held constant throughout the forecast.  
For example, the level of natural gas exports (Appendix E, CANEXP) are currently set 
exogenously to NEMS, are distinguished by seven Canada/U.S. border crossings, and are split 
between peak and off-peak periods by applying average (1992 to 2009, Appendix E, 
PKSHR_ECAN) historical shares to the assumed annual levels.  While most Canadian import 
levels into the U.S. are set endogenously, the flow from Eastern Canada into the East North 
Central region is secondary to the flow going in the opposite direction and is therefore set 
exogenously (Appendix E, Q23TO3).  “Fixed” supply values for the entire Eastern Canada 
region are set exogenously (Appendix E, CN_FIXSUP)29 and split into peak and off-peak 
periods using PKSHR_PROD (Appendix E).

Mexico

The Mexico model is largely based on exogenously specified assumptions about consumption 
and production growth rates and LNG import levels.  For the most part, natural gas imports from 
Mexico are set exogenously for each of the three border crossing points with the United States,
with the exception of any gas that is imported into Baja, Mexico, in liquid form only to be 
exported to the United States.  Exports to Mexico from the United States are established before 
the NGTDM equilibrates and represents the required level to balance the assumed consumption 
in (and exports from) Mexico against domestic production and LNG imports.  The supply levels 
are also largely assumption based, but are set to vary to a degree with changes in the expected 
wellhead price in the United States.  Peak and off-peak values for imports from and exports to 
Mexico are based on average historical shares (1994 or 1991 to 2009, PKSHR_IMEX and 
PKSHR_EMEX, respectively).

Mexican gas trade is a complex issue, as a range of non-economic factors will influence, if not 
determine, future flows of gas between the United States and Mexico.  Uncertainty surrounding 
Mexican/U.S. trade is great enough that not only is the magnitude of flow for any future year in 
doubt, but also the direction of net flows.  Despite the uncertainty and the significant influence of 
non-economic factors that influence Mexican gas trade with the United States, a methodology to 
anticipate the path of future Mexican imports from, and exports to, the United States has been 
incorporated into the NGTDM. This outlook is generated using assumptions regarding regional 
supply from indigenous production and/or liquefied natural gas (LNG) and regional/sectoral 
demand growth for natural gas in Mexico. 

28 If a rapid or slow technology case is being run, this value is increased or decreased accordingly.
29Eastern Canada is expected to continue to provide only a small share of the total production in Canada and is almost 

exclusively offshore.  
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Assumptions for the growth rate of consumption (Appendix E, PEMEX_GFAC, IND_GFAC, 
ELE_GFAC, RC_GFAC) were based on the projections from the International Energy Outlook

2010.  Assumptions about base level domestic production (PRD_GFAC) are based in part on the 
same source and analyst judgment.  The production growth rate is adjusted using an additive 
factor based on the degree to which the average lower 48 wellhead price varies from a set base 
price, as follows:

05.0,1
66.3

PRC_FAC

03125.0
OGWPRNG

MIN (40)

where,
PRC_FAC = Factor to add to assumed base level production growth rate 

(PRD_GFAC)
OGWPRNG = Lower 48 average natural gas wellhead price in the current forecast 

year (1987$/Mcf)
3.66 = Fixed base price, approximately equal to the average lower 48 

natural gas wellhead price over the projection period based on 
AEO2010 reference case results (1987$/Mcf), [set in the code and 
converted at $6.14 (2008$/Mcf)]

0.03125 = An assumed parameter
0.05 = Assumed minimum price factor

The volumes of LNG imported into Mexico for use in the country are initially set exogenously 
(Appendix E, MEXLNG).  However, these values are scaled back if the projected total volumes 
available to North America (see below) are not sufficient to accommodate these levels.  LNG 
imports into Baja destined for the U.S. are set endogenously with the LNG import volumes for 
the rest of North America, as discussed below.  Finally, any excess supply in Mexico is assumed 
to be available for export to the United States, and any shortfall is assumed to be met by imports 
from the United States. 30

Liquefied Natural Gas

LNG imports are set at the beginning of each NEMS iteration within the NGTDM by evaluating 
seasonal supply curves, based on outputs from EIA’s International Natural Gas Model (INGM), 
at associated regasification tailgate prices set in the previous NEMS iteration.  LNG exports from 
the lower 48 States are assumed to be zero for the forecast period. 31 LNG exports to Japan from 
Alaska are set exogenously by OGSM through Spring of 2013 when the Kenai Peninsula LNG 
plant’s export license will expire. The NGTDM does not assume or project additional LNG 
exports from Alaska.32

30A minimum import level from Mexico is set exogenously (DEXP_FRMEX, Appendix E), as well as a maximum decline from 
historical levels for exports to Mexico (DFAC_TOMEX, Appendix E).

LNG import levels are established for each region, and period (peak and 

31The capability to project LNG exports in the model was not included in the AEO2011 analysis largely due to resource 
constraints, which continue to be tight.  While a very preliminary analysis was done using the International Natural Gas Model 
that showed the economic viability of a liquefaction project in the Gulf of Mexico to be questionable under preliminary reference 
case conditions, a more thorough analysis is warranted.

32TransCanada and ExxonMobil filed an open season plan for an Alaska Pipeline Project which includes an option for shipping 
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off-peak) The basic process is as follows for each NEMS iteration (except for the first step):  1) 
at the beginning of each forecast year set up LNG supply curves for eastern and western North 
America for each period (peak and off-peak), 2) using the supply curves and the quantity-
weighted average regasification tailgate price from the previous NEMS iteration, determine the 
amount of LNG available for import into North America, 3) subtract the volumes that are 
exogenously set and dedicated to the Mexico market (unless they exceed the total), and 4) 
allocate the remaining amount to the associated LNG terminals using a share based on the 
regasification capacity, the volumes imported last year, and the relative prices.

The LNG import supply curves are developed off of a base price/quantity pair (Appendix E, 
LNGPPT, LNGQPT) from a reference case run of the INGM, using the same, or very similar, 
world oil price assumptions.  The quantities equal the sum of the LNG imports into east or west 
North America in the associated period; and the prices equal the quantity-weighted average 
tailgate price at the regasification terminals.  The mathematical specification of the curve is 
exactly like the one used for domestic production described earlier in this chapter, except the 
assumed elasticities are represented with different variables and have different values.33 This 
representation represents a first cut at integrating the information from INGM in the domestic 
projections.34 The formulation for these LNG supply curves will likely be revised in future 
NEMS to better capture the market dynamics as represented in the INGM.

Once the North American LNG import volumes are established, the exogenously specified LNG 
imports into Mexico are subtracted,35 along with the sum of any assumed minimum level 
(Appendix E, LNGMIN) for each of the representative terminals in the U.S., Canada, and Baja, 
Mexico (as shown in Table 2-1).  The remainder (TOTQ) is shared out to the terminals and then 
added to the terminal’s assumed minimum import level to arrive at the final LNG import level by 
terminal and season.  The shares are initially set as follows and then normalized to total to 1.0:

BETA

c,n

r,n

c

rr

c,n

n,rrr,n

rn,

AVGPR

PLNG
*)PERQ1(*

TOTCAP

LNGMINLNGCAP

PERQ*
TOTQ

)SH*LNGMIN(QLNGLAG
LSHR

(41)

where,
LSHRn,r = Initial share (before normalization) of LNG imports going to 

terminal r in period n from the east or west coast, fraction
TOTQn,c = The level of LNG imports in the east or west coast to be shared out 

for a period n to the associated U.S. regasification regions

gas to Valdez for export as LNG.  Previous EIA analysis indicated that the option for a pipeline to the lower 48 States is likely to 
provide a greater netback to the producers and is therefore a more viable option.  This analysis and model assumption will be
reviewed in the future.

33For LNG the variables are called PARM_LNGxx, instead of PARM_SUPxx and are also traceable using Appendix E.
34As first implemented, the resulting LNG import volumes were somewhat erratic, so a five-year moving average was applied 

to the quantity inputs to smooth out the trajectory and more closely approximate a trend line.  
35If the total available LNG import levels exceed the assumed LNG imports into Mexico, the volumes into Mexico are adjusted 

accordingly, not to be set below assumed minimums (Appendix E, MEXLNGMIN).
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QLNGLAGn,r = LNG import level last year (Bcf)
LNGMINr = Minimum annual LNG import level (Bcf) (Appendix E)

SHr,n = Fraction of LNG imported in period n last year
LNGCAPr = Beginning of year LNG sendout capacity36

TOTCAPc = Total LNG sendout capacity on the east or west coast (Bcf)
(Bcf) (Appendix E)

PERQ = Assumed parameter (0.5)
PLNGn,r = Regasification tailgate price (1987$/Mcf)

AVGPRn,r = Average regasification tailgate price on the east or west coast 
(1987$/Mcf)

BETA = Assumed parameter (1.2)
r = Regasification terminal number (See Table 2-1)
n = Network or period (peak or off-peak)
c = East or west coast

Table 2-1.  LNG Regasification Regions

Number Regasification Terminal/Region Number Regasification Regions

1 Everett, MA 9 Alabama/Mississippi

2 Cove Point, MD 10 Louisiana/Texas

3 Elba Island, GA 11 California

4 Lake Charles, LA 12 Washington/Oregon

5 New England 13 Eastern Canada

6 Middle Atlantic 14 Western Canada

7 South Atlantic 15 Baja into the U.S.

8 Florida/Bahamas -- --

Source:  Office of Integrated Analysis and Forecasting, U.S. Energy Information Administration

Alaska Natural Gas Routine

The NEMS demand modules provide a forecast of natural gas consumption for the total Pacific 
Census Division, which includes Alaska.  Currently natural gas that is produced in Alaska cannot 
be transported to the lower 48 States via pipeline.  Therefore, the production and consumption of 
natural gas in Alaska is handled separately within the NGTDM from the contiguous States.  
Annual estimates of contiguous Pacific Division consumption levels are derived within the 
NGTDM by first estimating Alaska natural gas consumption for all sectors, and then subtracting 
these from the core market consumption levels in the Pacific Division provided by the NEMS 
demand modules.  The use of natural gas in compressed natural gas vehicles in Alaska is 
assumed to be negligible or nonexistent.  The Electricity Market Module provides a value for 

36Send-out capacity is the maximum annual volume of gas that can be delivered by a regasification facility into the pipeline.



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module 33

natural gas consumption in Alaska by electric generators.  The series of equations for specifying 
the consumption of gas by Alaska residential and commercial customers follows:

))}ln(AK_POP*0.626(
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where,
AKQTY_Fs=1 = consumption of natural gas by residential (s=1) customers in 

Alaska in year y (MMcf, converted to Bcf, Table F1, Appendix F1)
AKQTY_Fs=2 = consumption of natural gas by commercial (s=2) customers in 

Alaska in the current forecast year y (MMcf, converted to Bcf,
Table F1, Appendix F1)

AK_RN = number of residential customers in year y (thousands, Table F1, 
Appendix F)

AK_CNy = number of commercial customers in year y (thousands, Table F2, 
Appendix F)

AK_POP = exogenously specified projection of the population in Alaska 
(thousands, Appendix E)

Gas consumption by Alaska industrial customers is set exogenously, as follows:

SAK_QIND_=FAKQTY_:(ind) yy3,=s (46)

where,
AKQTY_Fs=3,y = consumption of natural gas by industrial customers in year y (s=3), 

(Bcf)
AK_QIND_S = consumption of natural gas by industrial customers in southern 

Alaska (Bcf), the sum of consumption at the Agrium fertilizer 
plant (assumed to close in 2007, Appendix E) and at the Kenai 
LNG liquefaction facility (assumed to close in 2013, Appendix E)

s = sector
y = year

The production of gas in Alaska is basically set equal to the sum of the volumes consumed and 
transported out of Alaska, so depends on: 1) whether a pipeline is constructed from Alaska to 
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Alberta, 2) whether a gas-to-liquids plant is built in Alaska, and 3) consumption in and exports 
from Alaska.  The production of gas related to the Alaska pipeline equals the volumes delivered 
to Alberta (which depend on assumptions about the pipeline capacity) plus what is consumed for 
related lease, plant, and pipeline operations (calculated as delivered volume divided by 1 minus 
the percent used for lease, plant, and pipeline operations).   If the Petroleum Market Module 
(PMM) determines that a gas-to-liquids facility will be built in Alaska, then the natural gas 
consumed in the process (AKGTL_NGCNS, set in the PMM) is added to production in the north, 
along with the associated lease and plant fuel consumed.  The production volumes related to the 
pipeline and the GTL plant are summed together (N.AK2 below).  Other production in North 
Alaska that is not related to the pipeline or GTL is largely lease and plant fuel associated with the 
crude oil extraction processes; whereas gas is produced in the south to satisfy consumption and 
export requirements.  The quantity of lease and plant fuel not related to the pipeline or GTL in 
Alaska (N.AK1 below) is assigned separately, includes lease and plant fuel used in the north and 
south, and is added to the other production (N.AK2 below) to arrive at total North Alaska 
production.  The details follow:

AK_DISCRQALK_PIP_S
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where,
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where,
AK_PRODr = dry gas production in Alaska (Bcf)

AK_CONS_S = total gas delivered to customers in South Alaska (Bcf)
AKQTY_Fs = total gas delivered to core customers in Alaska in sector s (Bcf)
AKQTY_Is = total gas delivered to non-core customers in Alaska in sector s 

(Bcf)
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EXPJAP = quantity of gas liquefied and exported to Japan (from OGSM in 
Bcf)

QALK_LAP_N = quantity of gas consumed in Alaska for lease and plant operations, 
excluding that related to the Alaska pipeline and GTL (Bcf)

QALK_LAP_NLAG = quantity of gas consumed for lease and plant operations in the 
previous year, excluding that related to the pipeline and GTL (Bcf)

oOGPRCOAKs,y = crude oil production in Alaska by sector
QALK_PIPr = quantity of gas consumed as pipeline fuel (Bcf)
AK_DISCR = discrepancy, the average (2006-2008) historically based difference 

in reported supply levels and consumption levels in Alaska (Bcf)
QAK_ALBt = gas produced on North Slope entering Alberta via pipeline (Bcf)

AK_PCTLSEr = (for r=1) not used, (for r=2) lease and plant consumption as a 
percent of gas consumption, (for r=3) lease consumption as a 
percent of gas production (fraction, Appendix E)

AK_PCTPLTr = (for r=1 and r=2) not used, (for r=3) plant fuel as a percent of gas 
production (fraction, Appendix E)

AK_PCTPIPr = (for r=1) not used, (for r=2) pipeline fuel as a percent of gas 
consumption, (for r=3) pipeline fuel as a percent of gas production 
(fraction, Appendix E)

AKGTL_NGCNSt = natural gas consumed in a gas-to-liquids plant in the North Slope 
(from PMM in Bcf)

AKGTL_LAP = lease and plant consumption associated with the gas for a gas-to-
liquids plant (Bcf)

s = sectors (1=residential, 2=commercial, 3=industrial, 
4=transportation, 5=electric generators)

r = region (1 = south, 2 = north not associated with a pipeline to 
Alberta or gas-to-liquids process, 3 = north associated with a 
pipeline to Alberta and/or a gas-to-liquids plant

Lease, plant, and pipeline fuel consumption are calculated as follows.  For south Alaska, the 
calculation of pipeline fuel (QALK_PIP_S) and lease and plant fuel (QALK_LAP_S) are shown 
above.  For the Alaska pipeline, all three components are set to the associated production times 
the percentage of lease (AK_PCTLSE3), plant (AK_PCTPLT3), or pipeline fuel (AK_PCTPIP3).  
For the gas-to-liquids process, lease and plant fuel (AKGTL_LAP) is calculated as shown above 
and pipeline fuel is considered negligible.  For the rest of north Alaska, pipeline fuel 
consumption is assumed to be negligible, while lease and plant fuel not associated with the 
pipeline or GTL (QALK_LAP_N) is set based on an estimated equation shown previously 
(Table F10, Appendix F).

Estimates for natural gas wellhead and delivered prices in Alaska are estimated in the NGTDM 
for proper accounting, but have a very limited impact on the NEMS system.  The average Alaska 
wellhead price (AK_WPRC) over the North and South regions (not accounting for the impact if 
a pipeline ultimately is connected to Alberta) is set using the following estimated equation:

))934077.01*(280960.0(

y,1

934077.0

1 oIT_WOP*WPRLAG=WPRCAK_ (54)
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where,
AK_WPRC1 = natural gas wellhead price in Alaska, presuming no pipeline to 

Alberta (1987$/Mcf) (Table F1, Appendix F)
WPRLAG = AK_WPRC in the previous forecast year ($/Mcf)

oIT_WOPy,1 = world oil price (1987$ per barrel)

The price for natural gas associated with a pipeline to Alberta is exogenously specified 
(FR_PMINWPR1, Appendix E) and does not vary by forecast year.  The average wellhead price 
for the State is calculated as the quantity-weighted average of AK_WPRC and FR_PMINWPR1.
Delivered prices in Alaska are set equal to the wellhead price (AK_WPRC) resulting from the 
equation above plus a fixed, exogenously specified markup (Appendix E -- AK_RM, AK_CM, 
AK_IN, AK_EM).

Within the model, the commencement of construction of the Alaska to Alberta pipeline is 
restricted to the years beyond an earliest start date (FR_PMINYR, Appendix E) and can only 
occur if a pipeline from the MacKenzie Delta to Alberta is not under construction.  The same is 
true for the MacKenzie Delta pipeline relative to construction of the Alaska pipeline.  Otherwise, 
the structural representation of the MacKenzie Delta pipeline is nearly identical to that of the 
Alaska pipeline, with different numerical values for model parameters.   Therefore, the following 
description applies to both pipelines.  Within the model the same variable names are used to 
specify the supporting data for the two pipelines, with an index of 1 for Alaska and an index of 2 
for the MacKenzie Delta pipeline. 

The decision to build a pipeline is triggered if the estimated cost to supply the gas to the lower 48 
States is lower than an average of the lower 48 average wellhead price over the planning period 
of FR_PPLNYR (Appendix E) years.37 Construction is assumed to take FR_PCNSYR 
(Appendix E) years.  Initial pipeline capacity is assumed to accommodate a throughput delivered 
to Alberta of FR_PVOL (Appendix E).  The first year of operation, the volume is assumed to be 
half of its ultimate throughput.  If the trigger price exceeds the minimum price by 
FR_PADDTAR (Appendix E) after the initial pipeline is built, then the capacity will be 
expanded the following year by a fraction (FR_PEXPFAC, Appendix E) of the original capacity. 

The expected cost to move the gas to the lower 48 is set as the sum of the wellhead price,38

37The prices are weighted, with a greater emphasis on the prices in the recent past.  An additional check is made that the 
estimated cost is lower than the lower 48 price in the last two years of the planning period and lower than a weighted average of 
the expected prices in the three years after the planning period, during the construction period.

the 
charge for treating the gas, and the fuel costs (FR_PMINWPR, Appendix E), plus the pipeline 
tariff for moving the gas to Alberta and an assumed differential between the price in Alberta and 
the average lower 48 wellhead price (ALB_TO_L48, Appendix E).  A risk premium is also 
included to largely reflect the expected initial price drop as a result of the introduction of the 
pipeline, as well as some of the uncertainties in the necessary capital outlays and in the ultimate 

38The required wellhead price in the MacKenzie Delta is progressively adjusted in response to changes in the U.S. national 
average drilling cost per well projections and across the forecast horizon in a higher or lower technology case, such that by the 
last year (2035) the price is higher or lower than the price in the reference case by a fraction equal to 0.25 times the technology 
factor adjustment rate (e.g., 0.50 for AEO2011). 
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selling price (FR_PRISK, Appendix E).39

39If there is an annual decline in the average lower 48 wellhead price over the planning period for the Alaska pipeline, an 
additional adjustment is made to the expected cost (although it is not a cost item), equivalent to half of the drop in price averaged 
over the planning period, to account for the additional concern created by declining prices.

The cost-of-service based calculation for the pipeline 
tariff (NGFRPIPE_TAR) to move gas from each production source to Alberta is presented at the 
end of Chapter 6.
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3. Overview of Solution Methodology

The previous chapter described the function of the NGTDM within the NEMS and the 
transformation and representation of supply and demand elements within the NGTDM.  This 
chapter will present an overview of the NGTDM model structure and of the methodologies used 
to represent the natural gas transmission and distribution industries.  First, a detailed description 
of the network used in the NGTDM to represent the U.S. natural gas pipeline system is 
presented.  Next, a general description of the interrelationships between the submodules within 
the NGTDM is presented, along with an overview of the solution methodology used by each 
submodule.

NGTDM Regions and the Pipeline Flow Network

General Description of the NGTDM Network

In the NGTDM, a transmission and distribution network (Figure 3-1) simulates the interregional 
flow of gas in the contiguous United States and Canada in either the peak (December through 
March) or off-peak (April through November) period.  This network is a simplified 
representation of the physical natural gas pipeline system and establishes the possible 
interregional transfers to move gas from supply sources to end-users.  Each NGTDM region 
contains one transshipment node, a junction point representing flows coming into and out of the 
region.  Nodes have also been defined at the Canadian and Mexican borders, as well as in eastern 
and western Canada.  Arcs connecting the transshipment nodes are defined to represent flows 
between these nodes; and thus, to represent interregional flows.  Each of these interregional arcs 
represents an aggregation of pipelines that are capable of moving gas from one region into 
another region.  Bidirectional flows are allowed in cases where the aggregation includes some 
pipelines flowing one direction and other pipelines flowing in the opposite direction.40

Bidirectional flows can also be the result of directional flow shifts within a single pipeline 
system due to seasonal variations in flows.  Arcs leading from or to international borders 
generally41 represent imports or exports.  The arcs which are designated as “secondary” in 
Figure 3-1 generally represent relatively low flow volumes and are handled somewhat 
differently and separately from those designated as “primary.”

Flows are further represented by establishing arcs from the transshipment node to each demand 
sector/subregion represented in the NGTDM region.  Demand in a particular NGTDM region can 
only be satisfied by gas flowing from that same region’s transshipment node.  Similarly, arcs are 
also established from supply points into transshipment nodes.  The supply from each 
NGTDM/OGSM region is directly available to only one transshipment node, through which it 
must first pass if it is to be made available to the interstate market (at an adjoining transshipment 

40Historically, one out of each pair of bidirectional arcs in Figure 3-1 represents a relatively small amount of gas flow during 
the year.  These arcs are referred to as “the bidirectional arcs” and are identified as the secondary arcs in Figure 3-1, excluding 3 
to 15, 5 to 10, 15 to E. Canada, 20 to 7, 21 to 11, 22 to 12,  and Alaska to W. Canada.  The flows along these arcs are initially set 
at the last historical level and are only increased (proportionately) when a known (or likely) planned capacity expansion occurs.

41Some natural gas flows across the Canadian border into the United States, only to flow back across the border without 
changing ownership or truly being imported.  In addition, any natural gas that might flow from Alaska to the lower 48 states 
would cross the Canadian/U.S. border, but not be considered as an import.
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node).  During a peak period, one of the supply sources feeding into each transshipment node 
represents net storage withdrawals in the region during the peak period.  Conversely during the 
off-peak period, one of the demand nodes represents net storage injections in the region during 
the off-peak period.

Figure 3-1.  Natural Gas Transmission and Distribution Module Network  

Figure 3-2 shows an illustration of all possible flows into and out of a transshipment node.  Each 
transshipment node has one or more arcs to represent flows from or to other transshipment 
nodes.  The transshipment node also has an arc representing flow to each end-use sector in the 
region (residential, commercial, industrial, electric generators, and transportation), including 
separate arcs to each electric generator subregion.42

42Conceptually within the model, the flow of gas to each end-use sector passes through a common city gate point before 
reaching the end-user.

Exports and (in the off-peak period) net 
storage injections are also represented as flow out of a transshipment node.  Each transshipment 
node can have one or more arcs flowing in from each supply source represented within the 
region.  These supply points represent U.S. or Canadian onshore or U.S. offshore production,
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liquefied natural gas imports, gas produced in Alaska and transported via pipeline, Mexican 
imports, (in the peak period) net storage withdrawals in the region, or supplemental gas supplies.

Figure 3-2.  Transshipment Node
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Two items accounted for but not presented in Figure 3-2 are discrepancies or balancing items 
(i.e., average historically observed differences between independently reported natural gas 
supply and disposition levels (DISCR for the United States, CN_DISCR for Canada) and 
backstop supplies.43

Many of the types of supply listed above are relatively low in volume and are set independently 
of current prices and before the NGTDM determines a market equilibrium solution.  As a result, 
these sources of supply are handled differently within the model.  Structurally within the model 
only the price responsive sources of supply (i.e., onshore and offshore lower 48 U.S. production, 
Western Canadian Sedimentary Basin (WCSB) production, and storage withdrawals) are 
explicitly represented with supply nodes and connecting arcs to the transshipment nodes when 
the NGTDM is determining a market equilibrium solution.

Once the types of end-use destinations and supply sources into and out of each transshipment 
node are defined, a general network structure is created.  Each transshipment node does not 
necessarily have all supply source types flowing in, or all demand source types flowing out.  For 
instance, some transshipment nodes will have liquefied natural gas available while others will 
not.  The specific end-use sectors and supply types specified for each transshipment node in the
network are listed in Table 3-1.  This table also provides the mapping of Electricity Market 
Module regions and Oil and Gas Supply Module regions to NGTDM regions (Figure 2-3 and 
Figure 2-5 in Chapter 2).  The transshipment node numbers in the U.S. align with the NGTDM 
regions in Figure 3-1.  Transshipment nodes 13 through 19 are pass-through nodes for the border 
crossings on the Canada/U.S. border, going from east to west.

As described earlier, the NGTDM determines the flow and price of natural gas in both a peak 
and off-peak period.  The basic network structure separately represents the flow of gas during the 
two periods within the Interstate Transmission Submodule.  Conceptually this can be thought of 
as two parallel networks, with three areas of overlap.  First, pipeline expansion is determined 
only in the peak period network (with the exception of pipelines going into Florida from the East 
South Central Division).  These levels are then used as constraints for pipeline flow in the off-
peak period.  Second, net withdrawals from storage in the peak period establish the net amount
of natural gas that will be injected in the off-peak period, within a given forecast year.  Similarly, 
the price of gas withdrawn in the peak period is the sum of the price of the gas when it was 
injected in the off-peak, plus an established storage tariff.  Third, the supply curves provided by 
the Oil and Gas Supply Module are specified on an annual basis.  Although, these curves are 
used to approximate peak and off-peak supply curves, the model is constrained to solve on the 
annual supply curve (i.e., when the annual curve is evaluated at the quantity-weighted average 
annual wellhead price, the resulting quantity should equal the sum of the production in the peak 
and off-peak periods).  The details of how this is accomplished are provided in Chapter 4.

43Backstop supplies are allowed when the flow out of a transshipment node exceeds the maximum flow into a transshipment 
node.    A high price is assigned to this supply source and it is generally expected not to be required (or desired).  Chapter 4 
provides a more detailed description of the setting and use of backstop supplies in the NGTDM.
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Table 3-1. Demand and Supply Types at Each Transshipment Node in the Network

Transshipment 

Node
Demand Types Supply Types

1 R, C, I, T, U(1) P(1/1), LNG Everett Mass., LNG generic, SNG

2 R, C, I, T, U(2), INJ P(2/1), WTH, LNG generic, SNG

3 R, C, I, T, U(3), U(4), INJ P(3/1), WTH, SNG

4 R, C, I, T, U(5), INJ P(4/3), P(4/5), SNG, WTH, LNG generic

5 R, C, I, T, U(6), U(7), INJ
P(5/1), LNG Cove Pt Maryland, LNG Elba Island Georgia, 
Atlantic Offshore, WTH, LNG generic, SNG

6 R, C, I, T, U(9), U(10), INJ P(6/1), P(6/2), WTH, LNG generic, SNG

7 R, C, I, T, U(11), INJ
P(7/2), P(7/3), P(7/4), LNG Lake Charles Louisiana, Offshore 
Louisiana, Gulf of Mexico, WTH, LNG generic, SNG

8 R, C, I, T, U(12), U(13), INJ P(8/5), WTH, SNG

9 R, C, I, T, U(15), INJ P(9/6), WTH, LNG generic, SNG

10 R, C, I, T, U(6), U(8), INJ P(10/2), WTH, SNG

11 R, C, I, T, U(14), INJ P(11/4), P(11/5), WTH, SNG

12 R, C, I, T, U(16), INJ P(12/6), Pacific Offshore, WTH, LNG generic, SNG

13 – 19 -- --

20 Mexican Exports (TX) Mexican Imports (TX)

21 Mexican Exports (AZ/NM) Mexican Imports (AZ/NM)

22 Mexican Exports (CA) Mexican Imports (CA)

23 Eastern Canadian consumption, INJ Eastern Canadian supply, WTH

24 Western Canadian consumption, INJ
Western Canadian supply, WTH, Alaskan Supply via a 
pipeline, MacKenzie Valley gas via a pipeline

P(x/y) – production in region defined in Figure 2-5 for NGTDM region x and OGSM region y
U(z) – electric generator consumption in region z, defined in Figure 2-3

Specifications of a Network Arc

Each arc of the network has associated variable inputs and outputs.  The variables that define an 
interregional arc in the Interstate Transmission Submodule (ITS) are the pipeline direction, 
available capacity from the previous forecast year, the “fixed” tariffs and/or tariff curve, the flow 
on the arc from the previous year, the maximum capacity level, and the maximum utilization of 
the capacity (Figure 3-3).  While a model solution is determined (i.e., the quantity of the natural 
gas flow along each interregional arc is determined), the “variable” or quantity dependent tariff 
and the required capacity to support the flow are also determined in the process.

For the peak period, the maximum capacity build levels are set to a factor above the 1990 levels.  
The factor is set high enough so that this constraint is rarely, if ever, binding.  However, the 
structure could be used to limit growth along a particular path.  In the off-peak period the 
maximum capacity levels are set to the capacity level determined in the peak period.  The 
maximum utilization rate along each arc is used to capture the impact that varying demand loads 
over a season have on the utilization along an arc.
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Figure 3-3.  Variables Defined and Determined for Network Arc
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For the peak period, the maximum utilization rate is calculated based on an estimate of the ratio 
of January-to-peak period consumption requirements.  For the off-peak the maximum utilization 
rates are set exogenously (HOPUTZ, Appendix E).  Capacity and flow levels from the previous 
forecast year are used as input to the solution algorithm for the current forecast year.  In some 
cases, capacity that is newly available in the current forecast year will be exogenously set 
(PLANPCAP, Appendix E) as “planned” (i.e., highly probable that it will be built by the given 
forecast year based on project announcements).  Any additional capacity beyond the planned 
level is determined during the solution process and is checked against maximum capacity levels 
and adjusted accordingly.  Each of the interregional arcs has an associated “fixed” and “variable” 
tariff, to represent usage and reservation fees, respectively.  The variable tariff is established by 
applying the flow level along the arc to the associated tariff supply curve, established by the 
Pipeline Tariff Submodule.  During the solution process in the Interstate Transmission 
Submodule, the resulting tariff in the peak or off-peak period is added to the price at the source 
node to arrive at a price for the gas along the interregional arc right before it reaches its 
destination node.  Through an iterative process, the relative values of these prices for all of the 
arcs entering a node are used as the basis for reevaluating the flow along each of these arcs.44

For the arcs from the transshipment nodes to the final delivery points, the variables defined are 
tariffs and flows (or consumption).  The tariffs here represent the sum of several charges or 
adjustments, including interstate pipeline tariffs in the region, intrastate pipeline tariffs, and 
distributor markups.  Associated with each of these arcs is the flow along the arc, which is equal 
to the amount of natural gas consumed by the represented sector.  For arcs from supply points to 
transshipment nodes, the input variables are the production levels from the previous forecast 
year, a tariff, and the maximum limit on supplies or production.  In this case the tariffs 
theoretically represent gathering charges, but are currently assumed to be zero.45 Maximum 
supply levels are set at a percentage above a baseline or “expected” production level (described 
in Chapter 4).  Although capacity limits can be set for the arcs to and from end-use sectors and 
supply points, respectively, the current version of the module does not impose such limits on the 
flows along these arcs.

Note that any of the above variables may have a value of zero, if appropriate.  For instance, some 
pipeline arcs may be defined in the network that currently have zero capacity, yet where new 
capacity is expected in the future.  On the other hand, some arcs such as those to end-use sectors 
are defined with infinite pipeline capacity because the model does not forecast limits on the flow 
of gas from transshipment nodes to end users.

Overview of the NGTDM Submodules and Their Interrelationships

The NEMS generates an annual forecast of the outlook for U.S. energy markets for the years 
1990 through 2030.  For the historical years, many of the modules in NEMS do not execute, but 

44During the off-peak period in a previous version of the module, only the usage fee was used as a basis for 
determining the relative flow along the arcs entering a node.  However, the total tariff was ultimately used when 
setting delivered prices.

45Ultimately the gathering charges are reflected in the delivered prices when the model is benchmarked to historically reported
city gate prices.
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simply assign historically published values to the model’s output variables.  The NGTDM 
similarly assigns historical values to most of the known module outputs for these years.  
However, some of the required outputs from the module are not known (e.g., the flow of natural 
gas between regions on a seasonal basis).  Therefore, the model is run in a modified form to fill 
in such unknown, but required values.  Through this process historical values are generated for 
the unknown parameters that are consistent with the known historically based values (e.g., the 
unknown seasonal interregional flows sum to the known annual totals).

Although the NGTDM is executed for each iteration of each forecast year solved by the NEMS, 
it is not necessary that all of the individual components of the module be executed for all 
iterations.  Of the NGTDM’s three components or submodules, the Pipeline Tariff Submodule is 
executed only once per forecast year since the submodule’s input values do not change from one 
iteration of NEMS to the next.  However, the Interstate Transmission Submodule and the 
Distributor Tariff Submodule are executed during every iteration for each forecast year because 
their input values can change by iteration.  Within the Interstate Transmission Submodule an 
iterative process is used.  The basic solution algorithm is repeated multiple times until the 
resulting wellhead prices and production levels from one iteration are within a user-specified 
tolerance of the resulting values from the previous iteration, and equilibrium is reached.  A 
process diagram of the NGTDM is provided in Figure 3-4, with the general calling sequence. 

The Interstate Transmission Submodule is the primary submodule of the NGTDM.  One of its 
functions is to forecast interregional pipeline and underground storage expansions and produce 
annual pipeline load profiles based on seasonal loads.  Using this information from the previous 
forecast year and other data, the Pipeline Tariff Submodule uses an accounting process to derive 
revenue requirements for the current forecast year.  This submodule builds pipeline and storage
tariff curves based on these revenue requirements for use in the Interstate Transmission 
Submodule.  These curves extend beyond the level of the current year’s capacity and provide a
means for assessing whether the demand for additional capacity, based on a higher tariff, is 
sufficient to warrant expansion of the capacity.  The Distributor Tariff Submodule provides 
distributor tariffs for use in the Interstate Transmission Submodule.  The Distributor Tariff
Submodule must be called in each iteration because some of the distributor tariffs are based on
consumption levels that may change from iteration to iteration.  Finally, using the information 
provided by these other NGTDM submodules and other NEMS modules, the Interstate 
Transmission Submodule solves for natural gas prices and quantities that reflect a market 
equilibrium for the current forecast year.  A brief summary of each of the NGTDM submodules 
follows.

Interstate Transmission Submodule

The Interstate Transmission Submodule (ITS) is the main integrating module of the NGTDM.  
One of its major functions is to simulate the natural gas price determination process.  The ITS 
brings together the major economic factors that influence regional natural gas trade on a seasonal 
basis in the United States, the balancing of the demand for and the domestic supply of natural 
gas, including competition from imported natural gas.  These are examined in combination with 
the relative prices associated with moving the gas from the producer to the end-user where and
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Figure 3-4.  NGTDM Process Diagram
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when (peak versus off-peak) it is needed.  In the process, the ITS models the decision-making 
process for expanding pipeline and/or seasonal storage capacity in the U.S. gas market, 
determining the amount of pipeline and storage capacity to be added between or within regions 
in the NGTDM.  Storage serves as the primary link between the two seasonal periods 
represented.

The ITS employs an iterative heuristic algorithm to establish a market equilibrium solution.  
Given the consumption levels from other NEMS modules, the basic process followed by the ITS 
involves first establishing the backward flow of natural gas in each period from the consumers, 
through the network, to the producers, based primarily on the relative prices offered for the gas 
(from the previous ITS iteration).  This process is performed for the peak period first since the 
net withdrawals from storage during the peak period will establish the net injections during the 
off-peak period.  Second, using the model’s supply curves, wellhead prices are set corresponding 
to the desired production volumes.  Also, using the pipeline and storage tariff curves from the 
Pipeline Tariff Submodule, pipeline and storage tariffs are set corresponding to the associated 
flow of gas, as determined in the first step.  These prices are then translated from the producers, 
back through the network, to the city gate and the end-users, by adding the appropriate tariffs 
along the way.  A regional storage tariff is added to the price of gas injected into storage in the 
off-peak to arrive at the price of the gas when withdrawn in the peak period.  Delivered prices 
are derived for residential, commercial, electric generation, and transportation customers, as well 
as for both the core and non-core industrial sectors, using the distributor tariffs provided by the 
Distributor Tariff Submodule. At this point consumption levels can be reevaluated given the 
resulting set of delivered prices.  Either way, the process is repeated until the solution has 
converged.

In the end, the ITS derives average seasonal (and ultimately annual) natural gas prices (wellhead, 
city gate, and delivered), and the associated production and flows, that reflect an interregional 
market equilibrium among the competing participants in the market.  In the process of 
determining interregional flows and storage injections/withdrawals, the ITS also forecasts 
pipeline and storage capacity additions.  In the calculations for the next forecast year, the 
Pipeline Tariff Submodule will adjust the requirements to account for the associated expansion 
costs.  Other primary outputs of the module include lease, plant, and pipeline fuel use, Canadian 
import levels, and net storage withdrawals in the peak period.

The historical evolution of the price determination process simulated by the ITS is depicted 
schematically in Figure 3-5.  At one point, the marketing chain was very straightforward, with 
end-users and local distribution companies contracting with pipeline companies, and the pipeline 
companies in turn contracting with producers.  Prices typically reflected average costs of 
providing service plus some regulator-specified rate of return.  Although this approach is still 
used as a basis for setting pipeline tariffs, more pricing flexibility has been introduced, 
particularly in the interstate pipeline industry and more recently by local distributors.  Pipeline 
companies are also offering a range of services under competitive and market-based pricing 
arrangements.  Additionally, newer players—for example marketers of spot gas and brokers for 
pipeline capacity—have entered the market, creating new links connecting suppliers with end-
users.  The marketing links are expected to become increasingly complex in the future.
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Figure 3-5.  Principal Buyer/Seller Transaction Paths for Natural Gas Marketing

The level of competition for pipeline services (generally a function of the number of pipelines 
having access to a customer and the amount of capacity available) drives the prices for 
interruptible transmission service and is having an effect on firm service prices.  Currently, there 
are significant differences across regions in pipeline capacity utilization.46 These regional 
differences are evolving as new pipeline capacity has been and is being constructed to relieve 
capacity constraints in the Northeast, to expand markets in the Midwest and the Southeast, and to
move more gas out of the Rocky Mountain region and the Gulf of Mexico.  As capacity changes 
take place, prices of services should adjust accordingly to reflect new market conditions.

46Further information can be found on the U.S. Energy Information Administration web page under “Pipeline Capacity and 
Usage” www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/index.html.
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Federal and State initiatives are reducing barriers to market entry and are encouraging the 
development of more competitive markets for pipeline and distribution services. Mechanisms 
used to make the transmission sector more competitive include the widespread capacity releasing 
programs, market-based rates, and the formation of market centers with deregulated upstream 
pipeline services. The ITS is not designed to model any specific type of program, but to simulate 
the overall impact of the movement towards market based pricing of transmission services.

Pipeline Tariff Submodule

The primary purpose of the Pipeline Tariff Submodule (PTS) is to provide volume dependent 
curves for computing tariffs for interstate transportation and storage services within the Interstate 
Transmission Submodule.  These curves extend beyond current capacity levels and relate 
incremental pipeline or storage capacity expansion to corresponding estimated rates.  The 
underlying basis for each tariff curve in the model is a forecast of the associated regulated 
revenue requirement.  An accounting system is used to track costs and compute revenue 
requirements associated with both reservation and usage fees under a current typical regulated 
rate design.  Other than an assortment of macroeconomic indicators, the primary input to the PTS 
from other modules/submodules in NEMS is the level of pipeline and storage capacity 
expansions in the previous forecast year.  Once an expansion is projected to occur, the 
submodule calculates the resulting impact on the revenue requirement.  The PTS currently 
assumes  rolled-in (or average), not incremental rates for new capacity (i.e., the cost of any 
additional capacity is lumped in with the remaining costs of existing capacity when deriving a 
single tariff for all the customers along a pipeline segment).

Transportation revenue requirements (and associated tariff curves) are established for 
interregional arcs defined by the NGTDM network.  These network tariff curves reflect an 
aggregation of the revenue requirements for individual pipeline companies represented by the 
network arc.  Storage tariff curves are defined at regional NGTDM network nodes, and similarly 
reflect an aggregation of individual company storage revenue requirements.  Note that these 
services are unbundled and do not include the price of gas, except for the cushion gas used to 
maintain minimum gas pressure.  Furthermore, the submodule cannot address competition for 
pipeline or storage services along an aggregate arc or within an aggregate region, respectively.  It 
should also be noted that the PTS deals only with the interstate market, and thus does not capture 
the impacts of State-specific regulations for intrastate pipelines.  Intrastate transportation charges 
are accounted for within the Distributor Tariff Submodule.

Pipeline tariffs for transportation and storage services represent a more significant portion of the 
price of gas to industrial and electric generator end-users than to other sectors.  Consumers of 
natural gas are grouped generally into two categories:  (1) those that need firm or guaranteed 
service because gas is their only fuel option or because they are willing to pay for security of 
supply, and (2) those that do not need guaranteed service because they can either periodically 
terminate operations or use fuels other than natural gas.  The first group of customers (core 
customers) is assumed to purchase firm transportation services, while the latter group (non-core 
customers) is assumed to purchase non-firm service (e.g., interruptible service, released 
capacity).  Pipeline companies guarantee to their core customers that they will provide peak day 
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service up to the maximum capacity specified under their contracts even though these customers 
may not actually request transport of gas on any given day.  In return for this service guarantee, 
these customers pay monthly reservation fees (or demand charges).  These reservation fees are 
paid in addition to charges for transportation service based on the quantity of gas actually 
transported (usage fees or commodity charges).  The pipeline tariff curves generated by the PTS 
are used within the ITS when determining the relative cost of purchasing and moving gas from 
one source versus another in the peak and off-peak seasons.  They are also used when setting the 
price of gas along the NGTDM network and ultimately to the end-users. 

The actual rates or tariffs that pipelines are allowed to charge are largely regulated by the Federal 
Energy Regulatory Commission (FERC).  FERC’s ratemaking traditionally allows (but does not 
necessarily guarantee) a pipeline company to recover its costs, including what the regulators 
consider a fair rate of return on capital.  Furthermore, FERC not only has jurisdiction over how 
cost components are allocated to reservation and usage categories, but also how reservation and 
usage costs are allocated across the various classes of transmission (or storage) services offered 
(e.g., firm versus non-firm service).  Previous versions of the NGTDM (and therefore the PTS) 
included representations of natural gas moved (or stored) using firm and non-firm service.  
However, in an effort to simplify the module, this distinction has been removed in favor of 
moving from an annual to a seasonal model.  The impact of the distinction of firm versus non-
firm service on core and non-core delivered prices is indirectly captured in the markup 
established in the Distributor Tariff Submodule. More recent initiatives by FERC have allowed 
for more flexible processes for setting rates when a service provider can adequately demonstrate 
that it does not possess significant market power.  The use of volume dependent tariff curves 
partially serves to capture the impact of alternate rate setting mechanisms.  Additionally, various 
rate making policy options discussed by FERC would allow peak-season rates to rise 
substantially above the 100-percent load factor rate (also known as the full cost-of-service rate).  
In capacity-constrained markets, the basis differential between markets connected via the 
constrained pipeline route will generally be above the full cost of service pipeline rates.  The 
NGTDM’s ultimate purpose is to project market prices; it uses cost-of-service rates as a means in 
the process of establishing market prices.

Distributor Tariff Submodule

The primary purpose of the Distributor Tariff Submodule (DTS) is to determine the price markup 
from the regional market hub to the end-user.  For most customers, this consists of (1) distributor 
markups charged by local distribution companies for the distribution of natural gas from the city 
gate to the end user and (2) markups charged by intrastate pipeline companies for intrastate 
transportation services.  Intrastate pipeline tariffs are specified exogenously to the model and are 
currently set to zero (INTRAST_TAR, Appendix E).  However, these tariffs are accounted for in 
the module indirectly.  For most industrial and electric generator customers, gas is not purchased 
through a local distribution company, so they are not specifically charged a distributor tariff.  In 
this case, the “distributor tariff” represents the difference between the average price paid by local 
distribution companies at the city gate and the price paid by the average industrial or electric 
generator customer.  Distributor tariffs are distinguished within the DTS by sector (residential, 
commercial, industrial, transportation, and electric generator), region (NGTDM/EMM regions 
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for electric generators and NGTDM regions for the rest), seasons (peak or off-peak), and as 
appropriate by service type or class (core or non-core).

Distribution markups represent a significant portion of the price of gas to residential, 
commercial, and transportation customers, and less so to the industrial and electric generation 
sectors.  Each sector has different distribution service requirements, and frequently different 
transportation needs.  For example, the core customers in the model (residential, transportation, 
commercial and some industrial and electric generator customers) are assumed to require 
guaranteed on-demand (firm) service because natural gas is largely their only fuel option.  In 
contrast, large portions of the industrial and electric generator sectors may not rely solely on 
guaranteed service because they can either periodically terminate operations or switch to other 
fuels.  These customers are referred to as non-core.  They can elect to receive some gas supplies 
through a lower priority (and lower cost) interruptible transportation service.  While not 
specifically represented in the model, during periods of peak demand, services to these sectors 
can be interrupted in order to meet the natural gas requirements of core customers.  In addition, 
these customers frequently select to bypass the local distribution company pipelines and hook up 
directly to interstate or intrastate pipelines.

The rates that local distribution companies and intrastate carriers are allowed to charge are 
regulated by State authorities.  State ratemaking traditionally allows (but does not necessarily 
guarantee) local distribution companies and intrastate carriers to recover their costs, including 
what the regulators consider a fair return on capital.  These rates are derived from the cost of 
providing service to the end-use customer.  The State authority determines which expenses can 
be passed through to customers and establishes an allowed rate of return.  These measures 
provide the basis for distinguishing rate differences among customer classes and type of service 
by allocating costs to these classes and services based on a rate design.  The DTS does not 
project distributor tariffs through a rate base calculation as is done in the PTS, partially due to 
limits on data availability.47 In most cases, projected distributor tariffs in the model depend 
initially on base year values, which are established by subtracting historical city gate prices from 
historical delivered prices, and generally reflect an average over recent historical years.   

Distributor tariffs for all but the transportation sector are set using econometrically estimated 
equations. 48 Transportation sector markups, representing sales for natural gas vehicles, are set 
separately for fleet and personal vehicles and account for distribution to delivery stations, retail 
markups, and federal and state motor fuels taxes.  In addition, the NGTDM assesses the potential 
construction of infrastructure to support fueling compressed natural gas vehicles.

47 In theory these cost components could be compiled from rate filings to state Public Utility Commissions; however, such an 
extensive data collection effort is beyond the available resources.  

48An econometric approach was used largely as a result of data limitations.  EIA data surveys do not collect the cost 
components required to derive revenue requirements and cost-of-service for local distribution companies and intrastate carriers.  
These cost components can be compiled from rate filings to Public Utility Commissions; however, an extensive data collection 
effort is beyond the scope of NEMS at this time.  
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4. Interstate Transmission Submodule Solution Methodology

As a key component of the NGTDM, the Interstate Transmission Submodule (ITS) determines 
the market equilibrium between supply and demand of natural gas within the North American 
pipeline system.  This translates into finding the price such that the quantity of gas that 
consumers would desire to purchase equals the quantity that producers would be willing to sell, 
accounting for the transmission and distribution costs, pipeline fuel use, capacity expansion costs 
and limitations, and mass balances.  To accomplish this, two seasonal periods were represented 
within the module--a peak and an off-peak period.  The network structures within each period 
consist of an identical system of pipelines, and are connected through common supply sources 
and storage nodes.  Thus, two interconnected networks (peak and off-peak) serve as the 
framework for processing key inputs and balancing the market to generate the desired outputs.  A 
heuristic approach is used to systematically move through the two networks solving for 
production levels, network flows, pipeline and storage capacity requirements,49

Network Characteristics in the ITS

supply and 
citygate prices, and ultimately delivered prices until mass balance and convergence are achieved.  
(The methodology used for calculating distributor tariffs is presented in Chapter 5.)  Primary 
input requirements include seasonal consumption levels, capacity expansion cost curves, annual 
natural gas supply levels and/or curves, a representation of pipeline and storage tariffs, as well as 
values for pipeline and storage starting capacities, and network flows and prices from the 
previous year.  Some of the inputs are provided by other NEMS modules, some are exogenously 
defined and provided in input files, and others are generated by the module in previous years or 
iterations and used as starting values.  Wellhead, import, and delivered prices, supply quantities, 
and resulting flow patterns are obtained as output from the ITS and sent to other NGTDM 
submodules or other NEMS modules after some processing.  Network characteristics, input 
requirements, and the heuristic process are presented more fully below.

As described in an earlier chapter, the NGTDM network consists of 12 NGTDM regions (or 
transshipment nodes) in the lower 48 states, three Mexican border crossing nodes, seven 
Canadian border crossing nodes, and two Canadian supply/demand regions.  Interregional arcs 
connecting the nodes represent an aggregation of pipelines that are capable of moving gas from 
one region (or transshipment node) into another.  These arcs have been classified as either 
primary flow arcs or secondary flow arcs.  The primary flow arcs (see Figure 3-1) represent 
major flow corridors for the transmission of natural gas.  Secondary arcs represent either flow in 
the opposite direction from the primary flow (historically about 3 percent of the total flow) or 
relatively low flow volumes that are set exogenously or outside the ITS equilibration routine 
(e.g. Mexican imports and exports).  In the ITS, this North American natural gas pipeline flow 
network has been restructured into a hierarchical, acyclic network representing just the primary 
flow of natural gas (Figure 4-1).  The representation of flows along secondary arcs is described 
in the Solution Process section below.  A hierarchical, acyclic network structure allows for the 

49In reality, capacity expansion decisions are made based on expectations of future demand requirements, allowing for 
regulatory approvals and construction lead times.  In the model, additional capacity is available immediately, once it is 
determined that it is needed.  The implicit assumption is that decision makers exercised perfect foresight and that planning and 
construction for the pipeline actually started before the pipeline came online. 
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systematic representation of the flow of natural gas (and its associated prices) from the supply 
sources, represented towards the bottom of the network, up through the network to the end-use 
consumer at the upper end of the network. 

Figure 4-1.  Network “Tree” of Hierarchical, Acyclic Network of Primary Arcs

In the ITS, two interconnected acyclic networks are used to represent natural gas flow to end-use 
markets during the peak period (PK) and flow to end-use markets during the off-peak period 
(OP).  These networks are connected regionally through common supply sources and storage 
nodes (Figure 4-2).  Storage within the module only represents the transfer of natural gas 
produced in the off-peak period to meet the higher demands in the peak period.  Therefore, net 
storage injections are included only in the off-peak period, while net storage withdrawals occur 
only in the peak period.  Within a given forecast year, the withdrawal level from storage in the 
peak period establishes the level of gas injected in the off-peak period.  Annual supply sources 
provide natural gas to both networks based on the combined network production requirements 
and corresponding annual supply availability in each region.
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Figure 4-2.  Simplified Example of Supply and Storage Links Across Networks

Input Requirements of the ITS

The following is a list of the key inputs required during ITS processing:

Seasonal end-use consumption or demand curves for each NGTDM region and Canada
Seasonal imports (except Canada) and exports by border crossing
Canadian import capacities by border crossing
Total natural gas production in eastern Canada and unconventional production in western 
Canada, by season.
Natural gas flow by pipeline from Alaska to Alberta.
Natural gas flow by pipeline from the MacKenzie Delta to Alberta.
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Regional supply curve parameters for U.S. nonassociated and western Canadian conventional 
natural gas supply50

Seasonal supply quantities for U.S. associated-dissolved gas, synthetic gas, and other 
supplemental supplies by NGTDM region
Seasonal network flow patterns from the previous year, by arc (including flows from storage, 
variable supply sources, and pipeline arcs)
Seasonal network prices from the previous year, by arc (including flows from storage, 
variable supply sources, and pipeline arcs)
Pipeline capacities, by arc
Seasonal maximum pipeline utilizations, by arc
Seasonal pipeline (and storage) tariffs representing variable costs or usage fees, by arc (and 
region)
Pipeline capacity expansion/tariff curves for the peak network, by arc
Storage capacity expansion/tariff curves for the peak network, by region
Seasonal distributor tariffs by sector and region

Many of the inputs are provided by other NEMS submodules, some are defined from data within 
the ITS, and others are ITS model results from operation in the previous year.  For example, 
supply curve parameters for lower 48 nonassociated onshore and offshore natural gas production 
and lower 48 associated-dissolved gas production are provided by the Oil and Gas Supply 
Module (OGSM).  In contrast, Canadian data are set within the NGTDM as direct input to the 
ITS.  U.S. end-use consumption levels are provided by NEMS demand modules; pipeline and 
storage capacity expansion/tariff curve parameters are provided by the Pipeline Tariff 
Submodule (PTS, see chapter 6); and seasonal distributor tariffs are defined by the Distributor 
Tariff Submodule (DTS, see Chapter 5).  Seasonal network flow patterns and prices are 
determined within the ITS.  They are initially set based on historical data, and then from model 
results in the previous model year.   

Because the ITS is a seasonal model, most of the input requirements are on a seasonal level.  In 
most cases, however, the information provided is not represented in the form defined above and 
needs to be processed into the required form.  For example, regional end-use consumption levels 
are initially defined by sector on an annual basis.  The ITS disaggregates each of these sector-
specific quantities into a seasonal peak and off-peak representation, and then aggregates across 
sectors within each season to set a total consumption level.  Also, regional fixed supplies and 
some of the import/export levels represent annual values.  A simple methodology has been 
developed to disaggregate the annual information into peak and off-peak quantities using item-
specific peak sharing factors (e.g., PKSHR_ECAN, PKSHR_EMEX, PKSHR_ICAN, 
PKSHR_IMEX, PKSHR_SUPLM, PKSHR_ILNG, and PKSHR_YR).  For more detail on these 
inputs see Chapter 2.  A similar method is used to approximate the consumption and supply in 
the peak month of each period.  This information is used to verify that sufficient sustained51

50These supply sources are referred to as the “variable” supplies because they are allowed to change in response to price 
changes during the ITS solution process.  A few of the “fixed” supplies are adjusted each NEMS iteration, generally in response 
to price, but are held constant within the ITS solution process.

capacity is available for the peak day in each period; and if not, it is used as a basis for adding 

51“Sustained” capacity refers to levels that can operationally be sustained throughout the year, as opposed to “peak” capacity 
which can be realized at high pressures and would not generally be maintained other than at peak demand periods.
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additional capacity.  The assumption reflected in the model is that, if there is sufficient sustained 
capacity to handle the peak month, line packing52

Heuristic Process

and propane injection can be used to 
accommodate a peak day in this month.

The basic process used to determine supply and delivered prices in the ITS involves starting 
from the top of the hierarchical, acyclic network or “tree” (as shown in Figure 4-1) with end-use 
consumption levels, systematically moving down each network (in the opposite direction from 
the primary flow of gas) to define seasonal flows along network arcs that will satisfy the 
consumption, evaluating wellhead prices for the desired production levels, and then moving up 
each network (in the direction of the primary flow of gas) to define transmission, node, storage, 
and delivered prices. 

While progressively moving down the peak or off-peak network, net regional demands are 
assigned for each node on each network.  Net regional demands are defined as the sum of 
consumption in the region plus the gas that is exiting the region to satisfy consumption 
elsewhere, net of fixed53 supplies in the region.  The consumption categories represented in net 
regional demands include end-use consumption in the region, exports, pipeline fuel consumption, 
secondary and primary flows out of the region, and for the off-peak period, net injections into 
regional storage facilities.  Regional fixed supplies include imports (except conventional gas 
from Western Canada), secondary flows into the region, and the regions associated-dissolved
production, supplemental supplies, and other fixed supplies.  The net regional demands at a node 
will be satisfied by the gas flowing along the primary arcs into the node, the local “variable” 
supply flowing into the node, and for the peak period, the gas withdrawn from the regional 
storage facilities on a net basis.

Starting with the node(s) at the top of the network tree (i.e., nodes 1, 10, and 12 in Figure 4-1), 
the model uses a sharing algorithm to determine the percent of the represented region’s net
demand that is satisfied by each arc going into the node.  The resulting shares are used to define 
flows along each arc (supply, storage, and interregional pipeline) into the region (or node).  The 
interregional flows then become additional consumption requirements (i.e., primary flows out of 
a region) at the corresponding source node (region).  If the arc going into the original node is 
from a supply or storage54 source, then the flow represents the production or storage withdrawal 
level, respectively.  The sharing algorithm is systematically applied (going down the network 
tree) to each regional node until flows have been defined for all arcs along a network, such that 
consumption in each region is satisfied.

Once flows are established for each network (and pipeline tariffs are set by applying the flow 
levels to the pipeline tariff curves), resulting production levels for the variable supplies are used 
to determine regional wellhead prices and, ultimately, storage, node, and delivered prices.  By 

52Line packing is a means of storing gas within a pipeline for a short period of time by compressing the gas. 
53Fixed supplies are those supply sources that are not allowed to vary in response to changes in the natural gas price during the 

ITS solution process.
54For the peak period networks only.
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systematically moving up each network tree, regional wellhead prices are used with pipeline 
tariffs, while adjusting for price impacts from pipeline fuel consumption, to calculate regional 
node prices for each season.  Next, intraregional and intrastate markups are added to the 
regional/seasonal node prices, followed by the addition of corresponding seasonal, sectoral 
distributor tariffs, to generate delivered prices.  Seasonal prices are then converted to annual 
delivered prices using quantity-weighted averaging. To speed overall NEMS convergence,55 the 
delivered prices can be applied to representative demand curves to approximate the demand 
response to a change in the price and to generate a new set of consumption levels.  This process 
of going up and down the network tree is repeated until convergence is reached.

The order in which the networks are solved differs depending on whether movement is down or 
up the network tree.  When proceeding down the network trees, the peak network flows are 
established first, followed by the off-peak network flows.  This order has been established for 
two reasons.  First, capacity expansion is decided based on peak flow requirements.56 This in 
turn is used to define the upper limits on flows along arcs in the off-peak network. Second, net 
storage injections (represented as consumption) in the off-peak season cannot be defined until 
net storage withdrawals (represented as supplies) in the peak season are established.  When 
going up the network trees, prices are determined for the off-peak network first, followed by the 
peak network.  This order has been established mainly because the price of fuel withdrawn from 
storage in the peak season is based on the cost of fuel injected into storage in the off-peak season 
plus a storage tariff.

If net demands exceed available supplies on a network in a region, then a backstop supply is 
made available at a higher price than other local supply.  The higher price is passed up the 
network tree to discourage (or decrease) demands from being met via this supply route.  Thus, 
network flows respond by shifting away from the backstop region until backstop supply is no 
longer needed.

Movement down and up each network tree (defined as a cycle) continues within a NEMS 
iteration until the ITS converges.  Convergence is achieved when the regional seasonal supply 
prices determined during the current cycle down the network tree are within a designated 
minimum percentage tolerance from the supply prices established the previous cycle down the 
network tree.  In addition, the absolute change in production between cycles within supply 
regions with relatively small production levels are checked in establishing convergence.  In 
addition, the presence of backstop will prevent convergence from being declared.  Once 
convergence is achieved, only one last movement up each network tree is required to define final 
regional/seasonal node and delivered prices.  If convergence is not achieved, then a set of 
“relaxed” supply prices is determined by weighting regional production results from both the 
current and the previous cycle down the network tree, and obtaining corresponding new annual 
and seasonal supply prices from the supply curves in each region based on these “relaxed” 
production levels.  The concept of “relaxation” is a means of speeding convergence by solving 

55At various times, NEMS has not readily converged and various approaches have been taken to improve the process.  If the 
NGTDM can anticipate the potential demand response to a price change from one iteration to the next, and accordingly moderate 
the price change, the NEMS will theoretically converge to an equilibrium solution in less iterations.

56Pipeline capacity into region 10 (Florida) is allowed to expand in either the peak or off-peak period because the region 
experiences its peak usage of natural gas in what is generally the off-peak period for consumption in the rest of the country.
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for quantities (or prices) in the current iteration based on a weighted-average of the prices (or 
quantities) from the previous two iterations, rather than just using the previous iteration’s 
values.57

The following subsections describe many of these procedures in greater detail, including:  net 
node demands, pipeline fuel consumption, sharing algorithm, wellhead prices, tariffs, arc, node, 
and storage prices, backstop, convergence, and delivered and import prices. A simple flow 
diagram of the overall process is presented in Figure 4-3.

Net Node Demands

Seasonal net demands at a node are defined as total seasonal demands in the region, net of 
seasonal fixed supplies entering the region.  Regional demands consist of primary flows exiting 
the region (including net storage injections in the off-peak), pipeline fuel consumption, end-use 
consumption, discrepancies (or historical balancing item), Canadian consumption, exports, and 
other secondary flows exiting the region.  Fixed supplies include associated-dissolved gas, 
Alaskan gas supplies to Alberta, synthetic natural gas, other supplemental supplies, LNG 
imports, fixed Canadian supplies (including MacKenzie Delta gas), and other secondary flows 
entering the region.  Seasonal net node demands are represented by the following equations:
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57The model typically solves within 3 to 6 cycles.
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Figure 4-3. Interstate Transmission Submodule System
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Off-Peak:
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where,
NODE_DMDn,r = net node demands in region r, for network n (Bcf)

NODE_CDMDn,r = net node demands remaining constant each NEMS iteration in 
region r, for network n (Bcf)

YEAR_CDMDn,r = net node demands remaining constant within a forecast year in 
region r, for network n (Bcf)

PFUELn,r = Pipeline fuel consumption in region r, for network n (Bcf)
FLOWn,a = Seasonal flow on network n, along arc a [out of region r] (Bcf)

ZNGQTY_Fnonu,r = Core demands in region r, by nonelectric sectors nonu (Bcf)
ZNGQTY_Inonu,r = Noncore demands in region r, by nonelectric sectors nonu(Bcf)

ZNGUQTY_Fjutil = Core utility demands in NGTDM/EMM subregion jutil [subset of 
region r] (Bcf)

ZNGUQTY_Ijutil = Noncore utility demands in NGTDM/EMM subregion jutil [subset 
of region r] (Bcf)

ZADGPRDs = Onshore and offshore associated-dissolved gas production in 
supply subregion s (Bcf)

DISCRn,r,t = Lower 48 discrepancy in region r, for network n, in forecast year t 
(Bcf)58

58Projected lower 48 discrepancies are primarily based on the average historical level from 1990 to 2009.  Discrepancies are 
adjusted in the STEO years to account for STEO discrepancy (Appendix E, STDISCR) and annual net storage withdrawal 
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CN_DISCRn,cn = Canada discrepancy in Canadian region cn, for network n (Bcf)
CN_DMDcn,t = Canada demand in Canadian region cn, in forecast year t (Bcf, 

Appendix E)
SAFLOWa,t = Secondary flows out of region r, along arc a [includes Canadian 

and Mexican exports, Canadian gas that flows through the U.S., 
and lower 48 bidirectional flows] (Bcf)

SAFLOWa',t = Secondary flows into region r, along arc a' [includes Mexican 
imports, Canadian imports into the East North Central Census 
Division, Canadian gas that flows through the U.S., and lower 48 
bidirectional flows] (Bcf)

QAK_ALBt = Natural gas flow from Alaska into Alberta via pipeline (Bcf)
ZTOTSUPr = Total supply from SNG liquids, SNG coal, and other supplemental 

in forecast year t (Bcf)
OGQNGIMPL,t = LNG imports from LNG region L, in forecast year t (Bcf)
CN_FIXSUPcn,t = Fixed supply from Canadian region cn, in forecast year t (Bcf,

Appendix E)
PK1, PK2 = Fraction of either in-flow or out-flow volumes corresponding to 

peak season (composed of PKSHR_ECAN, PKSHR_EMEX, 
PKSHR_ICAN, PKSHR_IMEX, or PKSHR_YR)

PKSHR_DMDnonu,r = Average (2001-2009) fraction of annual consumption in each 
nonelectric sector in region r corresponding to the peak season 

PKSHR_UDMDjutil = Average (1994-2009, except New England 1997-2009) fraction of 
annual consumption in the electric generator sector in region r 
corresponding to the peak season 

PKSHR_PRODs = Average (1994-2009) fraction of annual production in supply 
region s corresponding to the peak season (fraction, Appendix E)

PKSHR_CDMD = Fraction of annual Canadian demand corresponding to the peak
season (fraction, Appendix E)

PKSHR_YR = Fraction of the year represented by the peak season
PKSHR_SUPLM = Average (1990-2009) fraction of supplemental supply 

corresponding to the peak season 
PKSHR_ILNG = Fraction of LNG imports corresponding to the peak season

PKSHR_ECAN = Fraction of Canadian exports transferred in peak season
PKSHR_ICAN = Fraction of Canadian imports transferred in peak season

PKSHR_EMEX = Fraction of Mexican exports transferred in peak season
PKSHR_IMEX = Fraction of Mexican imports transferred in peak season

r = region/node
n = network (peak or off-peak)

PK,OP = Peak and off-peak network, respectively
nonu = Nonelectric sector ID:  residential, commercial, industrial, 

transportation
jutil = Utility sector subregion ID in region r
a,a' = Arc ID for arc entering (a') or exiting (a) region r

(Appendix E, NNETWITH) forecasts, and differences between NEMS and STEO total consumption levels Appendix E, 
STENDCON).  These adjustments are phased out over a user-specified number of years (Appendix E, STPHAS_YR).
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s = Supply subregion ID into region r (1-21)
cn = Canadian supply subregion ID in region r (1-2)
L = LNG import region ID into region r (1-12)
st = Arc ID corresponding to storage supply into region r
t = Current forecast year

Pipeline Fuel Use and Intraregional Flows

Pipeline fuel consumption represents the natural gas consumed by compressors to transmit gas 
along pipelines within a region.  In the ITS, pipeline fuel consumption is modeled as a regional 
demand component.  It is estimated for each region on each network using a historically based 
factor, corresponding net demands, and a multiplicative scaling factor. The scaling factor is used 
to calibrate the results to equal the most recent national Short-Term Energy Outlook (STEO)

forecast59 for pipeline fuel consumption (Appendix E, STQGPTR), net of pipeline fuel 
consumption in Alaska (QALK_PIP), and is phased out by a user-specified year (Appendix E, 
STPHAS_YR ).  The following equation applies:

PF_SCALE*DMD_NODE*FAC_PFUEL=PFUEL rn,rn,rn, (61)

where,    
PFUELn,r = Pipeline fuel consumption in region r, for network n (Bcf)

PFUEL_FACn,r = Average (2004-2009) historical pipeline fuel factor in region r, for 
network n (calculated historically for each region as equal 
PFUEL/NODE_DMD)

NODE_DMDn,r = Net demands (excluding pipeline fuel) in region r, for network n 
(Bcf)

SCALE_PF = STEO benchmark factor for pipeline fuel consumption
n = network (peak and off-peak)
r = region/node

After pipeline fuel consumption is calculated for each node on the network, the regional/seasonal 
value is added to net demand at the respective node.  Flows into a node (FLOWn,a) are then 
defined using net demands and a sharing algorithm (described below).  The regional pipeline fuel 
quantity (net of intraregional pipeline fuel consumption) 60 is distributed over the pipeline arcs 
entering the region.  This is accomplished by sharing the net pipeline fuel quantity over all of the 
interregional pipeline arcs entering the region, based on their relative levels of natural gas flow: 

59EIA produces a separate quarterly forecast for primary national energy statistics over the next several years.  For certain 
forecast items, the NEMS is calibrated to produce an equivalent (within 2 to 5 percent) result for these years.  For AEO2011, the 
years calibrated to STEO results were 2010 and 2011.

60Currently, intraregional pipeline fuel consumption (INTRA_PFUEL) is set equal to the regional pipeline fuel consumption 
level (PFUEL); therefore, pipeline fuel consumption along an arc (ARC_PFUEL) is set to zero.  The original design was to 
allocate pipeline fuel according to flow levels on arcs and within a region.  It was later determined that assigning all of the 
pipeline fuel to a region would simplify benchmarking the results to the STEO and would not change the later calculation of the 
price impacts of pipeline fuel use. 
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TFLOW

FLOW
*)PFUEL_INTRA-PFUEL(=PFUEL_ARC

an,

rn,rn,an, (62)

where,     
ARC_PFUELn,a = Pipeline fuel consumption along arc a (into region r), for network n 

(Bcf)
PFUELn,r = Pipeline fuel consumption in region r, for network n (Bcf)

INTRA_PFUELn,r = Intraregional pipeline fuel consumption in region r, for network n 
(Bcf)

FLOWn,a = Interregional pipeline flow along arc a (into region r), for network 
n (Bcf)

TFLOW = Total interregional pipeline flow [into region r] (Bcf)
n = network (peak and off-peak)
r = region/node
a = arc

Pipeline fuel consumption along an interregional arc and within a region on an intrastate pipeline 
will have an impact on pipeline tariffs and node prices.  This will be discussed later in the Arc, 
Node, and Storage Prices subsection.

The flows of natural gas on the interstate pipeline system within each NGTDM region (as 
opposed to between two NGTDM regions) are established for the purpose of setting the 
associated revenue requirements and tariffs.  The charge for moving gas within a region 
(INTRAREG_TAR), but on the interstate pipeline system, is taken into account when setting city 
gate prices, described below.  The algorithm for setting intraregional flows is similar to the 
method used for setting pipeline fuel consumption.  For each region in the historical years, a 
factor is calculated reflective of the relationship between the net node demand and the 
intraregional flow.  This factor is applied to the net node demand in each forecast year to 
approximate the associated intraregional flow.  Pipeline fuel consumption is excluded from the 
net node demand for this calculation, as follows:

Calculation of intraregional flow factor based on data for an historical year:

)PFUEL-DMD_NODE(  /FLO_INTRA=FAC_FLO rn,rn,rn,rn, (63)

Forecast of intraregional flow:

)PFUEL-DMD_NODE(*FAC_FLO=FLO_INTRA rn,rn,rn,rn, (64)

where,     
INTRA_FLOn,a = Intraregional, interstate pipeline flow within region r, for network 

n (Bcf)
PFUELn,r = Pipeline fuel consumption in region r, for network n (Bcf)

NODE_DMDn,r = Net demands (with pipeline fuel) in region r, for network n (Bcf)
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FLO_FACn,r = Average (1990 - 2009) historical relationship between net node 
demand and intraregional flow

n = network (peak and off-peak)
r = region/node

Historical annual intraregional flows are set for the peak and off-peak periods based on the peak 
and off-peak share of net node demand in each region.  

Sharing Algorithm, Flows, and Capacity Expansion

Moving systematically downward from node to node through the acyclic network, the sharing 
algorithm is allocates net demands (NODE_DMDn,r) across all arcs feeding into the node.  These 
“inflow” arcs carry flows from local supply sources, storage (net withdrawals during peak period 
only), or other regions (interregional arcs).  If any of the resulting flows exceed their 
corresponding maximum levels,61 then the excess flows are reallocated to the unconstrained arcs, 
and new shares are calculated accordingly.  At each node within a network, the sharing algorithm 
determines the percent of net demand (SHRn,a,t) that is satisfied by each of the arcs entering the 
region.

The sharing algorithm (shown below) dictates that the share (SHRn,a,t) of demand for one arc into 
a node is a function of the share defined in the previous model year62 and the ratio of the price on 
the one arc relative to the average of the prices on all of the arcs into the node, as defined the 
previous cycle up the network tree. These prices (ARC_SHRPRn,a) represents the unit cost 
associated with an arc going into a node, and is defined as the sum of the unit cost at the source 
node (NODE_SHRPRn,r) and the tariff charge along the arc (ARC_SHRFEEn,a ).  (A description 
of how th
parameter that is always positive.  This parameter can be used to prevent (or control) broad shifts 

rease the sensitivity of 
SHRn,a,t

minimization.  The algorithm is presented below:

SHR*

N

SHRPR_ARC

SHRPR_ARC
=SHR 1t-a,n,-

bn,

b

-
an,

ta,n,

(65)

where,
SHRn,a,t, SHRn,a,t-1 = The fraction of demand represented along inflow arc a on network 

n, in year t (or year t-1)  [Note:  The value for year t-1 has a lower 
limit set to 0.01]

61Maximum flows include potential pipeline or storage capacity additions, and maximum production levels.
62When planned pipeline capacity is added at the beginning of a forecast year, the value of SHRt-1 is adjusted to reflect a 

percent usage (PCTADJSHR, Appendix E) of the new capacity.  This adjustment is based on the assumption that last year’s share
would have been higher if not constrained by the existing capacity levels.
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ARC_SHRPRn,a or b = The last price calculated for natural gas from inflow arc a (or b) on 
network n [i.e., from the previous cycle while moving up the 
network] (87$/Mcf)

N = Total number of arcs into a node
= Coefficient defining degree of influence of relative prices 

(represented as GAMMAFAC, Appendix E)
t = forecast year
n = network (peak or off-peak)
a = arc into a region
r = region/node
b = set of arcs into a region

[Note: The resulting shares (SHRn,a,t) along arcs going into a node are then normalized to ensure 
that they add to one.]

Seasonal flows are generated for each arc using the resulting shares and net node demands, as 
follows:

DMD_NODE*SHR=FLOW rn,ta,n,an, (66)

where,
FLOWn,a = Interregional flow (into region r) along arc a, for network n (Bcf)

SHRn,a,t = The fraction of demand represented along inflow arc a on network 
n, in year t

NODE_DMDn,r = Net node demands in region r, for network n (Bcf)
n = network (peak or off-peak)
a = arc into a region
r = region/node

These flows must not exceed the maximum flow limits (MAXFLOn,a ) defined for each arc on 
each network.  The algorithm used to define maximum flows may differ depending on the type 
of arc (storage, pipeline, supply, Canadian imports) and the network being referenced.  For 
example, maximum flows for all peak network arcs are a function of the maximum permissible 
annual capacity levels (MAXPCAPPK,a ) and peak utilization factors.  However, maximum 
pipeline flows along the off-peak network arcs are a function of the annual capacity defined by 
peak flows and off-peak utilization factors.  Thus, maximum flows along the off-peak network 
depend on whether or not capacity was added during the peak period.  Also, maximum flows 
from supply sources in the off-peak network are limited by maximum annual capacity levels and 
off-peak utilization.  (Note: storage arcs do not enter nodes on the off-peak network; therefore, 
maximum flows are not defined there.)  The following equations define maximum flow limits 
and maximum annual capacity limits:

Maximum peak flows (note:  for storage arcs, PKSHR_YR=1):

)PKUTZ*(PKSHR_YR*MAXPCAP=MAXFLO aaPK,aPK, (67)
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with MAXPCAPPK,a defined by type as follows:

for Supply
63:

))SCALE_LP*(PCTLP-(1

*MAXPRRFAC*ZOGPRRNG*ZOGRESNG=MAXPCAP

tr

ssaPK,
(68)

for Pipeline:

PTMAXPCAP=MAXPCAP ji,aPK, (69)

for Storage:

PTMAXPSTR=MAXPCAP staPK, (70)

for Canadian imports:

CURPCAP=MAXPCAP ta,aPK, (71)

Maximum off-peak pipeline flows:

)OPUTZ*PKSHR_YR)-((1*MAXPCAP=MAXFLO aaOP,aOP, (72)

with MAXPCAPOP,a is defined as follows for

either current capacity:

CURPCAP=MAXPCAP ta,aOP, (73)

or current capacity plus capacity additions,

))CURPCAP
PKUTZ*PKSHR_YR

FLOW
(

*XBLD)((1CURPCAPMAXPCAP

ta,

a

aPK,

ta,aOP,

(74)

or, for pipeline arc entering region 10 (Florida), peak maximum capacity,

MAXPCAP=MAXPCAP aPK,aOP, (75)

63In historical years, historical production values are used in place of the product of ZOGRESNG and ZOGPRRNG.
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Maximum off-peak flows from supply sources:

)OPUTZ*PKSHR_YR)-((1*MAXPCAP=MAXFLO aaPK,aOP, (76)

where,
MAXFLOn,a = Maximum flow on arc a, in network n [PK-peak or OP-off-peak] 

(Bcf)
MAXPCAPn,a = Maximum annual physical capacity along arc a for network n (Bcf)
CURPCAPa,t = Current annual physical capacity along arc a in year t (Bcf)

ZOGRESNGs = Natural gas reserve levels for supply source s [defined by OGSM] 
(Bcf)

ZOGPRRNGs = Expected natural gas production-to-reserves ratio for supply source 
s [defined by OGSM] (fraction)

MAXPRRFAC = Factor to set maximum production-to-reserves ratio 
[MAXPRRCAN for Canada] (Appendix E)

PCTLPt = Average (1996-2009) fraction of production consumed as lease and 
plant fuel in forecast year t

SCALE_LPt = Scale factor for STEO year percent lease and plant consumption 
for forecast year t to force regional lease and plant consumption 
forecast to total to STEO forecast.

PTMAXPCAPi,j = Maximum pipeline capacity along arc defined by source node i and 
destination node j [defined by PTS] (Bcf)

PTMAXPSTRst = Maximum storage capacity for storage source st [defined by PTS] 
(Bcf)

FLOWPK,a = Flow along arc a for the peak network (Bcf)
PKSHR_YR = Fraction of the year represented by peak season

PKUTZa = Pipeline utilization along arc a for the peak season (fraction, 
Appendix E)

OPUTZa = Pipeline utilization along arc a for the off-peak season (fraction, 
Appendix E)

XBLD = Percent increase over capacity builds to account for weather 
(fraction, Appendix E)

a = arc
t = forecast year
n = network (peak or off-peak)

PK, OP = peak and off-peak network, respectively
s,st = supply or storage source
i,j = regional source (i) and destination (j) link on arc a 

If the model has been restricted from building capacity through a specified forecast year 
(Appendix E, NOBLDYR ), then the maximum pipeline and storage flow for either network will 
be based only on current capacity and utilization for that year. 

If the flows defined by the sharing algorithm above exceed these maximum levels, then the 
excess flow is reallocated along adjacent arcs that have excess capacity.  This is achieved by 
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determining the flow distribution of the qualifying adjacent arcs, and distributing the excess flow 
according to this distribution.  These adjacent arcs are checked again for excess flow; if excess 
flow is found, the reallocation process is performed again on all arcs with space remaining.  This 
applies to supply and pipeline arcs on all networks, as well as storage withdrawal arcs on the 
peak network.  To handle the event where insufficient space or supply is available on all 
inflowing arcs to meet demand, a backstop supply (BKSTOPn,r ) is available at an incremental 
price (RBKSTOP_PADJn,r).  The intent is to dissuade use of the particular route, or to potentially 
lower demands.  Backstop pricing will be defined in another section below.

With the exception of import and export arcs,64 the resulting interregional flows defined by the 
sharing algorithm for the peak network are used to determine if pipeline capacity expansion 
should occur.  Similarly, the resulting storage withdrawal quantities in the peak season define the 
storage capacity expansion levels.  Thus, initially capacity expansion is represented by the 
difference between new capacity levels (ACTPCAPa ) and current capacity (CURPCAPa,t ,
previous model year capacity plus planned additions).  In the module, these initial new capacity 
levels are defined as follows:

Storage:

PKUTZ

FLOW
=ACTPCAP

a

aPK,

a (77)

Pipeline:

MAXPCAP=ACTPCAP aOP,a (78)

Pipeline arc entering region 10 (Florida):

OPUTZ*)PKSHR_YR-1(

FLOW
and

PKUTZ*PKSHR_YR

FLOW
between  MAX=ACTPCAP

a

aOP,

a

aPK,

a

(79)

where,
ACTPCAPa = Annual physical capacity along an arc a (Bcf)

MAXPCAPOP,a = Maximum annual physical capacity along pipeline arc a for 
network n [see equation above] (Bcf)

FLOWn,a = Flow along arc a on network n (Bcf)
PKUTZa = Maximum peak utilization of capacity along arc a (fraction,

Appendix E)
OPUTZa = Maximum off-peak utilization of capacity along arc a (fraction,

Appendix E)
PKSHR_YR = Fraction of the year represented by the peak season 

a = pipeline and storage arc
n = network (peak or off-peak)

64For AEO2011 capacity expansion on Canadian import arcs were set exogenously (PLANPCAP, Appendix E).
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PK = peak season
OP = off-peak season

A second check and potential adjustment are made to these capacity levels to insure that capacity 
is sufficient to handle estimated flow in the peak month of each period.65 Since capacity is 
defined as sustained capacity, it is assumed that the peak month flows should be in accordance 
with the maximum capacity requirements of the system, short of line packing, propane 
injections, and planning for the potential of above average temperature months.66 Peak month 
consumption and supply levels are set at an assumed fraction of the corresponding period levels.  
Based on historical relationships, an initial guess is made at the fraction of each period’s net 
storage withdrawals removed during the peak month.  With this information, peak month flows 
are set at the same time flows are set for each period, while coming down the network tree, and 
following a similar process.  At each node a net monthly demand is set equal to the sum of the 
monthly flows going out of the node, plus the monthly consumption at the node, minus the 
monthly supply and net storage withdrawals.  The period shares are then used to set initial 
monthly flows, as follows:

SHR

SHR
*NETNODMTH_=MTHFLW

tc,n,

c

ta,n,

rn,an, (80)

where,
MTHFLWn,a = Monthly flow along pipeline arc a (Bcf)

MTH_NETNODn,r = Monthly net demand at node r (Bcf)
SHRn,a,t = Fraction of demand represented along inflow arc a

c = set of arcs into a region representing pipeline arcs
n = network (peak or off-peak)
a = arc into a region
r = region/node
t = forecast year

These monthly flows are then compared against a monthly capacity estimate for each pipeline 
arc and reallocated to the other available arcs if capacity is exceeded, using a method similar to 
what is done when flows for a period exceed maximum capacity.  These adjusted monthly flows 
are used later in defining the net node demand for nodes lower in the network tree.  Monthly 
capacity is estimated by starting with the previously set ACTPCAP for the pipeline arc divided 
by the number of months in the year, to arrive at an initial monthly capacity estimate 
(MTH_CAP).  This number is increased if the total of the monthly capacity entering a node 
exceeds the monthly net node demand, as follows:

CAPADDINIT_

CAPADDINIT_
*TCAPADDMTH_=CAPADDMTH_

cn,

c

an,

nan, (81)

65Currently this is only done in the model for the peak period of the year.
66To represent that the pipeline system is built to accommodate consumption levels outside the normal range due to colder than 

normal temperatures, the net monthly demand levels are increased by an assumed percentage (XBLD, Appendix E).
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where,
MTH_CAPADDn,a = Additional added monthly capacity to accommodate monthly flow 

estimates (Bcf)
MTH_TCAPADDn = Total initial monthly capacity entering a node minus monthly net 

node demand (Bcf), if value is negative then it is set to zero
INIT_CAPADDn,a = MTHFLWa - MTH_CAPa, if value is negative then it is set to zero 

(Bcf)
n = network (peak or off-peak)
a = arc into a region
c = set of arcs into a region representing pipeline arcs

The additional added monthly capacity is multiplied by the number of months in the year and 
added to the originally estimated pipeline capacity levels for each arc (ACTPCAP).  Finally, if 
the net node demand is not close to zero at the lowest node on the network tree (node number 24 
in western Canada), then monthly storage levels are adjusted proportionally throughout the 
network to balance the system for the next time quantities are brought down the network tree.

Wellhead and Henry Hub Prices

Ultimately, all of the network-specific consumption levels are transferred down the network trees 
and into supply nodes, where corresponding supply prices are calculated.  The Oil and Gas 
Supply Module (OGSM) provides only annual price/quantity supply curve parameters for each 
supply subregion.  Because this alone will not provide a wellhead price differential between 
seasons, a special methodology has been developed to approximate seasonal prices that are 
consistent with the annual supply curve.  First, in effect the quantity axis of the annual supply 
curve is scaled to correspond to seasonal volumes (based on the period’s share of the year); and 
the resulting curves are used to approximate seasonal prices.  (Operationally within the model 
this is done by converting seasonal production values to annual equivalents and applying these 
volumes to the annual supply curve to arrive at seasonal prices.)  Finally, the resulting seasonal 
prices are scaled to ensure that the quantity-weighted average annual wellhead price equals the 
price obtained from the annual supply curve when evaluated using total annual production.  To 
obtain seasonal wellhead prices, the following methodology is used.  Taking one supply region at 
a time, the model estimates equivalent annual production levels (ANNSUP) for each season.

Peak:

PKSHR_YR

QSUPNODE_
=ANNSUP

sPK,
(82)

Off-peak:

PKSHR_YR)-(1

QSUPNODE_
=ANNSUP

sOP,
(83)

where,
ANNSUP = Equivalent annual production level (Bcf)

NODE_QSUPn,s = Seasonal (n=PK-peak or OP-off-peak) production level for supply 
region s (Bcf)
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PKSHR_YR = Fraction of year represented by peak season
PK = peak season
OP = off-peak season

s = supply region

Next, estimated seasonal prices (SPSUPn) are obtained using these equivalent annual production 
levels and the annual supply curve function.  These initial seasonal prices are then averaged, 
using quantity weights, to generate an equivalent average annual supply price (SPAVGs).  An 
actual annual price (PSUPs) is also generated, by evaluating the price on the annual supply 
function for a quantity equal to the sum of the seasonal production levels.  The average annual 
supply price is then compared to the actual price.  The corresponding ratio (FSF) is used to 
adjust the estimated seasonal prices to generate final seasonal supply prices (NODE_PSUPn,s) for 
a region.

For a supply source s,

SPAVG

PSUP
=FSF

s

s
(84)

and,

FSF*SPSUP=PSUPNODE_ nsn, (85)

where,
FSF = Scaling factor for seasonal prices

PSUPs = Annual supply price from the annual supply curve for supply 
region s (87$/Mcf)

SPAVGs = Quantity-weighted average annual supply price using peak and off-
peak prices and production levels for supply region s (87$/Mcf)

NODE_PSUPn,s = Adjusted seasonal supply prices for supply region s (87$/Mcf)
SPSUPn = Estimated seasonal supply prices [for supply region s] (87$/Mcf)

n = network (peak or off-peak)
s = supply source

During the STEO years (2010 and 2011 for AEO2011), national average wellhead prices (lower 
48 only) generated by the model are compared to the national STEO wellhead price forecast to 
generate a benchmark factor (SCALE_WPRt).  This factor is used to adjust the regional (annual 
and seasonal) lower 48 wellhead prices to equal STEO results.  This benchmark factor is only 
applied for the STEO years.  The benchmark factor is applied as follows:

Annual:

WPRSCALE_*PSUP=PSUP tss (86)

Seasonal:

WPRSCALE_*PSUPNODE_=PSUPNODE_ tsn,sn, (87)

where,
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PSUPs = Annual supply price from the annual supply curve for supply 
region s (87$/Mcf)

NODE_PSUPn,s = Adjusted seasonal supply prices for supply region s (87$/Mcf)
SCALE_WPRt = STEO benchmark factor for wellhead price in year t

n = network (peak or off-peak)
s = supply source
t = forecast year

A similar adjustment is made for the Canadian supply price, with an additional multiplicative 
factor applied (STSCAL_CAN, Appendix E) which is set to align Canadian import levels with 
STEO results.

While the NGTDM does not explicitly represent the Henry Hub within its modeling structure, 
the module reports a projected value for reporting purposes.  The price at the Henry Hub is set 
using an econometrically estimated equation as a function of the lower 48 average natural gas 
wellhead price, as follows:

00119.1

t,13s

090246.0

t oOGWPRNG*e*00439.1=oOGHHPRNG (88)

where,
oOGHHPRNGt = Natural gas price at the Henry Hub (87$/MMBtu)
oOGWPRNGs,t = Average natural gas wellhead price for supply region 13, 

representing the lower 48 average (87$/Mcf)
s = supply source/region
t = forecast year

Details about the generation of this estimated equation and associated parameters are provided in
Table F9, Appendix F.

Arc Fees (Tariffs)

Fees (or tariffs) along arcs are used in conjunction with supply, storage, and node prices to 
determine competing arc prices that, in turn, are used to determine network flows, transshipment 
node prices, and delivered prices.  Arc fees exist in the form of pipeline tariffs, storage fees, and 
gathering charges.  Pipeline tariffs are transportation rates along interregional arcs, and reflect 
the average rate charged over all of the pipelines represented along an arc.  Storage fees 
represent the charges applied for storing, injecting, and withdrawing natural gas that is injected 
in the off-peak period for use in the peak period, and are applied along arcs connecting the 
storage sites to the peak network.  Gathering charges are applied to the arcs going from the 
supply points to the transshipment nodes.

Pipeline and storage tariffs consist of both a fixed (volume independent) term and a variable 
(volume dependent) term.  For pipelines the fixed term (ARC_FIXTARn,a,t) is set in the PTS at 
the beginning of each forecast year to represent  pipeline usage fees and does not vary in 
response to changes in flow in the current year.  For storage, the fixed term establishes a 
minimum and is set to $0.001 per Mcf.  The variable term is obtained from tariff/capacity curves 
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provided by two PTS functions and represents reservation fees for pipelines and all charges for 
storage.  These two functions are NGPIPE_VARTAR and X1NGSTR_VARTAR.  When 
determining network flows a different set of tariffs (ARC_SHRFEEn,a) are used than are used 
when setting delivered prices (ARC_ENDFEEn,a). 

In the peak period ARC_SHRFEE equals ARC_ENDFEE and the total tariff (reservation plus 
usage fee).  In the off-peak period, ARC_ENDFEE represents the total tariff as well, but 
ARC_SHRFEE represents the fee that drives the flow decision.  In previous AEOs this was set to 
just the usage fee.  The assumption behind this structure was that delivered prices will ultimately 
reflect reservation charges, but that during the off-peak period in particular, decisions regarding 
the purchase and transport of gas are made largely independently of where pipeline is reserved 
and the associated fees.  For AEO2011 the ARC_SHRFEE was set similarly to ARC_ENDFEE 
because the usage fees seemed to be underestimating off-peak market prices.  (This decision will 
be reexamined in the future.)  During the peak period, the gas is more likely to flow along routes 
where pipeline is reserved; therefore the flow decision is more greatly influenced by the relative 
reservation fees.67 The following arc tariff equations apply:

Pipeline:

)FLOWj,i,a,TAR(n,NGPIPE_VAR+FIXTARARC_=SHRFEEARC_

)FLOWj,i,a,TAR(n,NGPIPE_VAR+FIXTARARC_=ENDFEEARC_

an,ta,n,an,

an,ta,n,an,

(89)

Storage:

)FLOWAR(st,NGSTR_VART1X+FIXTARARC_=ENDFEEARC_

)FLOWAR(st,NGSTR_VART1X+FIXTARARC_=SHRFEEARC_

an,ta,n,an,

an,ta,n,an,

(90)

where,
ARC_SHRFEEn,a = Total arc fees along arc a for network n [used with sharing 

algorithm] (87$/Mcf)
ARC_ENDFEEn,a = Total arc fees along arc a for network n [used with delivered 

pricing] (87$/Mcf)
ARC_FIXTARn,a,t = Fixed (or usage) fees along an arc a for a network n in time t 

(87$/Mcf)
NGPIPE_VARTAR = PTS function to define pipeline tariffs representing reservation fees 

for specified arc at given flow level
X1NGSTR_VARTAR = PTS function to define storage fees at specified storage region for 

given storage level

67Reservation fees are frequently considered “sunk” costs and are not expected to influence short-term purchasing decisions as 
much, but still must ultimately be paid by the end-user.  Therefore within the ITS, the arc prices used in determining flows can 
have tariff components defined differently than their counterparts (arc and node prices) ultimately used to establish delivered 
prices.
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FLOWn,a = Flow of natural gas on the arc in the given period
n = network (peak or off-peak)
a = arc

i, j = from transshipment node i to transshipment node j

A methodology for defining gathering charges has not been developed but may be developed in a 
separate effort at a later date.68 In order to accommodate this, the supply arc indices in the 
variable ARC_FIXTARn,a have been reserved for this information (currently set to 0). Since the 
historical wellhead price represents a first-purchase price, the cost of gathering is frequently 
already included and no further charge should be added.

Arc, Node, and Storage Prices

Prices at the transshipment nodes (or node prices) represent intermediate prices that are used to 
determine regional delivered prices.  Node prices (along with tariffs) are also used to help make 
model decisions, primarily within the flow-sharing algorithm.  In both cases it is not required (as 
described above) to set delivered or arc prices using the same price components or methods used 
to define prices needed to establish flows along the networks (e.g., in setting ARC_SHRPRn,a in 
the share equation).  Thus, process-specific node prices (NODE_ENDPRn,r and 
NODE_SHRPRn,r) are generated using process-specific arc prices (ARC_ENDPRn,a and 
ARC_SHRPRn,a) which, in turn, are generated using process-specific arc fees/tariffs 
(ARC_ENDFEEn,a and ARC_SHRFEEn,a).

The following equations define the methodology used to calculate arc prices.  Arc prices are first 
defined as the average node price at the source node plus the arc fee (pipeline tariff, storage fee, 
or gathering charge).  Next, the arc prices along pipeline arcs are adjusted to account for the cost 
of pipeline fuel consumption.  These equations are as follows:

ENDFEEARC_+ENDPRNODE_=ENDPRARC_

SHRFEEARC_+SHRPRNODE_=SHRPRARC_

an,rsn,an,

an,rsn,an,

(91)

with the adjustment accomplished through the assignment statements:

)PFUELARC_-FLOW(

)FLOW*ENDPR(ARC_
=ENDPRARC_

)PFUELARC_-FLOW(

)FLOW*SHRPR(ARC_
=SHRPRARC_

an,an,

an,an,

an,

an,an,

an,an,

an,

(92)

68In a previous version of the NGTDM, “gathering” charges were used to benchmark the regional wellhead prices to historical 
values.  It is possible that they may be used (at least in part) to fulfill the same purpose in the ITS.  In the past an effort was made, 
with little success, to derive representative gathering charges.  Currently, the gathering charge portion of the tariff along the 
supply arcs is assumed to be zero.
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where,
ARC_SHRPRn,a = Price calculated for natural gas along inflow arc a for network n 

[used with sharing algorithm] (87$/Mcf)
ARC_ENDPRn,a = Price calculated for natural gas along inflow arc a for network n 

[used with delivered pricing] (87$/Mcf)
NODE_SHRPRn,r = Node price for region i on network n [used with sharing algorithm] 

(87$/Mcf)
NODE_ENDPRn,r = Node price for region i on network n [used with delivered pricing] 

(87$/Mcf
ARC_SHRFEEn,a = Tariff along inflow arc a for network n [used with sharing 

algorithm] (87$/Mcf)
ARC_ENDFEEn,a = Tariff along inflow arc a for network n [used with delivered 

pricing] (87$/Mcf)
ARC_PFUELn,a = Pipeline fuel consumption along arc a, for network n (Bcf)

FLOWn,a = Network n flow along arc a (Bcf)
n = network (peak or off-peak)
a = arc

rs = region corresponding to source link on arc a

Although each type of node price may be calculated differently (e.g., average prices for delivered 
price calculation, marginal prices for flow sharing calculation, or some combination of these for 
each), the current model uses the quantity-weighted averaging approach to establish node prices 
for both the delivered pricing and flow sharing algorithm pricing.  Prices from all arcs entering a 
node are included in the average.  Node prices then are adjusted to account for intraregional 
pipeline fuel consumption. The following equations apply:

)ARC_PFUELFLOW(

)FLOW*ENDPR(ARC_
=ENDPRNODE_

)ARC_PFUEL(FLOW

)FLOW*SHRPR(ARC_
=SHRPRNODE_

an,an,a

an,an,a

drn,

an,an,a

an,an,a

drn,

(93)

and,

)PFUELINTRA_-DMD(NODE_

)DMDNODE_*ENDPR(NODE_
=ENDPRNODE_

)PFUELINTRA_-DMD(NODE_

)DMDNODE_*SHRPR(NODE_
=SHRPRNODE_

rdn,rdn,

rdn,rdn,

rdn,

rdn,rdn,

rdn,rdn,

rdn,

(94)

where,
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NODE_SHRPRn,r = Node price for region r on network n [used with flow sharing 
algorithm] (87$/Mcf)

NODE_ENDPRn,r = Node price for region r on network n [used with delivered pricing] 
(87$/Mcf)

ARC_SHRPRn,a = Price calculated for natural gas along inflow arc a for network n 
[used with flow sharing algorithm] (87$/Mcf)

ARC_ENDPRn,a = Price calculated for natural gas along inflow arc a for network n 
[used with delivered pricing] (87$/Mcf)

FLOWn,a = Network n flow along arc a (Bcf)
ARC_PFUELn,a = Pipeline fuel consumed along the pipeline arc a, network n (Bcf)

INTRA_PFUELn,r = Intraregional pipeline fuel consumption in region r, network n 
(Bcf)

NODE_DMDn,r = Net node demands (w/ pipeline fuel) in region r, network n (Bcf)
n = network (peak or off-peak)
a = arc

rd = region r destination link along arc a

Once node prices are established for the off-peak network, the cost of the gas injected into 
storage can be modeled.  Thus, for every region where storage is available, the storage node 
price is set equal to the off-peak regional node price.  This applies for both the delivered pricing 
and the flow sharing algorithm pricing:

ENDPRNODE_=ENDPRNODE_

SHRPRNODE_=SHRPRNODE_

rOP,iPK,

rOP,iPK,

(95)

where,
NODE_SHRPRPK,i = Price at node i [used with flow sharing algorithm] (87$/Mcf)
NODE_SHRPROP,r = Price at node r in off-peak network [used with flow sharing 

algorithm] (87$/Mcf)
NODE_ENDPRPK,ii = Price at node i [used with delivered pricing] (87$/Mcf)
NODE_ENDPROP,r = Price at node r in off-peak network [used with delivered pricing] 

(87$/Mcf)
PK, OP = peak and off-peak network, respectively

i = node ID for storage
r = region ID where storage exists

Backstop Price Adjustment

Backstop supply69

69Backstop supply can be thought of as a high-priced alternative supply when no other options are available.  Within the model, 
it also plays an operational role in sending a price signal when equilibrating the network that additional supplies are unavailable 
along a particular path in the network.

is activated when seasonal net demand within a region exceeds total available 
supply for that region.  When backstop occurs, the corresponding share node price 
(NODE_SHRPRn,r) is adjusted upward in an effort to reduce the demand for gas from this 
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source.  If this initial price adjustment (BKSTOP_PADJn,r) is not sufficient to eliminate 
backstop, on the next cycle down the network tree, an additional adjustment 
(RBKSTOP_PADJn,r) is added to the original adjustment, creating a cumulative price 
adjustment.  This process continues until the backstop quantity is reduced to zero, or until the 
maximum number of ITS cycles has been completed.  If backstop is eliminated, then the 
cumulative price adjustment level is maintained, as long as backstop does not resurface, and until 
ITS convergence is achieved.  Maintaining a backstop adjustment is necessary because complete 
removal of this high-price signal would cause demand for this source to increase again, and 
backstop would return.  However, if the need for backstop supply recurs following a cycle which 
did not need backstop supply, then the price adjustment (BKSTOP_PADJn,r) factor is reduced by 
one-half and added to the cumulative adjustment variable, with the process continuing as 
described above.  The objective is to eliminate the need for backstop supply while keeping the 
associated price at a minimum.  The node prices are adjusted as follows:

PADJRBKSTOP_+SHRPRNODE_=SHRPRNODE_ rn,rn,rn, (96)

PADJBKSTOP_+PADJRBKSTOP_=PADJRBKSTOP_ rn,rn,rn, (97)

where,
NODE_SHRPRn,r = Node price for region r on network n [used with flow sharing 

algorithm] (87$/Mcf)
RBKSTOP_PADJn,r = Cumulative price adjustment due to backstop (87$/Mcf)

BKSTOP_PADJn,r = Incremental backstop price adjustment (87$/Mcf)
n = network (peak or off-peak)
r = region

Currently, this cumulative backstop adjustment (RBKSTOP_PADJn,r) is maintained for each 
NEMS iteration and set to zero only on the first NEMS iteration of each model year.  Also, it is 
not used to adjust the NODE_ENDPR because it is an adjustment for making flow allocation 
decisions, not for pricing gas for the end-user.

ITS Convergence

The ITS is considered to have converged when the regional/seasonal wellhead prices are within a 
defined percentage tolerance (PSUP_DELTA) of the prices set during the last ITS cycle and, for 
those supply regions with relatively small production levels (QSUP_SMALL), production is 
within a defined tolerance (QSUP_DELTA) of the production set during the last ITS cycle.  If
convergence does not occur, then a new wellhead price is determined based on a user-specified 
weighting of the seasonal production levels determined during the current cycle and during the 
previous cycle down the network.  The the new production levels are defined as follows:

)QSUPPREVNODE_*QSUP_WT)-((1

)QSUPNODE_*(QSUP_WT=QSUPNODE_

sn,

sn,sn,

(98)
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where,
NODE_QSUPn,s = Production level at supply source s on network n for current ITS 

cycle (Bcf)
NODE_QSUPPREVn,s = Production level at supply source s on network n for previous ITS 

cycle (Bcf)
QSUP_WT = Weighting applied to production level for current ITS cycle 

(Appendix E)
n = network (peak or off-peak)
s = supply source

Seasonal prices (NODE_PSUPn,s) for these quantities are then determined using the same 
methodology defined above for obtaining wellhead prices.

End-Use Sector Prices

The NGTDM provides regional end-use or delivered prices for the Electricity Market Module 
(electric generation sector) and the other NEMS demand modules (nonelectric sectors).  For the
nonelectric sectors (residential, commercial, industrial, and transportation), prices are established 
at the NGTDM region and then averaged (when necessary) using quantity-weights to obtain 
prices at the Census Division level.  For the electric generation sector, prices are provided on a 
seasonal basis and are determined for core and noncore services at two different regional levels:  
the Census Division level and the NGTDM/EMM level (Chapter 2, Figure 2-3). 

The first step toward generating these delivered prices is to translate regional, seasonal node 
prices into corresponding city gate prices (CGPRn,r).  To accomplish this, seasonal intraregional 
and intrastate tariffs are added to corresponding regional end-use node prices (NODE_ENDPR).  
This sum is then adjusted using a city gate benchmark factor (CGBENCHn,r) which represents 
the average difference between historical city gate prices and model results for the historical 
years of the model.  These equations are defined below:

CGBENCH+TARINTRAST_

+TARINTRAREG_+ENDPRNODE_=CGPR

rn,r

rn,rn,rn,

(99)

such that:

)CGPR-HCGPRavg(=)BENCHavg(HCG_=CGBENCH rn,HISYRr,n,HISYRr,n,rn, (100)

where,
CGPRn,r = City gate price in region r on network n in each HISYR (87$/Mcf)

NODE_ENDPRn,r = Node price for region r on network n (87$/Mcf)
INTRAREG_TARn,r = Intraregional tariff for region r on network n (87$/Mcf)

INTRAST_TARr = Intrastate tariff in region r (87$/Mcf)
CGBENCHn,r = City gate benchmark factor for region r on network n (87$/Mcf)

HCG_BENCHn,r,HISYR = City gate benchmark factors for region r on network n in historical 
years HISYR (87$/Mcf)
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HCGPRn,r,HISYR = Historical city gate price in region r on network n in historical year 
HISYR (87$/Mcf)

n = network (peak and off-peak)
r = region (lower 48 only)

HISYR = historical year, over which average is taken (2004-2008, excluding 
the outlier year of 2006)

avg = straight average of indicated value over indicated historical years 
of the model.

The intraregional tariffs are the sum of a usage fee (INTRAREG_FIXTAR), provided by the 
Pipeline Tariff Submodule, and a reservation fee that is set using the same function 
NGPIPE_VARTAR that is used in setting interregional tariffs and was described previously.  
The benchmark factor represents an adjustment to calibrate city gate prices to historical values.

Seasonal distributor tariffs are then added to the city gate prices to get seasonal, sectoral 
delivered prices by the NGTDM regions for nonelectric sectors and by the NGTDM/EMM 
subregions for the electric generation sector.  The prices for residential, commercial, and electric 
generation sectors (core and noncore) are then adjusted using STEO benchmark factors 
(SCALE_FPRsec,t , SCALE_IPRsec,t)

70 to calibrate the results to equal the corresponding national 
STEO delivered prices. Each seasonal sector price is then averaged to get an annual, sectoral 
delivered price for each representative region.  The following equations apply.

Nonelectric Sectors (except core transportation):

IPRSCALE_+SIDTAR_+CGPR=SINGPR_

FPRSCALE_+SFDTAR_+CGPR=SFNGPR_

tsec,rsec,n,rn,rsec,n,

tsec,rsec,n,rn,rsec,n,

(101)

)DMDPKSHR_-1.(*SINGPR_

+DMDPKSHR_*SINGPR_=INGPR_

)DMDPKSHR_-1.(*SFNGPR_

+DMDPKSHR_*SFNGPR_=FNGPR_

rsec,rsec,OP,

rsec,rsec,PK,rsec,

rsec,rsec,OP,

rsec,rsec,PK,rsec,

(102)

where,
NGPR_SFn,sec,r = Seasonal (n) core nonelectric sector (sec) price in region r 

(87$/Mcf)
NGPR_SIn,sec,r = Seasonal (n) noncore nonelectric sector (sec) price in region r 

(87$/Mcf)
NGPR_Fsec,r = Annual core nonelectric sector (sec) price in region r (87$/Mcf)
NGPR_Isec,r = Annual noncore nonelectric sector (sec) price in region r (87$/Mcf)

70The STEO scale factors are linearly phased out over a user-specified number of years (Appendix E, STPHAS_YR) after the 
last STEO year.  STEO benchmarking is not done for the industrial price, because of differences in the definition of the price in 
the STEO versus the price in the AEO, nor for the transportation sector since the STEO does not include a comparable value.
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CGPRn,r = City gate price in region r on network n (87$/Mcf)
DTAR_SFn.sec,r = Seasonal (n) distributor tariff to core nonelectric sector (sec) in 

region r (87$/Mcf)
DTAR_SIn. sec,r = Seasonal (n) distributor tariff to noncore nonelectric sector (sec) in 

region r (87$/Mcf)
PKSHR_DMDsec,r = Average (2001-2009) fraction of annual consumption for 

nonelectric sector in peak season for region r
SCALE_FPRsec,t = STEO benchmark factor for core delivered prices for sector sec, in 

year t (87$/Mcf)
SCALE_IPRsec,t = STEO benchmark factor for noncore delivered prices for sector 

sec, in year t (87$/Mcf)
n = network (peak or off-peak)

sec = nonelectric sector
r = region (lower 48 only)

Electric Generation Sector:

IPRSCALE_+SI UDTAR_+CGPR=SINGUPR_

FPRSCALE_+SF UDTAR_+CGPR=SFNGUPR_

tsec,jn,rn,jn,

tsec,jn,rn,jn,

(103)

)UDMDPKSHR_-(1.*SINGUPR_

+UDMDPKSHR_*SINGUPR_=INGUPR_

)UDMDPKSHR_-(1.*SFNGUPR_

+UDMDPKSHR_*SFNGUPR_=FNGUPR_

jjOP,

jjPK,j

jjOP,

jjPK,j

(104)

where,
NGUPR_SFn,j = Seasonal (n) core utility sector price in region j (87$/Mcf)
NGUPR_SIn,j = Seasonal (n) noncore utility sector price in region j (87$/Mcf)

NGUPR_Fj = Annual core utility sector price in region j (87$/Mcf)
NGUPR_Ij = Annual noncore utility sector price in region j (87$/Mcf)

CGPRn,r = City gate price in region r on network n (87$/Mcf)
UDTAR_SFn,j = Seasonal (n) distributor tariff to core utility sector in region j 

(87$/Mcf)
UDTAR_SIn,j = Seasonal (n) distributor tariff to noncore utility sector in region j 

(87$/Mcf)
PKSHR_UDMDj = Average (1994-2009, except for New England 1997-2009) fraction 

of annual consumption for the electric generator sector in peak 
season, for region j

SCALE_FPRsec,t = STEO benchmark factor for core delivered prices for sector sec, in 
year t (87$/Mcf)

SCALE_IPRsec,t = STEO benchmark factor for noncore delivered prices for sector 
sec, in year t (87$/Mcf)
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n = network (peak PK or off-peak OP)
sec = utility sector (electric generation only)

r = region (lower 48 only)
j = NGTDM/EMM subregion

For AEO2011, the natural gas price that was finally sent to the Electricity Market Module for 
both core and noncore customers was the quantity-weighted average of the core and noncore 
prices derived from the above equations.  This was done to alleviate some difficulties within the 
Electricity Market Module as selections were being made between different types of natural gas 
generation equipment.

Core Transportation Sector:

A somewhat different methodology is used to determine natural gas delivered prices for the core 
(F) transportation sector.  The core transportation sector consists of a personal vehicles 
component and a fleet vehicles component.  Like the other nonelectric sectors, seasonal 
distributor tariffs are added to the regional city gate prices to determine seasonal delivered prices 
for both components.  Annual core prices are then established for each component in a region by 
averaging the corresponding seasonal prices, as follows:

tsec,rn,rn,rn,

tsec,rn,rn,rn,

SCALE_FPR+SFDTAR_TRFV_+CGPR=SFNGPR_TRFV_

SCALE_FPR+SFDTAR_TRPV_+CGPR=SFNGPR_TRPV_

(105)

)PKSHR_DMD-1.(*SFNGPR_TRFV_

+PKSHR_DMD*SFNGPR_TRFV_=FNGPR_TRFV_

)PKSHR_DMD-1.(*SFNGPR_TRPV_

+PKSHR_DMD*SFNGPR_TRPV_=FNGPR_TRPV_

rsec,rOP,

rsec,rPK,r

rsec,rOP,

rsec,rPK,r

(106)

where,
NGPR_TRPV_SFn,r = Seasonal (n) price of natural gas used by personal vehicles (core) 

in region r (87$/Mcf)
NGPR_TRFV_SFn,r = Seasonal (n) price of natural gas used by fleet vehicles (core) in 

region r (87$/Mcf)
DTAR_TRPV_SFn,r = Seasonal (n) distributor tariff to core transportation (personal 

vehicles) sector in region r (87$/Mcf)
DTAR_TRFV_SFn,r = Seasonal (n) distributor tariff to core transportation (fleet vehicles) 

sector in region r (87$/Mcf)
CGPRn,r = City gate price in region r on network n (87$/Mcf)

NGPR_TRPV_Fr = Annual price of natural gas used by personal vehicles (core) in 
region r (87$/Mcf)

NGPR_TRFV_Fr = Annual price of natural gas used by fleet vehicles (core) in region r 
(87$/Mcf)
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PKSHR_DMDsec,r = Fraction of annual consumption for the transportation sector 
(sec=4) in the peak season for region r (set to PKSHR_YR)

SCALE_FPRsec,t = STEO benchmark factor for core delivered prices for sector sec, in 
year t (set to 0 for transportation sector), (87$/Mcf)

n = network (peak PK or off-peak OP)
sec = transportation sector =4

r = region (lower 48 only)

Once the personal vehicles price for natural gas is established, the two core component prices are 
averaged (using quantity weights) to produce an annual core price for each region 
(NGPR_Fsec=4,r).  Seasonal core prices are also determined by quantity-weighted averaging of the 
two seasonal components (NGPR_SFn,sec=4,r).

Regional delivered prices can be used within the ITS cycle to approximate a demand response.  
The submodule can then be resolved with adjusted consumption levels in an effort to speed 
NEMS convergence.  Finally, once the ITS has converged, regional prices are averaged using 
quantity weights to compute Census Division prices, which are sent to the corresponding NEMS 
modules.

Import Prices

The price associated with Canadian imports at each of the module’s border crossing points is 
established during the ITS convergence process.  Each of these border-crossing points is 
represented by a node in the network.  The import price for a given season and border crossing is 
therefore equal to the price at the associated node.  For reporting purposes, these node prices are 
averaged using quantity weights to derive an average annual Canadian import price.  The prices 
for imports at the three Mexican border crossings are set to the average wellhead price in the 
nearest NGTDM region plus a markup (or markdown) that is based on the difference between 
similar import and wellhead prices historically.  The structure for setting LNG import prices is 
similar to setting Mexican import prices, although regional city gate prices are used instead of 
wellhead prices.  For the facilities for which historical prices are not available (i.e., generic new 
facilities), an assumption was made about the difference between the regional city gate price and 
the LNG import price (LNGDIFF, Appendix E).
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5.  Distributor Tariff Submodule Solution Methodology

This chapter discusses the solution methodology for the Distributor Tariff Submodule (DTS) of 
the Natural Gas Transmission and Distribution Module (NGTDM).  Within each region, the DTS 
develops seasonal, market-specific distributor tariffs (or city gate to end-use markups) that are 
applied to projected seasonal city gate prices to derive end-use or delivered prices.  Since most 
industrial and electric generator customers do not purchase their gas through local distribution 
companies, their “distributor tariff” represents the difference between the average price paid by 
local distribution companies at the city gate and the average price paid by the industrial or 
electric generator customer.71 Distributor tariffs are defined for both core and noncore markets 
within the industrial and electric generator sectors, while residential, commercial, and 
transportation sectors have distributor tariffs defined only for the core market, since noncore 
customer consumption in these sectors is assumed to be insignificant and set to zero.  The core 
transportation sector is composed of two categories of compressed natural gas (CNG) consumers 
(fleet vehicles and personal vehicles); therefore, separate distributor tariffs are developed for 
each of these two categories. 

For the residential, commercial, industrial, and electric generation sectors distributor tariffs are 
based on econometrically estimated equations and are driven in part by sectoral consumption 
levels.72

Residential and Commercial Sectors

This general approach was taken since data are not reasonably obtainable to develop a 
detailed cost-based accounting methodology similar to the approach used for interstate pipeline 
tariffs in the Pipeline Tariff Submodule.  Distribution charges for CNG in vehicles are set to the 
sum of historical tariffs for delivering natural gas to refueling stations, federal and state motor 
fuels taxes and credits, and estimates of dispensing charges.  The specific methodologies used to 
calculate each sector’s distributor tariffs are discussed in the remainder of this chapter.

Residential and commercial distributor tariffs are projected using econometrically estimated 
equations.  The primary explanatory variables are floorspace and commercial natural gas 
consumption per floorspace for the commercial tariff, and number of households and natural gas 
consumption per household for the residential sector tariff.  In both cases distributor tariffs are 
estimated separately for the peak and off-peak periods, as follows:

71It is not unusual for these “markups” to be negative.
72Historical distributor tariffs for a sector in a particular region/season can be estimated by taking the difference between the 

average sectoral delivered price and the average city gate price in the region/season (Appendix E, HCGPR).
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Residential peak
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Residential off-peak

NUMRS

REVBASQTY_SIPREVBASQTY_SFP

*NUMRS**VDTAR_SFPRE

*
NUMRS

BASQTY_SIBASQTY_SF

*NUMRS*=DTAR_SF

-0.814968)*(-0.202612

1-tr,

2nr,1,s2nr,1,s

282301.0*202612.0

1tr,
)19PRSREGPK*202612.0(

0.231296

2nr,1,s

0.814968-

tr,

2nr,1,s2nr,1,s

282301.0

tr,
PRSREGPK19

2nr,1,s

2nr,

2nr,

e

e

(108)

Commercial peak
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Commercial off-peak
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where,

NUM_REGSHR*RECS_ALIGN*oRSGASCUSTNUMRS rrtcd,tr, (111)

and,

SHARE*)PMC_COMMFLS-SP(MC_COMMFLFLRSPC12 rtcd,8,tcd,1,tr, (112)

where,
DTAR_SFs,r,n = core distributor tariff in current forecast year for sector s, region r, 

and network n (1987$/Mcf)
DTAR_SFPREVs,r,n = core distributor tariff in previous forecast year (1987$/Mcf).  [For 

first forecast year set at the 2008 historical value.]
BASQTY_SFs,r,n = sector (s) level firm gas consumption for region r, and network n 

(Bcf)
BASQTY_SIs,r,n = sector (s) level nonfirm gas consumption for region r, and network 

n (Bcf) (assumed at 0 for residential and commercial)
BASQTY_SFPREVs,r,n = sector (s) level gas consumption for region r, and network n in 

previous year (Bcf) (assumed at 0 for residential and commercial)
BASQTY_SIPREVs,r,n = sector (s) level nonfirm gas consumption for region r, and network 

n in previous year (Bcf)
NUMRS = number of residential customers in year t

PRSREGPK19r,n = residential, regional, period specific, constant term (Table F6, 
Appendix F)

PCMREGPK13r,n = commercial, regional, peak specific, constant term (Table F7, 
Appendix F)

oRSGASCUSTcd,t-1 = number of residential gas customers by census division in the 
previous forecast year (from NEMS residential demand module)

RECS_ALIGNr = factor to align residential customer count data from EIA’s 2005 
Residential Consumption Survey (RECS), the data on which 
oRSGASCUST is based, with similar data from the EIA’s Natural 
Gas Annual, the data on which the DTAR_SF estimation is based. 

NUM_REGSHRr = share of residential customers in NGTDM region r relative to the 
number in the larger or equal sized associated census division, set 
to values in last historical year, 2008.  (fraction, Appendix E)
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FLRSPC12r = commercial floorspace by NGTDM region (total net of for 
manufacturing) (billion square feet)

MC_COMMFLSP1,cd,t = commercial floorspace by Census Division (total, including 
manufacturing)

MC_COMMFLSP8,cd,t = commercial floorspace by Census Division (manufacturing)
SHAREr = assumed fraction of the associated census division’s commercial 

floorspace within each of the 12 NGTDM regions based on 
population data (1.0, 1.0, 1.0, 1.0, 0.66, 1.0, 1.0, 0.59, 0.24, 0.34, 
0.41, 0.75)

s = sector (=1 for residential, =2 for commercial)
cd = census division

r = region (12 NGTDM regions)
n = network (=1 for peak, =2 for off-peak)
t = forecast year (e.g., 2010)

Parameter values and details about the estimation of these equations can be found in Tables F6 
and F7 of Appendix F.

Industrial Sector

For the industrial sector, a single distributor tariff (i.e., no distinction between core and noncore) 
is estimated for each season and region as a function of the industrial consumption level in that 
season and region.  Next, core seasonal tariffs are set by assuming a differential between the core 
price and the estimated distributor tariff for the season and region, based on historical estimates.  
The noncore price is set to insure that the quantity-weighted average of the core and noncore 
price in a season and region will equal the originally estimated tariff for that season and region.  
Historical prices for the industrial sector are estimated based on the data that are available from 
the Manufacturing Energy Consumption Survey (MECS) (Table F5, Appendix F).  The industrial 
prices within EIA’s Natural Gas Annual only represent industrial customers who purchase gas 
through their local distribution company, a small percentage of the total; whereas the prices in 
the MECS represent a much larger percentage of the total industrial sector.  The equation for the 
single seasonal/regional industrial distributor tariff follows:

)]QLAG*443(-0.000317

5PIN_REGPK1PIN_REG15[0.199135*0.423561-

)TARLAG*(0.423561)QCUR*443(-0.000317

5PIN_REGPK1PINREG15199135.0TAR

n

nr,r

nn

nr,r

(113)

The core and noncore distributor tariffs are set using:

crnr,3,s
FDIFFTARDTAR_SF (114)
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BASQTY_SI

)BASQTY_SF*DTAR_SF()QCUR*(TAR
DTAR_SI

nr,3,s

nr,3,snr,3,sn

3.r,.ns (115)

where,
TAR = seasonal distributor tariff for industrial sector in region r (87$/Mcf)

TARLAGn = seasonal distributor tariff for the industrial sector (s=3) in region r 
in the previous forecast year (87$/Mcf) 

FDIFFcr = historical average difference between core and average industrial 
price (1987$/Mcf, Appendix E)

PIN_REG15r = estimated constant term (Table F4, Appendix F)
PIN_REGPK15r,n = estimated coefficient, set to zero for the off-peak period and for 

any region where the coefficient is not statistically significant
DTAR_SFn,s,r = seasonal distributor tariff for the core industrial sector (s=3) in 

region r (87$/Mcf)
DTAR_SIn,s,r = seasonal distributor tariff for the noncore industrial sector (s=3) in 

region r (87$/Mcf)
DTAR_SFPREVn,s,r = seasonal distributor tariff for the core industrial sector (s=3) in 

region r (87$/Mcf) in the previous forecast year [In the first 
forecast year set to the estimated average historical value from 
2006 to 2009 [Table F5, Appendix F] (87$/Mcf)]

BASQTY_SFn,s=3,r = seasonal core natural gas consumption for industrial sector(s=3) in 
the current forecast year (Bcf)

BASQTY_SIn,s=3,r = seasonal noncore natural gas consumption for industrial sector 
(s=3) in the current forecast year (Bcf)

QCURn = sum of BASQTY_SF and BASQTY_SI for industrial in a 
particular season and region

QLAGn = sum of BASQTY_SFPREV and BASQTY_SIPREV for industrial 
in a particular season and region, the value of QCUR in the last 
forecast year

s = end-use sector index (s=3 for industrial sector)
n = network (peak or off-peak)
r = NGTDM region

cr = the census region associated with the NGTDM region

Parameter values and details about the estimation of these two equations can be found in Table 
F4 and F5, Appendix F.

Electric Generation Sector

Distributor tariffs for the electric generation sector do not represent a charge imposed by a local 
distribution company; rather they represent the difference between the average city gate price in 
each NGTDM region and the natural gas price paid on average by electric generators in each 
NGTDM/EMM region, and are often negative.  A single markup or tariff (i.e., no distinction 
between core and noncore) is projected for each season and region using econometrically 
estimated equations, as was done for the industrial sector.  However, the current version of the 
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model (as used for AEO2011) assigns this same value to both the core and noncore segments.73

The estimated equations for the distributor tariffs for electric generators are a function of natural 
gas consumption by the sector relative to consumption by the other sectors.  The greater the 
electric consumption share, the greater the price difference between the electric sector and the 
average, as they will need to reserve more space on the pipeline system.  The specific equations 
follow:

)]qeleclag*04(0.0000007

PELREG310.0299295)0.153777[(*0.281378

)REV UDTAR_SFP*(0.281378)qelec*04(0.0000007

PELREG310.0299295)0.153777(UDTAR_SF

jn,

jn,

jn,jn,

jn,jn,

(116)

where,

1000*)BASUQTY_SIBASUQTY_SF(qelec jn,jn,jn, (117)

1000*)PREVBASUQTY_SIPREVBASUQTY_SF(qeleclag jn,jn,jn, (118)

UDTAR_SIn,j = UDTAR_SFn,j for all n and j,
where,

UDTAR_SFn,j = seasonal core electric generation sector distributor tariff, current 
forecast year ($/Mcf)

UDTAR_SIn,j = seasonal noncore electric generation sector distributor tariff, 
current forecast year ($/Mcf)

UDTAR_SFPREVn,j = seasonal core electric generation sector distributor tariff, previous 
forecast year ($/Mcf)

BASUQTY_SFn,j = core electric generator gas consumption, current forecast year 
(Bcf)

BASUQTY_SIn,j = noncore electric generator gas consumption, current forecast year 
(Bcf)

BASUQTY_SFPREVn,j = core electric generator gas consumption in previous forecast year 
(Bcf)

BASUQTY_SIPREVn,j = noncore electric generator gas consumption in previous forecast 
year (Bcf)

PELREG31n=1,j = PELREG31j in code, regional constant terms for peak period 
(Table F8, Appendix F)

PELREG31n=2,j = PELREG32j in code, regional constant terms for off-peak period 
(Table F8, Appendix F)

n = network (peak=1 or off-peak=2)
j = NGTDM/EMM region (see chapter 2)

73This distinction was eliminated several years ago because of operational concerns in the Electricity Market Module.  In 
addition, there are some remaining issues concerning the historical data necessary to generate separate price series for the two 
segments.
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Parameter values and details about the estimation of these two equations can be found in Table 
F8, Appendix F.

Transportation Sector

Consumers of compressed natural gas (CNG) have been classified into two end-use categories 
within the core transportation sector:  fleet vehicles and personal vehicles (i.e., CNG sold at 
retail).  A distributor tariff is set for both categories to capture 1) the cost of the natural gas 
delivered to the dispensing station above the city gate price, 2) the per-unit cost or charge for 
dispensing the gas, and 3) federal and state motor fuels taxes and credits.  

For both categories, the distribution charge for the CNG delivered to the station is based on the 
historical difference between the price reported for the transportation sector in EIA’s Natural 

Gas Annual (which should reflect this delivered price) and the city gate price.  Similarly federal 
and state motor fuels taxes are assumed to be the same for both categories and held constant in 
nominal dollars.74 The Highway Bill of 2005 raised the motor fuels tax for CNG. 75 The model 
adjusts the distribution costs accordingly.  A potential difference in the pricing for the two 
categories is the assumed per-unit dispensing charge.  Currently the refueling options available 
for personal natural gas vehicles are largely limited to the same refueling facilities used by fleet 
vehicles.  Therefore, the assumption in the model is that the dispensing charge will be similar for 
fleet and personal vehicles (RETAIL_COST2) unless there is a step increase in the number of 
retail stations selling natural gas in response to an expected increase in the number of personal 
vehicles. In such a case, an additional markup is added to the natural gas price to personal 
vehicles to account for the profit of the builder (RET_MARK), as described below.  The 
distributor tariffs for CNG vehicles are set as follows:

87t

r

2
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EHISYRr,4,sn,rn,

/MC_PCWGDPPCWGDPMC_
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+
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HDTAR_SF{=SFDTAR_TRPV_

(120)

where,

74Motor vehicle fuel taxes are assumed constant in current year dollars throughout the forecast to reflect current laws.  Within
the model these taxes are specified in 1987 dollars. 

75The Safe, Accountable, Flexible, Efficient Transportation Equity Act:  A Legacy for Users (SAFETEA-LU), Section 1113.  
The bill also allowed for an excise tax credit of $0.50 per gasoline gallon equivalent to be paid to the seller of the CNG through 
September of 2009.  The model assumes that the subsidy will be passed through to consumers.
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DTAR_TRFV_SFn,r = distributor tariff for the fleet vehicle transportation sector 
(87$/Mcf)

DTAR_TRPV_SFn,r = distributor tariff for the personal vehicle transportation sector 
(87$/Mcf)

HDTAR_SFn,s,r,EHISYR = historical (2009) distributor tariff for the transportation sector to 
deliver the CNG to the station76

TRN_DECL = fleet vehicle distributor decline rate, set to zero for AEO2011

(fraction, Appendix E)

(87$/ Mcf)

YR_DECL = difference between the current year and the last historical year 
over which the decline rate is applied

RETAIL_COST2 = assumed additional charge related to providing the dispensing 
service to customers, at a fleet refueling station (87$/Mcf, 
Appendix E)

CNG_RETAIL_MARKUPr= markup for natural gas sold at retail stations (described below)
STAXr = State motor vehicle fuel tax for CNG (current year $/Mcf,

Appendix E)
FTAX = Federal motor vehicle fuel tax minus federal excise motor fuel 

credit for CNG (current year $/Mcf, Appendix E)
MC_PCWGDPt = GDP conversion from current year dollars to 87 dollars [from the 

NEMS macroeconomic module]
n = network (peak or off-peak)
s = end-use sector index (s=4 for transportation sector)
r = NGTDM region

EHISYR = index defining last year that historical data are available
t = forecast year

A new algorithm was developed for AEO2010 which projects whether construction of CNG 
fueling stations is economically viable in any of the NGTDM regions and, if so, sets the added 
charge that will result. In addition, the model provides the NEMS Transportation Sector Module 
with a projection of the fraction of retail refueling stations that sell natural gas.  This is a key 
driver in the transportation module for projecting the number of compressed natural gas vehicles 
purchased and the resulting consumption level.  While demand for CNG for personal vehicles is 
increased when fueling infrastructure is built, at the same time the viability of fueling 
infrastructure depends on sufficient demand to support it. A reduced form of the NEMS 
Transportation Sector Module was created for use in the NGTDM to estimate the increase in 
demand for CNG due to infrastructure construction, in order to project the revenue from a 
infrastructure building project, and then to assess its viability.

The basic algorithm involves 1) assuming a set increase in the number of stations selling CNG, 
2) assuming CNG will be priced at a discount to the price of motor gasoline once it starts 
penetrating, 3) estimating the expected demand for CNG given the increased supply availability
and price, 4) calculating the expected revenue per station that will cover capital expenditures 

76EIA published, annual, State level data are used to set regional historical end-use prices for CNG vehicles.  Since monthly 
data are not available for this sector, seasonal differentials for the industrial sector are applied to annual CNG data to approximate 
seasonal CNG prices.
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(i.e., discounting for taxes, gas purchase costs, and other operating costs), 5) checking the 
revenue against infrastructure costs to determine viability, and 6) if viable, assuming the 
infrastructure will be added and the retail price changed accordingly.

The algorithm starts by testing the effects of building a large number of CNG stations (i.e., 
primarily by offering CNG at existing gasoline stations).  The increase in availability that is 
tested is assumed to be a proportion of the number of gasoline stations in the region, as follows: 

)CNGAVAILBUILD_CNG_MAX(*NSTAT=TOTPUMPS 1tr (121)

where,
TOTPUMPS = the number of retail stations selling CNG in the region

NSTATr = the number of gasoline stations in the region at the beginning of 
the projection period (Appendix E)

CNGAVAILt-1 = fraction of total retail refueling stations selling CNG last year
MAX_CNG_BUILD = assumed fraction of stations that can add CNG refueling this year

(Appendix E).
r = census division
t = year

The assumed regional retail markup to cover capital costs if CNG infrastructure is built is set as 
follows:

}CNGMARKUP_MAX,0.5{imummin=MARKUP_TEST r (122)

where,

)}MARKUP_RETAIL_CNGPGFTRPV(

PMGTR{*75.0=CNGMARKUP_MAX

r1t,r

1t,rr
(123)

where,
TEST_MARKUPr = assumed regional retail markup (87$/MMBtu)

MAX_CNG_MARKUPr = assumed maximum markup that can be added to base line cost of 
dispensing CNG to cover capital expenditures (87$/MMBtu)
[Note: base line costs include taxes and fuel and basic operating 
costs]

PMGTRr = retail price of motor gasoline (87$/MMBtu)
PMGFTRPV = retail price of CNG (87$/MMBtu)

CNG_RETAIL_MARKUPr= retail CNG markup above base line costs added last year 
(87$/MMBtu)

0.75 = assumed economic rent that can be captured relative to the 
difference between the retail price of motor gasoline and the 
retail price of CNG (fraction)

5.0 = assumed minimum retail CNG markup (87$/MMBtu)

For each model year and region, the present value of projected revenue is determined with the 
following equation:
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HRZ_CNG
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1000000*DEMAND*MARKUP_TEST
REVENUE (124)

where,
REVENUE = the net revenue per station (above the basic operating expenses) 

after infrastructure is added in the region (1987 dollars)
CNG_HRZ = the time horizon for the revenue calculation, corresponding to the 

number of years over which the capital investment is assumed to
need to be recovered (Appendix E)

TEST_MARKUPr = assumed regional retail markup above baseline costs 
(87$/MMBtu)

DEMAND = estimated consumption of CNG by personal vehicles if the 
infrastructure is added and the implied retail price is charged 
(trillion BTU), described at the end of this section

TOTPUMPS = the number of retail stations selling CNG in the region
CNG_WACC = assumed weighted average cost of capital for financing the added 

CNG infrastructure (Appendix E)

The model compares the present value of the projected revenue per station from an infrastructure 
build to the assumed cost of a station (CNG_BUILDCOST, Appendix E) to make the decision of 
whether stations are built or not.  The cost of a station reflects the estimated cost of building a 
single pumping location in an existing retrial refueling station, considering the tax value of 
depreciation and a payback number of years (CNG_HRZ, Appendix E) and an assumed weighted 
average cost of capital (CNG_WACC, Appendix E).  If the revenue is sufficient in a region then 
the availability of CNG stations in that region are increased and the retail markup is set to the 
markup that was tested.  The equations for new retail markup and availability when stations have 
been built are given in the following:

BUILD_CNG_MAXCNGAVAILCNGAVAIL 1t,rtr, (125)

MARKUP_TESTRET_MARK r (126)

where,
CNGAVAILr,t = fraction of regional retail refueling stations selling CNG

MAX_CNG_BUILD = incremental fraction of retail refueling stations selling CNG with 
added infrastructure in the year

RET_MARKr = CNG retail markup above baseline costs (87$/MMBtu)
TEST_MARKUP = assumed CNG retail markup above baseline costs, based on the 

difference between baseline CNG costs and motor gasoline 
prices (87$/MMBtu)

r = Census Division
t = year

These variables stay at last year’s values if no stations have been built. The retail markup by 
NGTDM region (CNG_RETAIL_MARKUP), as used in the transportation sector distributor 
tariff equation, is set by assigning the retail markup (RET_MARK) from the associated Census 
Division.
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The demand response for CNG use in personal vehicles was estimated by doing multiple runs of 
the Transportation Sector Module.  The key variable that was varied was the availability of CNG 
refueling stations.  Test runs were made over a range of availability values for nine different 
cases.  The cases were defined with three different motor gasoline to CNG price differentials (a 
maximum, a minimum, and the average between the two) in combination with three different 
CNG vehicle purchase subsidies ($0, $20,000, $40,000 in 2009 dollars per vehicle).77 For each 
of the resulting nine sets of runs the CNG demand response in the Pacific Census Division was 
estimated as a function of station availability in a log-linear form with a constant term.  The 
demand response in the Pacific Division was estimated by linearly interpolating between the 
points in the resulting three dimensional grid for a given availability (fraction of stations offering 
CNG), price differential between CNG and motor gasoline, and allowed subsidy for purchasing a 
CNG vehicle. The estimated consumption levels in the other Census Divisions were set by 
scaling the Pacific Division consumption based on size (as measured by total transportation 
energy demand) relative to the Pacific Division.

77Based on current laws and regulations in the AEO2011 Reference Case, the subsidy is set to $0.  A nonzero subsidy option 
was included for potential scenario analyses.
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6.  Pipeline Tariff Submodule Solution Methodology

The Pipeline Tariff Submodule (PTS) sets rates charged for storage services and interstate 
pipeline transportation.  The rates developed are based on actual costs for transportation and 
storage services. These cost-based rates are used as a basis for developing tariff curves for 
the Interstate Transmission Submodule (ITS).  The PTS tariff calculation is divided into two 
phases:  an historical year initialization phase and a forecast year update phase.  Each of 
these two phases includes the following steps:  (1) determine the various components, in 
nominal dollars, of the total cost-of-service, (2) classify these components as fixed and 
variable costs based on the rate design (for transportation), (3) allocate these fixed and 
variable costs to rate components (reservation and usage costs) based on the rate design (for 
transportation), and (4) for transportation: compute rates for services during peak and off-
peak time periods; for storage: compute annual regional tariffs.  For the historical year phase, 
the cost of service is developed from historical financial data on 28 major U.S. interstate 
pipeline companies; while for the forecast year update phase the costs are estimated using a 
set of econometric equations and an accounting algorithm.  The pipeline tariff calculations 
are described first, followed by the storage tariff calculations, and finally a description of the 
calculation of the tariffs for moving gas by pipeline from Alaska and from the MacKenzie 
Delta to Alberta.  A general overview of the methodology for deriving rates is presented in 
the following box.  The PTS system diagram is presented in Figure 6-1.

The purpose of the historical year initialization phase is to provide an initial set of 
transportation revenue requirements and tariffs.  The last historical year for the PTS is 
currently 2006, which need not align with the last historical year for the rest of the NGTDM.  
Ultimately the ITS requires pipeline and storage tariffs; whether they are based on historical 
or projected financial data is mechanically irrelevant.  The historical year information is 
developed from existing pipeline company transportation data.  The historical year 
initialization process draws heavily on three databases:  (1) a pipeline financial database 
(1990-2006) of 28 major interstate natural gas pipelines developed by Foster Associates,83

(2) “a competitive profile of natural gas services” database developed by Foster Associates,84

and (3) a pipeline capacity database developed by the former Office of Oil and Gas, EIA.85

83Foster Financial Reports, 28 Major Interstate Natural Gas Pipelines, 2000, 2004 and 2007 Editions, Foster Associates, 
Inc., Bethesda, Maryland.  The primary sources of data for these reports are FERC Form 2 and the monthly FERC Form 11 
pipeline company filings.  These reports can be purchased from Foster Associates.

The first database represents the existing physical U.S. interstate pipeline and storage system, 
which includes production processing, gathering, transmission, storage, and other.  The 
physical system is at a more disaggregate level than the NGTDM network.  This database 
provides detailed company-level financial, cost, and rate base parameters.  It contains 
information on capital structure, rate base, and revenue requirements by major line item of 
the cost of service for the historical years of the model.  The second Foster database contains 

84Competitive Profile of Natural Gas Services, Individual Pipelines, December 1997, Foster Associates, Inc., Bethesda, 
Maryland.  Volumes III and IV of this report contain detailed information on the major interstate pipelines, including a 
pipeline system map, capacity, rates, gas plant accounts, rate base, capitalization, cost of service, etc.  This report can be 
purchased from Foster Associates.

85A spreadsheet compiled by James Tobin of the Office of Oil and Gas containing historical and proposed state-to-state 
pipeline construction project costs, mileage, capacity levels and additions by year from 1996 to 2011, by pipeline company 
(data as of August 16, 2007).
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detailed data on gross and net plant in service and depreciation, depletion, and amortization 
for individual plants (production processing and gathering plants, gas storage plants, gas 
transmission plants, and other plants) and is used to compute sharing factors by pipeline 
company and year to single out financial cost data for transmission plants from the “total 
plants” data in the first database.  
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Figure 6-1. Pipeline Tariff Submodule System Diagram
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The third database contains information on pipeline financial construction projects by 
pipeline company, state-to-state transfer, and year (1996-2011).  This database is used to 
determine factors to allocate the pipeline company financial data to the NGTDM interstate 
pipeline arcs based on capacity level in each historical year.  These three databases are pre-
processed offline to generate the pipeline transmission financial data by pipeline company, 
NGTDM interstate arc, and historical year (1990-2006) used as input into the PTS.

PTS Process for Deriving Rates

For Each Pipeline Arc

Read historical financial database for 28 major interstate natural gas pipelines by pipeline 
company, arc, and historical year (1990-2006).

Derive the total pipeline cost of service (TCOS)
- Historical years
- Aggregate pipeline TCOS items to network arcs

- Adjust TCOS components to reflect all U.S. pipelines based on annual “Pipeline 
Economics” special reports in the Oil & Gas Journal 

- Forecast years
- Include capital costs for capacity expansion
- Estimate TCOS components from forecasting equations and accounting algorithm

Allocate total cost of service to fixed and variable costs based on rate design

Allocate costs to rate components (reservation and usage costs) based on rate design

Compute rates for services for peak and off-peak time periods

For Each Storage Region:

Derive the total storage cost of service (STCOS)

- Historical years: read regional financial data for 33 storage facilities by node 
(NGTDM region) and historical year (1990-1998)

- Forecast years:
- Estimate STCOS components from forecasting equations and accounting 

algorithm
- Adjust STCOS to reflect total U.S. storage facilities based on annual storage 

capacity data reported by EIA

Compute annual regional storage rates for services
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Historical Year Initialization Phase

The following section discusses two separate processes that occur during the historical year 
initialization phase:  (1) the computation and initialization of the cost-of-service components, 
and (2) the computation of rates for services.  The computation of historical year cost-of-
service components and rates for services involves four distinct procedures as outlined in the 
above box and discussed below.   Rates are calculated in nominal dollars and then converted 
to real dollars for use in the ITS.

Computation and Initialization of Pipeline Cost-of-Service Components

In the historical year initialization phase of the PTS, rates are computed using the following  
process:  (Step 1) derivation and initialization of the total cost-of-service components, (Step 
2) classification of cost-of-service components as fixed and variable costs, (Step 3) allocation 
of fixed and variable costs to rate components (reservation and usage costs) based on rate 
design, and (Step 4) computation of rates at the arc level for transportation services.

Step 1:  Derivation and Initialization of the Total Cost-of-Service Components

The total cost-of-service for existing capacity on an arc consists of a just and reasonable 
return on the rate base plus total normal operating expenses.  Derivations of return on rate 
base and total normal operating expenses are presented in the following subsections.  The 
total cost of service is computed as follows:

TNOE+TRRB=TCOS ta,ta,ta, (127)

where,
TCOSa,t = total cost-of-service (dollars)
TRRBa,t = total return on rate base (dollars)
TNOEa,t = total normal operating expenses (dollars)

a = arc
t = historical year

Just and Reasonable Return.   In order to compute the return portion of the cost-of-service 
at the arc level, the determination of capital structure and adjusted rate base is necessary.  
Capital structure is important because it determines the cost of capital to the pipeline 
companies associated with a network arc.  The weighted average cost of capital is applied to 
the rate base to determine the return component of the cost-of-service, as follows:

APRB*WAROR=TRRB ta,ta,ta, (128)

where,
TRRBa,t = total return on rate base after taxes (dollars)

WARORa,t = weighted-average after-tax return on capital (fraction)
APRBa,t = adjusted pipeline rate base (dollars)

a = arc
t = historical year
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In addition, the return on rate base TRRBa,t is broken out into the three components as shown 
below.

]APRB*PFER*)TOTCAP/PFES[(=PFEN tp,a,tp,a,tp,a,tp,a,

p

ta, (129)

]APRB*CMER*)TOTCAP/CMES[(=CMEN tp,a,tp,a,tp,a,tp,a,

p

ta, (130)

]APRB*LTDR*)TOTCAP/LTDS[(=LTDN tp,a,tp,a,tp,a,tp,a,

p

ta, (131)

such that,

)LTDN+CMEN+PFEN(=TRRB ta,ta,ta,ta, (132)

where,
PFENa,t = total return on preferred stock (dollars)

PFESa,p,t = value of preferred stock (dollars)
TOTCAPa,p,t = total capitalization (dollars)

PFERa,p,t = coupon rate for preferred stock (fraction) [read as D_PFER]
APRBa,p,t = adjusted pipeline rate base (dollars) [read as D_APRB]
CMENa,t = total return on common stock equity (dollars)

CMESa,p,t = value of common stock equity (dollars)
CMERa,p,t = common equity rate of return (fraction) [read as D_CMER]

LTDNa,t = total return on long-term debt (dollars)
LTDSa,p,t = value of long-term debt (dollars)
LTDRa,p,t = long-term debt rate (fraction) [read as D_LTDR]

p = pipeline company
a = arc
t = historical year

Note that the first terms (fractions) in parentheses on the right hand side of equations 129 to 
131 represent the capital structure ratios for each pipeline company associated with a 
network arc.  These fractions are computed exogenously and read in along with the rates of 
return and the adjusted rate base.  The total returns on preferred stock, common equity, and 
long-term debt at the arc level are computed immediately after all the input variables are read 
in.  The capital structure ratios are exogenously determined as follows:

TOTCAP / PFES=GPFESTR tp,a,tp,a,tp,a, (133)

TOTCAP / CMES=GCMESTR tp,a,tp,a,tp,a, (134)

TOTCAP / LTDS=GLTDSTR tp,a,tp,a,tp,a, (135)

where,
GPFESTRa,p,t = capital structure ratio for preferred stock for existing pipeline 

(fraction) [read as D_GPFES]
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GCMESTRa,p,t = capital structure ratio for common equity for existing pipeline 
(fraction) [read as D_GCMES]

GLTDSTRa,p,t = capital structure ratio for long-term debt for existing pipeline 
(fraction) [read as D_GLTDS]

PFESa,p,t = value of preferred stock (dollars)
CMESa,p,t = value of common stock (dollars)
LTDSa,p,t = value of long-term debt (dollars)

TOTCAPa,p,t = total capitalization (dollars), equal to the sum of value of 
preferred stock, common stock equity, and long-term debt

p = pipeline company
a = arc
t = historical year

In the financial database, the estimated capital (capitalization) for each interstate pipeline is 
by definition equal to its adjusted rate base.  Hence, the estimated capital TOTCAPa,p,t

defined in the above equations  is equal to the adjusted rate base APRBa,p,t.

APRB=TOTCAP tp,a,tp,a, (136)

where,
TOTCAPa,p,t = total capitalization (dollars)

APRBa,p,t = adjusted rate base (dollars)
a = arc
p = pipeline company
t = historical year

Substituting the adjusted rate base APRBa,t for the estimated capital TOTCAPa,t in equations 
133 to 135,  the values of preferred stock, common stock, and long-term debt by pipeline and 
arc can be computed by applying the capital structure ratios to the adjusted rate base, as 
follows:

1.0=GLTDSTR+GCMESTR+GPFESTR

APRB*GLTDSTR=LTDS

APRB*GCMESTR=CMES

APRB*GPFESTR=PFES

tp,a,tp,a,tp,a,

tp,a,tp,a,tp,a,

tp,a,tp,a,tp,a,

tp,a,tp,a,tp,a,

(137)

where,
PFESa,p,t = value of preferred stock in nominal dollars

CMESa,p,t = value of common equity in nominal dollars
LTDSa,p,t = long-term debt in nominal dollars

GPFESTRa,p,t = capital structure ratio for preferred stock for existing pipeline 
(fraction)

GCMESTRa,p,t = capital structure ratio of common stock for existing pipeline 
(fraction)

GLTDSTRa,p,t = capital structure ratio of long term debt for existing pipeline 
(fraction)
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APRBa,p,t = adjusted rate base (dollars)
p = pipeline
a = arc
t = forecast year

The cost of capital at the arc level (WARORa,t) is computed as the weighted average cost of 
capital for preferred stock, common stock equity, and long-term debt for all pipeline 
companies associated with that arc, as follows:

APRB / )]LTDR*LTDS

+CMER*CMES+PFER*PFES[(=WAROR

ta,tp,a,tp,a,

tp,a,tp,a,tp,a,tp,a,

p

ta,

(138)

LTDS+CMES+PFES=APRB ta,ta,ta,ta, (139)

where,
WARORa,t = weighted-average after-tax return on capital (fraction)

PFESa,p,t = value of preferred stock (dollars)
PFERa,p,t = preferred stock rate (fraction)

CMESa,p,t = value of common stock equity (dollars)
CMERa,p,t = common equity rate of return (fraction)
LTDSa,p,t = value of long-term debt (dollars)
LTDRa,p,t = long-term debt rate (fraction)
APRBa,p,t = adjusted rate base (dollars)

p = pipeline
a = arc
t = historical year

The adjusted rate base by pipeline and arc is computed as the sum of net plant in service and 
total cash working capital (which includes plant held for future use, materials and supplies, 
and other working capital) minus accumulated deferred income taxes.  This rate base is 
computed offline and read in by the PTS.  The computation is as follows:

ADIT-CWC+NPIS=APRB tp,a,tp,a,tp,a,tp,a, (140)

where,
APRBa,p,t = adjusted rate base (dollars)
NPISa,p,t = net capital cost of plant in service (dollars) [read as D_NPIS]
CWCa,p,t = total cash working capital (dollars) [read as D_CWC]
ADITa,p,t = accumulated deferred income taxes (dollars) [read as D_ADIT]

p = pipeline company
a = arc
t = historical year

The net plant in service by pipeline and arc is the original capital cost of plant in service 
minus the accumulated depreciation.  It is computed offline and then read in by the PTS.  The 
computation is as follows:
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ADDA-GPIS=NPIS tp,a,tp,a,tp,a, (141)

where,
NPISa,p,t = net capital cost of plant in service (dollars)
GPISa,p,t = original capital cost of plant in service (dollars) [read as 

D_GPIS]
ADDAa,p,t = accumulated depreciation, depletion, and amortization (dollars) 

[read as D_ADDA]
p = pipeline company
a = arc
t = historical year

The adjusted rate base at the arc level is computed as follows:

)ADIT-CWC+NPIS(=

)ADIT-CWC+NPIS(APRB=APRB

ta,ta,ta,

tp,a,tp,a,tp,a,

p

tp,a,

p

t,a, =
(142)

with,

)ADDA-GPIS(=

)ADDA-GPIS(=NPIS

ta,ta,

tp,a,tp,a,

p

t,a,

(143)

where,
APRBa,p,t = adjusted rate base (dollars) at the arc level
NPISa,p,t = net capital cost of plant in service (dollars) at the arc level
CWCa,t = total cash working capital (dollars) at the arc level
ADITa,t = accumulated deferred income taxes (dollars) at the arc level

GPISa,p,t = original capital cost of plant in service (dollars) at the arc level
ADDAa,t = accumulated depreciation, depletion, and amortization (dollars) 

at the arc level
p = pipeline company
a = arc
t = historical year

Total Normal Operating Expenses.  Total normal operating expense line items include 
depreciation, taxes, and total operating and maintenance expenses.  Total operating and 
maintenance expenses include administrative and general expenses, customer expenses, and 
other operating and maintenance expenses.  In the PTS, taxes are disaggregated further into 
Federal, State, and other taxes and deferred income taxes.  The equation for total normal 
operating expenses at the arc level is given as follows:

)TOM+TOTAX+DDA(=TNOE tp,a,tp,a,tp,a,

p

ta, (144)

where,
TNOEa,t = total normal operating expenses (dollars)
DDAa,p,t = depreciation, depletion, and amortization costs (dollars) [read 

as D_DDA]
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TOTAXa,p,t = total Federal and State income tax liability (dollars)
TOMa,p,t = total operating and maintenance expense (dollars) [read as 

D_TOM]
p = pipeline
a = arc
t = historical year

Depreciation, depletion, and amortization costs, and total operating and maintenance expense 
are available directly from the financial database.  The equations to compute these costs at 
the arc level are as follows:

DDA=DDA tp,a,

p

ta, (145)

TOM=TOM tp,a,

p

ta, (146)

Total taxes at the arc level are computed as the sum of Federal and State income taxes, other 
taxes, and deferred income taxes, as follows:

)DIT+OTTAX+FSIT(=TOTAX tp,a,tp,a,tp,a,

p

ta, (147)

)SIT+FIT(FSIT=FSIT tp,a,tp,a,

p

tp,a,

p

ta, = (148)

where,
TOTAXa,t = total Federal and State income tax liability (dollars)

FSITa,p,t = Federal and State income tax (dollars)
OTTAXa,p,t = all other taxes assessed by Federal, State, or local governments 

except income taxes and deferred income tax (dollars) [read as 
D_OTTAX]

DITa,p,t = deferred income taxes (dollars) [read as D_DIT]
FITa,p,t = Federal income tax (dollars)
SITa,p,t = State income tax (dollars)

p = pipeline company
a = arc
t = historical year

Federal income taxes are derived from returns to common stock equity and preferred stock 
(after-tax profit) and the Federal tax rate.  The after-tax profit at the arc level is determined as 
follows:

)CMES*CMER+PFES*PFER(=ATP tp,a,tp,a,tp,a,tp,a,

p

ta, (149)

where,
ATPa,t = after-tax profit (dollars) at the arc level

PFERa,p,t = preferred stock rate (fraction)
PFESa,p,t = value of preferred stock (dollars)
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CMERa,p,t = common equity rate of return (fraction)
CMESa,p,t = value of common stock equity (dollars)

a = arc
t = historical year

and the Federal income taxes at the arc level are,

FRATE)-(1.

ATP*FRATE
=FIT

ta,

ta, (150)

where,
FITa,t = Federal income tax (dollars) at the arc level

FRATE = Federal income tax rate (fraction) (Appendix E)
ATPa,t = after-tax profit (dollars)

State income taxes are computed by multiplying the sum of taxable profit and the associated 
Federal income tax by a weighted-average State tax rate associated with each pipeline 
company.  The weighted-average State tax rate is based on peak service volumes in each 
State delivered by the pipeline company.  State income taxes at the arc level are computed as 
follows:

)ATP+FIT(*SRATE=SIT ta,ta,ta, (151)

where,
SITa,t = State income tax (dollars) at the arc level

SRATE = average State income tax rate (fraction) (Appendix E)
FITa,t = Federal income tax (dollars) at the arc level

ATPa,t = after-tax profits (dollars) at the arc level

Thus, total taxes at the arc level can be expressed by the following equation:

)DIT+OTTAX+FSIT(=TOTAX ta,ta,ta,ta, (152)

where,
TOTAXa,t = total Federal and State income tax liability (dollars) at the arc 

level
FSITa,t = Federal and State income tax (dollars) at the arc level

OTTAXa,t = all other taxes assessed by Federal, State, or local governments 
except income taxes and deferred income taxes (dollars), at the 
arc level

DITa,t = deferred income taxes (dollars) at the arc level
a = arc
t = historical year

All other taxes and deferred income taxes at the arc level are expressed as follows: 

OTTAX=OTTAX tp,a,

p

ta, (153)
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DIT=DIT tp,a,

p

ta, (154)

Adjustment from 28 major pipelines to total U.S.  Note that all cost-of-service and rate 
base components computed so far are based on the financial database of 28 major interstate 
pipelines.  According to the U.S. natural gas pipeline construction and financial reports filed 
with the FERC and published in the Oil and Gas Journal,86

For the capital costs and adjusted rate base components,

there were more than 100 
interstate natural gas pipelines operating in the United States in 2006.  The total annual gross 
plant in service and operating revenues for all these pipelines are much higher than those for 
the 28 major interstate pipelines in the financial database.  All the cost-of-service and rate 
base components at the arc level computed in the above sections are scaled up as follows:

GPIS_HFAC*APRB=APRB

GPIS_HFAC*ADIT=ADIT

GPIS_HFAC*CWC=CWC

GPIS_HFAC*NPIS=NPIS

GPIS_HFAC*ADDA=ADDA

GPIS_HFAC*GPIS=GPIS

tta,ta,

tta,ta,

tta,ta,

tta,ta,

tta,ta,

tta,ta,

(155)

For the cost-of-service components,

REVHFAC_*TOM=TOM

REVHFAC_*DIT=DIT

REVHFAC_*OTTAX=OTTAX

REVHFAC_*FSIT=FSIT

REVHFAC_*DDA=DDA

REVHFAC_*LTDN=LTDN

REVHFAC_*CMEN=CMEN

REVHFAC_*PFEN=PFEN

tta,ta,

tta,ta,

tta,ta,

tta,ta,

tta,ta,

tta,ta,

tta,ta,

tta,ta,

(156)

where,
GPISa,t = original capital cost of plant in service (dollars)

HFAC_GPISt = adjustment factor for capital costs to total U.S. (Appendix E)
ADDAa,t = accumulated depreciation, depletion, and amortization (dollars)

NPISa,t = net capital cost of plant in service (dollars)
CWCa,t = total cash working capital (dollars)
ADITa,t = accumulated deferred income taxes (dollars)
APRBa,t = adjusted pipeline rate base (dollars)
PFENa,t = total return on preferred stock (dollars)

86Pipeline Economics, Oil and Gas Journal, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005, 2006.
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HFAC_REVt = adjustment factor for operation revenues to total U.S. 
(Appendix E)

CMENa,t = total return on common stock equity (dollars)
LTDNa,t = total return on long-term debt (dollars)
DDAa,t = depreciation, depletion, and amortization costs (dollars)
FSITa,t = Federal and State income tax (dollars)

OTTAXa,t = all other taxes assessed by Federal, State, or local governments 
except income taxes and deferred income taxes (dollars)

DITa,t = deferred income taxes (dollars)
TOMa,t = total operations and maintenance expense (dollars)

a = arc
t = historical year

Except for the Federal and State income taxes and returns on capital, all the cost-of-service 
and rate base components computed at the arc level above are also used as initial values in 
the forecast year update phase that starts in 2007.

Step 2:  Classification of Cost-of-Service Line Items as Fixed and Variable 
Costs

The PTS breaks each line item of the cost of service (computed in Step 1) into fixed and 
variable costs.  Fixed costs are independent of storage/transportation usage, while variable 
costs are a function of usage.  Fixed and variable costs are computed by multiplying each line 
item of the cost of service by the percentage of the cost that is fixed and the percentage of the 
cost that is variable.  The classification of fixed and variable costs is defined by the user as 
part of the scenario specification.  The classification of line item cost Ri to fixed and variable 
cost is determined as follows:

100/R*ALL=R iffi, (157)

100/R*ALL=R ivvi, (158)

where,
Ri,f = fixed cost portion of line item Ri (dollars)

ALLf = percentage of line item Ri representing fixed cost
Ri = total cost of line item i (dollars)

Ri,v = variable cost portion of line item Ri (dollars)
ALLv = percentage of line item Ri representing variable cost

i = line item index
f,v = fixed or variable

100 = ALLf + ALLv
An example of this procedure is illustrated in Table 6-1.

The resulting fixed and variable costs at the arc level are obtained by summing all line items 
for each cost category from the above equations, as follows:
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R=FC fi,

i

a (159)

R=VC vi,

i

a (160)

where,
FCa = total fixed cost (dollars) at the arc level
VCa = total variable cost (dollars) at the arc level

a = arc

Table 6-1.  Illustration of Fixed and Variable Cost Classification

Cost of Service Line Item

Total

(dollars)

Cost Allocation 

Factors

(percent)

Fixed          Variable

Cost Component

(dollars)

Fixed      Variable

Total Return

Preferred Stock 1,000 100 0 1,000 0

Common Stock 30,000 100 0 30,000 0

Long-Term Debt 29,000 100 0 29,000 0

Normal Operating Expenses

Depreciation 30,000 100 0 30,000 0

Taxes

Federal Tax 25,000 100 0 25,000 0

State Tax 5,000 100 0 5,000 0

Other Tax 1,000 100 0 1,000 0

Deferred Income Taxes 1,000 100 0 1,000 0

Total Operations & 
Maintenance

105,000 60 40 63,000 42,000

Total Cost-of-Service 227,000 185,000 42,000

Step 3:  Allocation of Fixed and Variable Costs to Rate Components  

Allocation of fixed and variable costs to rate components is conducted only for transportation 
services because storage service is modeled in a more simplified manner using a one-part 
rate.  The rate design to be used within the PTS is specified by input parameters, which can 
be modified by the user to reflect changes in rate design over time.  The PTS allocates the 
fixed and variable costs computed in Step 2 to rate components as specified by the rate 
design.  For transportation service, the components of the rate consist of a reservation and a 
usage fee.  The reservation fee is a charge assessed based on the amount of capacity reserved.  
It typically is a monthly fee that does not vary with throughput.  The usage fee is a charge 
assessed for each unit of gas that moves through the system.

The actual reservation and usage fees that pipelines are allowed to charge are regulated by 
the Federal Energy Regulatory Commission (FERC).  How costs are allocated determines the 
extent of differences in the rates charged for different classes of customers for different types 
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of services.  In general, if more fixed costs are allocated to usage fees, more costs are 
recovered based on throughput.

Costs are assigned either to the reservation fee or to the usage fee according to the rate design 
specified for the pipeline company.  The rate design can vary among pipeline companies.  
Three typical rate designs are described in Table 6-2.  The PTS provides two options for 
specifying the rate design.  In the first option, a rate design for each pipeline company can be 
specified for each forecast year.  This option permits different rate designs to be used for 
different pipeline companies while also allowing individual company rate designs to change 
over time. Since pipeline company data subsequently  are  aggregated  to  network  arcs,  the  
composite  rate  design  at  the arc-level  is  the quantity-weighted average of the pipeline 
company rate designs.  The second option permits a global specification of the rate design, 
where all pipeline companies have the same rate design for a specific time period but can 
switch to another rate design in a different time period.

Table 6-2.  Approaches to Rate Design

The allocation of fixed costs to reservation and usage fees entails multiplying each fixed cost 
line item of the total cost of service by the corresponding fixed cost rate design classification 
factor. A similar process is carried out for variable costs.  This procedure is illustrated in 
Tables 6-3a and 6-3b and is generalized in the equations that follow.  The classification of 
transportation line item costs Ri,f and Ri,v to reservation and usage cost is determined as 
follows: 

100/R*ALL=R fi,rf,rf,i, (161)

100/R*ALL=R fi,uf,uf,i, (162)

100/R*ALL=R vi,rv,rv,i, (163)

100/R*ALL=R vi,uv,uv,i, (164)

Modified Fixed Variable

(Three-Part Rate)

Modified Fixed Variable

(Two-Part Rate)

Straight Fixed 

Variable

(Two-Part Rate)

Two-part reservation fee. -
Return on equity and related 
taxes are held at risk to 
achieving throughput targets by 
allocating these costs to the 
usage fee.  Of the remaining 
fixed costs, 50 percent are 
recovered from a peak day 
reservation fee and 50 percent 
are recovered through an 
annual reservation fee.  

Reservation fee based on peak 
day requirements - all fixed 
costs except return on equity 
and related taxes recovered 
through this fee.

One-part capacity reservation 
fee.  All fixed costs are 
recovered through the 
reservation fee, which is 
assessed based on peak day 
capacity requirements.

Variable costs allocated to the
usage fee.  In addition, return 
on equity and related taxes are 
also recovered through the 
usage fee.

Variable costs plus return on 
equity and related taxes are 
recovered through the usage 
fee.

Variable costs are recovered 
through the usage fee.
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Table 6-3a.  Illustration of Allocation of Fixed Costs to Rate Components

Cost of Service Line Item

Total

(dollars)

Allocation Factors

(percent)

Reservation Usage

Cost Assigned to

Rate Component

(dollars)

Reservation       Usage     

Total Return

Preferred Stock 1,000 100 0 0 1,000

Common Stock 30,000 100 0 0 30,000

Long-Term Debt 29,000 100 0 29,000 0

Normal Operating Expenses

Depreciation 30,000 100 0 30,000 0

Taxes

Federal Tax 25,000 0 100 0 25,000

State Tax 5,000 0 100 0 5,000

Other Tax 1,000 100 0 1,000 0

Deferred Income 
Taxes 1,000 100 0 1,000 0

Total Operations & 
Maintenance 63,000 100 0 63,000 0

Total Cost-of-Service 185,000 124,000 61,000

Table 6-3b.  Illustration of Allocation of Variable Costs to Rate Components

Cost of Service Line Item

Total

(dollars)

Allocation Factors

(percent)

Reservation Usage    

Cost Assigned to

Rate Component

(dollars)

Reservation    Usage

Total Return

Preferred Stock 0 0 100 0 0

Common Stock 0 0 100 0 0

Long-Term Debt 0 0 100 0 0

Normal Operating Expenses

Depreciation 0 0 100 0 0

Taxes

Federal Tax 0 0 100 0 0

State Tax 0 0 100 0 0

Other Tax 0 0 100 0 0

Deferred Income Taxes 0 0 100 0 0

Total Operations & 
Maintenance

42,000 0 100 0 42,000

Total Cost-of-Service 42,000 0 42,000

where,
R = line item cost (dollars)

ALL = percentage of reservation or usage line item R representing 
fixed or variable cost (Appendix E -- AFR, AVR, AFU=1-
AFR, AVU=1-AVR)

100 = ALLf,r + ALLf,u
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100 = ALLv,r + ALLv,u

i = line item number index
f = fixed cost index
v = variable cost index
r = reservation cost index
u = usage cost index

At this stage in the procedure, the line items comprising the fixed and variable cost 
components of the reservation and usage fees can be summed to obtain total reservation and 
usage components of the rates.

)R+R(=RCOST rv,i,rf,i,

i

a (165)

)R+R(=UCOST uv,i,uf,i,

i

a (166)

where,
RCOSTa = total reservation cost (dollars) at the arc level
UCOSTa = total usage cost (dollars) at the arc level

a = arc

After ratemaking Steps 1, 2 and 3 are completed for each arc by historical year, the rates are 
computed below.

Computation of Rates for Historical Years

The reservation and usage costs-of-service (RCOST and UCOST) developed above are used 
separately to develop two types of rates at the arc level: variable tariffs and annual fixed 

usage fees.

Variable Tariff Curves

Variable tariffs are proportional to reservation charges and are broken up into peak and off-
peak time periods.  Variable tariffs are derived directly from variable tariff curves which are 
developed based on reservation costs, utilization rates, annual flows, and other parameters.

In the PTS code, these variable tariff curves are defined by FUNCTION 
(NGPIPE_VARTAR) which is used by the ITS to compute the variable peak and off-peak 
tariffs by arc and by forecast year.  The pipeline tariff curves are a function of peak or off-
peak flow and are specified using a base point [price and quantity (PNOD, QNOD)] and an 
assumed price elasticity, as follows:

)QNOD / Q(*PNOD=VARTAR_NGPIPE
ALPHA_PIPE

ta,ta,ta,ta, (167)

such that,
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For peak transmission tariffs:

)PCWGDPMC_*QNOD(

PKSHR_YR*RCOST
=PNOD

tta,

ta,

ta, (168)

NETFLOWPT=QNOD ta,ta, (169)

For off-peak transmission tariffs:

)PCWGDPMC_*QNOD(

PKSHR_YR)-(1.0*RCOST
=PNOD

tta,

ta,

ta, (170)

NETFLOWPT=QNOD ta,ta, (171)

where,
NGPIPE_VARTARa,t = function to define pipeline tariffs (87$/Mcf)

PNODa,t = base point, price (87$/Mcf)
QNODa,t = base point, quantity (Bcf)

Qa,t = flow along pipeline arc (Bcf), dependent variable for the 
function

ALPHA_PIPE = price elasticity for pipeline tariff curve for current capacity
RCOSTa,t = reservation cost-of-service (dollars)

PTNETFLOWa,t = natural gas network flow (throughput, Bcf)
PKSHR_YR = portion of the year represented by the peak season (fraction)

MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 
Activity Module)

a = arc
t = historical year

Annual Fixed Usage Fees

The annual fixed usage fees (volumetric charges) are derived directly from the usage costs, 
utilization rates for peak and off-peak time periods, and annual arc capacity.  These fees are 
computed as the average fees over each historical year, as follows:

]PCWGDP_MC*)PTCURPCAP*PTOPUTZ*)PKSHR_YR-(1.0

+PTCURPCAP*PTPKUTZ*PKSHR_YR[( / UCOST=FIXTAR

tta,ta,

ta,ta,ta,ta,

(172)

where,
FIXTARa,t = annual fixed usage fees for existing and new capacity 

(87$/Mcf)
UCOSTa,t = annual usage cost of service for existing and new capacity 

(dollars)
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PKSHR_YR = portion of the year represented by the peak season (fraction)
PTPKUTZa,t = peak pipeline utilization (fraction)

PTCURPCAPa,t = current pipeline capacity (Bcf)
PTOPUTZa,t = off-peak pipeline utilization (fraction)

MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 
Activity Module)

a = arc
t = historical year

Canadian Tariffs

In the historical year phase, Canadian tariffs are set to the historical differences between the 
import prices and the Western Canada Sedimentary Basin (WCSB) wellhead price.

Computation of Storage Rates

The annual storage tariff for each NGTDM region and year is defined as a function of storage 
flow and is specified using a base point [price and quantity (PNOD, QNOD)] and an assumed 
price elasticity, as follows:

)QNOD / Q(*PNOD=VARTAR_NGSTR1X
ALPHA_STR

tr,tr,tr,tr, (173)

such that,

ADJ_STR*ADJ_STCAP*STRATIO

*
)1,000,000.*QNOD*PCWGDP_MC(

STCOS
=PNOD

tr,tr,

tr,t

tr,

tr,

(174)

PTSTUTZ*PTCURPSTR=QNOD tr,tr,tr, (175)

where,
X1NGSTR_VARTARr,t = function to define storage tariffs (87$/Mcf)

Qr,t = peak period net storage withdrawals (Bcf)
PNODr,t = base point, price (87$/Mcf)
QNODr,t = base point, quantity (Bcf)

ALPHA_STR = price elasticity for storage tariff curve (ratio, Appendix E)

STCOSr,t = existing storage capacity cost of service, computed from 
historical cost-of-service components

MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 
Activity Module)

STRATIOr,t = portion of revenue requirement obtained by moving gas from 
the off-peak to the peak period  (fraction, Appendix E)

STCAP_ADJr,t = adjustment factor for the cost of service to total U.S. (ratio), 
defined as annual storage working gas capacity divided by 
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Foster storage working gas capacity
ADJ_STR = storage tariff curve adjustment factor (fraction, Appendix E)

PTSTUTZr,t = storage utilization (fraction)
PTCURPSTRr,t = annual storage working gas capacity (Bcf)

r = NGTDM region
t = historical year

Forecast Year Update Phase

The purpose of the forecast year update phase is to project, for each arc and subsequent year 
of the forecast period, the cost-of-service components that are used to develop rates for the 
peak and off-peak periods.  For each year, the PTS forecasts the adjusted rate base, cost of 
capital, return on rate base, depreciation, taxes, and operation and maintenance expenses.  
The forecasting relationships are discussed in detail below.

After all of the components of the cost-of-service at the arc level are forecast, the PTS 
proceeds to: (1) classify the components of the cost of service as fixed and variable costs, (2) 
allocate fixed and variable costs to rate components (reservation and usage costs) based on 
the rate design, and (3) compute arc-specific rates (variable and fixed tariffs) for peak and 
off-peak periods. 

Investment Costs for Generic Pipelines

The PTS projects the capital costs to expand pipeline capacity at the arc level, as opposed to 
determining the costs of expansion for individual pipelines.  The PTS represents arc-specific 
generic pipelines to generate the cost of capacity expansion by arc.  Thus, the PTS tracks 
costs attributable to capacity added during the forecast period separately from the costs 
attributable to facilities in service in the historical years.  The PTS estimates the capital costs 
associated with the level of capacity expansion forecast by the ITS in the previous forecast 
year based on exogenously specified estimates for the average pipeline capital costs at the arc 
level (AVG_CAPCOSTa) associated with expanding capacity for compression, looping, and 
new pipeline.  These average capital costs per unit of expansion (2005 dollars per Mcf) were 
computed based on a pipeline construction project cost database87 compiled by the Office of 
Oil and Gas.  These costs are adjusted for inflation from 2007 throughout the forecast period
(i.e., they are held constant in real terms).  

The average capital cost to expand capacity on a network arc is estimated given the level of 
capacity additions in year t provided by the ITS and the associated assumed average unit 
capital cost.  This average unit capital cost represents the investment cost for a generic 
pipeline associated with a given arc, as follows:

2000tata, P /MC_PCWGDMC_PCWGDP*TAVG_CAPCOSCCOST (176)

87
A spreadsheet compiled by James Tobin of EIA’s Office of Oil and Gas containing historical and proposed 

state-to-state pipeline construction project costs, mileage, and capacity levels and additions by year from 1996 
to 2011, by pipeline company (data as of August 16, 2007).
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where,
CCOSTa,t = average pipeline capital cost per unit of expanded capacity 

(nominal dollars per Mcf)
AVG_CAPCOSTa = average pipeline capital cost per unit of expanded capacity in 

2000 dollars per Mcf (Appendix E, AVGCOST)
MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 

Activity Module)
a = arc
t = forecast year

The new capacity expansion expenditures allowed in the rate base within a forecast year are 
derived from the above average unit capital cost and the amount of incremental capacity 
additions determined by the ITS for each arc, as follows:

PCNT_R)(1*1,000,000*CAPADD*CCOSTNCAE ta,ta,ta, (177)

where,
NCAEa,t = capital cost to expand capacity on a network arc (dollars)

CCOSTa,t = average capital cost per unit of expansion (dollars per Mcf)
CAPADDa,t = capacity additions for an arc as determined in the ITS (Bcf/yr)

PCNT_R = assumed average percentage (fraction) for pipeline replacement 
costs (Appendix E)

t = forecast year

To account for additional costs due to pipeline replacements, the PTS increases the capital 
costs to expand capacity by a small percentage (PCNT_R). Once the capital cost of new 
plant in service is computed by arc in year t, this amount is used in an accounting algorithm 
for the computation of gross plant in service for new capacity expansion, along with its 
depreciation, depletion, and amortization.  These will in turn be used in the computation of 
updated cost-of-service components for the existing and new capacity for an arc.

Forecasting Cost-of-Service 88

The primary purpose in forecasting cost-of-service is to capture major changes in the 
composition of the revenue requirements and major changes in cost trends through the 
forecast period.  These changes may be caused by capacity expansion or maintenance and 
life extension of nearly depreciated plants, as well as by changes in the cost and availability 
of capital. 

The projection of the cost-of-service is approached from the viewpoint of a long-run 
marginal cost analysis for gas pipeline systems.  This differs from the determination of cost-
of-service for the purpose of a rate case.  Costs that are viewed as fixed for the purposes of a 
rate case actually vary in the long-run with one or more external measures of size or activity 
levels in the industry.  For example, capital investments for replacement and refurbishment 
of existing facilities are a long-run marginal cost of the pipeline system.  Once in place, 

88All cost components in the forecast equations in this section are in nominal dollars, unless explicitly stated otherwise. 
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however, the capital investments are viewed as fixed costs for the purposes of rate cases.  
The same is true of operations and maintenance expenses that, except for short-run variable 
costs such as fuel, are most commonly classified as fixed costs in rate cases.  For example, 
customer expenses logically vary over time based on the number of customers served and the 
cost of serving each customer.  The unit cost of serving each customer, itself, depends on 
changes in the rate base and individual cost-of-service components, the extent and/or 
complexity of service provided to each customer, and the efficiency of the technology level 
employed in providing the service.

The long-run marginal cost approach generally projects total costs as the product of unit cost 
for the activity multiplied by the incidence of the activity.  Unit costs are projected from cost-
of-service components combined with time trends describing changes in level of service, 
complexity, or technology.  The level of activity is projected in terms of variables external to 
the PTS (e.g., annual throughput) that are both logically and empirically related to the 
incurrence of costs.  Implementation of the long-run marginal cost approach involves 
forecasting relationships developed through empirical studies of historical change in pipeline 
costs, accounting algorithms, exogenous assumptions, and inputs from other NEMS modules.  
These forecasting algorithms may be classified into three distinct areas, as follows:

The projection of adjusted rate base and cost of capital for the combined existing and 
new capacity. 

The projection of components of the revenue requirements.

The computation of variable and fixed rates for peak and off-peak periods.

The empirically derived forecasting algorithms discussed below are determined for each 
network arc.

Projection of Adjusted Rate Base and Cost of Capital

The approach for projecting adjusted rate base and cost of capital at the arc level is 
summarized in Table 6-4.  Long-run marginal capital costs of pipeline companies reflect 
changes in the AA utility bond index rate.  Once projected, the adjusted rate base is translated 
into capital-related components of the revenue requirements based on projections of the cost 
of capital, total operating and maintenance expenses, and algorithms for depreciation and tax 
effects.

The projected adjusted rate base for the combined existing and new pipelines  at the arc level 
in year t is computed as the amount of gross plant in service in year t minus previous year’s 
accumulated  depreciation, depletion, and amortization plus total cash working capital minus 
accumulated deferred income taxes in year t.

ADIT-CWC+ADDA-GPIS=APRB ta,ta,1t-a,ta,ta, (178)

where,
APRBa,t = adjusted rate base in dollars
GPISa,t = total capital cost of plant in service (gross plant in service) in 

dollars
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Table 6-4.  Approach to Projection of Rate Base and Capital Costs

Projection Component Approach

1.  Adjusted Rate Base

a. Gross plant in service in year t

I. Capital cost of existing plant in service Gross plant in service in the last historical year 
(2006)

II. Capacity expansion costs for new capacity Accounting algorithm [equation 180]

b. Accumulated Depreciation, Depletion & 
Amortization

Accounting algorithm [equations 186, 187, 189]
and empirically estimated for existing capacity 
[equation 188]

c. Cash and other working capital User defined option for the combined existing 
and new capacity [equation 190]

d. Accumulated deferred income taxes Empirically estimated for the combined existing 
and new capacity [equation 141]

f. Depreciation, depletion, and amortization Existing Capacity:  empirically estimated 
[equation 188]
New Capacity:  accounting algorithm [equation 
189]

2.  Cost of Capital

a. Long-term debt rate Projected AA utility bond yields adjusted by 
historical average deviation constant for long-
term debt rate 

b. Preferred equity rate Projected AA utility bond yields adjusted by 
historical average deviation constant for preferred 
equity rate

c. Common equity return Projected AA utility bond yields adjusted by 
historical average deviation constant for common 
equity return 

3.  Capital Structure Held constant at average historical values

ADDAa,t = accumulated depreciation, depletion, and amortization in 
dollars

CWCa,t = total cash working capital including other cash working capital 
in dollars

ADITa,t = accumulated deferred income taxes in dollars
a = arc
t = forecast year

All the variables in the above equation represent the aggregate variables for all interstate 
pipelines associated with an arc.  The aggregate variables on the right hand side of the 
adjusted rate base equation are forecast by the equations below.  First, total (existing and 
new) gross plant in service in the forecast year is determined as the sum of  existing  gross  
plant  in  service  and  new  capacity expansion expenditures added to existing gross plant in 
service.  New capacity expansion can be compression, looping, and new pipelines.  For 
simplification, the replacement, refurbishment, retirement, and cost associated with new 
facilities for complying with Order 636 are not accounted for in projecting total gross plant in 
service in year t.  Total gross plant in service for a network arc is forecast as follows:
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N_GPIS+E_GPIS=GPIS ta,ta,ta, (179)

where,
GPISa,t = total capital cost of plant in service (gross plant in service) in 

dollars
GPIS_Ea,t = gross plant in service in the last historical year (2006) 
GPIS_Na,t = capital cost of new plant in service in dollars

a = arc
t = forecast year

In the above equation, the capital cost of existing plant in service (GPIS_Ea,t) reflects the 
amount of gross plant in service in the last historical year (2006).  The capital cost of new 
plant in service (GPIS_Na,t) in year t is computed as the accumulated new capacity expansion 
expenditures from 2007 to year t and is determined by the following equation:

NCAE=NGPIS_ sa,

t

4200=s

ta, (180)

where,
GPIS_Na,t = gross plant in service for new capacity expansion in dollars

NCAEa,s = new capacity expansion expenditures occurring in year s after 
2006 (in dollars) [equation 177]

s = the year new expansion occurred
a = arc  
t = forecast year

Next, net plant in service in year t is determined as the difference between total capital cost 
of plant in service (gross plant in service) in year t and previous year’s accumulated 
depreciation, depletion, and amortization.

ADDA-GPIS=NPIS 1t-a,ta,ta, (181)

where,
NPISa,t = total net plant in service in dollars
GPISa,t = total capital cost of plant in service (gross plant in service) in 

dollars
ADDAa,t = accumulated depreciation, depletion, and amortization in 

dollars
a = arc  
t = forecast year

Accumulated depreciation, depletion, and amortization for the combined existing and new 
capacity in year t is determined by the following equation:

N_ADDA+E_ADDA=ADDA ta,ta,ta, (182)

where,
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ADDAa,t = accumulated depreciation, depletion, and amortization in 
dollars

ADDA_Ea,t = accumulated depreciation, depletion, and amortization for 
existing capacity in dollars

ADDA_Na,t = accumulated depreciation, depletion, and amortization for new 
capacity in dollars

a = arc
t = forecast year

With this and the relationship between the capital costs of existing and new plants in service 
from equation 179, total net plant in service (NPISa,t) is set equal to the sum of net plant in 
service for existing pipelines and new  capacity expansions, as follows:

N_NPIS+E_NPIS=NPIS ta,ta,ta, (183)

E_ADDA-E_GPIS=E_NPIS 1t-a,ta,ta, (184)

N_ADDA-N_GPIS=N_NPIS 1t-a,ta,ta, (185)

where,
NPISa,t = total net plant in service in dollars

NPIS_Ea,t = net plant in service for existing capacity in dollars
NPIS_Na,t = net plant in service for new capacity in dollars
GPIS_Ea,t = gross plant in service in the last historical year (2006)

ADDA_Ea,t = accumulated depreciation, depletion, and amortization for 
existing capacity in dollars

ADDA_Na,t = accumulated depreciation, depletion, and amortization for new 
capacity in dollars

GPIS_N = gross plant in service for new capacity in dollars
a = arc
t = forecast year

Accumulated depreciation, depletion, and amortization for a network arc in year t is 
determined as the sum of previous year’s accumulated depreciation, depletion, and 
amortization and current year’s depreciation, depletion, and amortization.

DDA+ADDA=ADDA ta,1t-a,ta, (186)

where,
ADDAa,t = accumulated depreciation, depletion, and amortization in 

dollars
DDAa,t = annual depreciation, depletion, and amortization costs in 

dollars
a = arc
t = forecast year

Annual depreciation, depletion, and amortization for a network arc in year t equal the sum of 
depreciation, depletion, and amortization for the combined existing and new capacity 
associated with the arc. 
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N_DDA+E_DDA=DDA ta,ta,ta, (187)

where,
DDAa,t = annual depreciation, depletion, and amortization in dollars

DDA_Ea,t = depreciation, depletion, and amortization costs for existing 
capacity in dollars

DDA_Na,t = depreciation, depletion, and amortization costs for new 
capacity in dollars

a = arc
t = forecast year

A regression equation is used to determine the annual depreciation, depletion, and 
amortization for existing capacity associated with an arc, while an accounting algorithm is 
used for new capacity.  For existing capacity, this expense is forecast as follows:

NEWCAP_E*+ENPIS_*+=EDDA_
ta,21t-a,1a0,ta, (188)

where,
DDA_Ea,t = annual depreciation, depletion, and amortization costs for 

existing capacity in nominal dollars

0,a = DDA_Ca, constant term estimated by arc (Appendix F, Table 

0,a = B_ARCxx_yy)

1 = DDA_NPIS, estimated coefficient for net plant in service for 
existing capacity (Appendix F, Table F3.3)

2 = DDA_NEWCAP, estimated coefficient for the change in gross 
plant in service for existing capacity (Appendix F, Table F3.3)

NPIS_Ea,t = net plant in service for existing capacity (dollars)
NEWCAP_Ea,t = change in gross plant in service for existing capacity between t 

and t-1 (dollars)
a = arc
t = forecast year

The accounting algorithm used to define the annual depreciation, depletion, and amortization 
for new capacity assumes straight-line depreciation over a 30-year life, as follows:

30/N_GPIS=N_DDA ta,ta, (189)

where,
DDA_Na,t = annual depreciation, depletion, and amortization for new 

capacity in dollars
GPIS_Na,t = gross plant in service for new capacity in dollars [equation 180]

30 = 30 years of plant life
a = arc  
t = forecast year

Next, total cash working capital (CWCa,t) for the combined existing and new capacity by arc 
in the adjusted rate base equation consists of cash working capital, material and supplies, and 



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module

119 

other components that vary by company.  Total cash working capital for pipeline 
transmission for existing and new capacity at the arc level is deflated using the chain 
weighted GDP price index with 2005 as a base.  This level of cash working capital 
(R_CWCa,t) is determined using a log-linear specification with correction for serial 
correlation given the economies in cash management in gas transmission.  The estimated 
equation used for R_CWC (Appendix F, Table F3) is determined as a function of total 
operation and maintenance expenses, as defined below:

))*log(R_TOM*CWC_TOM-)*log(R_CWC)*log(R_TOMCWC_TOM)-*(1(

ta,

1-ta,1-ta,ta,a0,

e

*CWC_K=CWCR_
(190)

where,
R_CWCa,t = total pipeline transmission cash working capital for existing 

and new capacity (2005 real dollars)

0,a = CWC_Ca, estimated arc specific constant for gas transported 

0,a =
B_ARCxx_yy)

CWC_TOM = estimated R_TOM coefficient (Appendix F, Table F3.2)
R_TOMa,t = total operation and maintenance expenses in 2005 real dollars

CWC_K = correction factor estimated in stage 2 of the regression equation 
estimation process (Appendix F, Table F3)

= autocorrelation coefficient from estimation (Appendix F, Table 
F3.2 -- CWC_RHO)

a = arc
t = forecast year

Last, the level of accumulated deferred income taxes for the combined existing and new 
capacity on a network arc in year t in the adjusted rate base equation depends on income tax 
regulations in effect, differences in tax and book depreciation, and the time vintage of past 
construction.  The level of accumulated deferred income taxes for the combined existing and 
new capacity is derived as follows:

1ta,ta,3

ta,2ta,1a0,ta,

ADITNEWCAP*

NEWCAP*NEWCAP*+=ADIT
(191)

where,
ADITa,t = accumulated deferred income taxes in dollars

0,a = ADIT_Ca, constant term estimated by arc (Appendix F, Table 

0,a = B_ARCxx_yy)

1 = BNEWCAP_PRE2003, estimated coefficient on the change in 
gross plant in service in the pre-2003 period because of 
changes in tax policy in 2003 and 2004 (Appendix F, Table 
F3.5). It is zero otherwise.

2 = BNEWCAP_2003_2004, estimated coefficient on the change 
in gross plant in service for the years 2003/2004 because of 
changes in tax policy in 2003 and 2004 (Appendix F, Table 
F3.5). It is zero otherwise.
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3 = BNEWCAP_POST2004, estimated coefficient on the change 
in gross plant in service in the post-2004 period because of 
changes in tax policy in 2003 and 2004 (Appendix F, Table 
F3.5). It is zero otherwise.

NEWCAPa,t = change in gross plant in service for the combined existing and 
new capacity between years t and t-1 (in dollars)

a = arc
t = forecast year

Cost of capital.   The capital-related components of the revenue requirement at the arc level 
depend upon the size of the adjusted rate base and the cost of capital to the pipeline 
companies associated with that arc.  In turn, the company level costs of capital depend upon 
the rates of return on debt, preferred stock and common equity, and the amounts of debt and 
equity in the overall capitalization.  Cost of capital for a company is the weighted average 
after-tax rate of return (WAROR) which is a function of long-term debt, preferred stock, and 
common equity.  The rate of return variables for preferred stock, common equity, and debt 
are related to forecast macroeconomic variables.  For the combined existing and new 
capacity at the arc level, it is assumed that these rates will vary as a function of the yield on 
AA utility bonds (provided by the Macroeconomic Activity Module as a percent) in year t 
adjusted by a historical average deviation constant, as follows: 

PFERADJ_+100.0 / RMPUAANSMC_=PFER atta, (192)

CMERADJ_+100.0 / RMPUAANSMC_=CMER atta, (193)

LTDRADJ_+100.0 / RMPUAANSMC_=LTDR atta, (194)

where,
PFERa,t = rate of return for preferred stock

CMERa,t = common equity rate of return
LTDRa,t = long-term debt rate

MC_RMPUAANSt = AA utility bond index rate provided by the Macroeconomic 
Activity Module (MC_RMCORPPUAA, percentage)

ADJ_PFERa = historical average deviation constant (fraction) for rate of 
return for preferred stock (1994-2003, over 28 major gas 
pipeline companies) (D_PFER/100., Appendix E)

ADJ_CMERa = historical average deviation constant (fraction) for rate of 
return for common equity (1994-2003, over 28 major gas 
pipeline companies) (D_CMER/100., Appendix E)

ADJ_LTDRa = historical average deviation constant (fraction) for long term 
debt rate (1994-2003, over 28 major gas pipeline companies) 
(D_LTDR/100., Appendix E)

a = arc
t = forecast year

The weighted average cost of capital in the forecast year is computed as the sum of the 
capital-weighted rates of return for preferred stock, common equity, and debt, as follows:
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TOTCAP

)LTDS*LTDR(+)CMES*CMER(+)PFES*PFER(
=WAROR

ta,

ta,ta,ta,ta,ta,ta,

ta,
(195)

)LTDS+CMES+PFES(=TOTCAP ta,ta,ta,ta, (196)

where,
WARORa,t = weighted-average after-tax rate of return on capital (fraction)

PFERa,t = rate or return for preferred stock (fraction)
PFESa,t = value of preferred stock (dollars)

CMERa,t = common equity rate of return (fraction)
CMESa,t = value of common stock (dollars)
LTDRa,t = long-term debt rate (fraction)
LTDSa,t = value of long-term debt (dollars)

TOTCAPa,t = sum of the value of long-term debt, preferred stock, and 
common stock equity dollars)

a = arc
t = forecast year

The above equation can be written as a function of the rates of return and capital structure 
ratios as follows:

)GLTDSTR*LTDR(

+)GCMESTR*CMER(+)GPFESTR*PFER(=WAROR

ta,ta,

ta,ta,ta,ta,ta,
(197)

where,

TOTCAP / PFES=GPFESTR ta,ta,ta, (198)

TOTCAP / CMES=GCMESTR ta,ta,ta, (199)

TOTCAP / LTDS=GLTDSTR ta,ta,ta, (200)

and,
WARORa,t = weighted-average after-tax rate of return on capital (fraction)

PFERa,t = coupon rate for preferred stock (fraction)
CMERa,t = common equity rate of return (fraction)
LTDRa,t = long-term debt rate (fraction)

GPFESTRa = ratio of preferred stock to estimated capital for existing and 
new capacity (fraction) [referred to as capital structure for 
preferred stock]

GCMESTRa = ratio of common stock to estimated capital for existing and new 
capacity (fraction)[referred to as capital structure for common 
stock]

GLTDSTRa = ratio of long term debt to estimated capital for existing and new 
capacity (fraction)[referred to as capital structure for long term 
debt]

PFESa,t = value of preferred stock (dollars)
CMESa,t = value of common stock (dollars)
LTDSa,t = value of long-term debt (dollars)
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TOTCAPa,t = estimated capital equal to the sum of the value of preferred 
stock, common stock equity, and long-term debt (dollars)

a = arc
t = forecast year

In the financial database, the estimated capital for each interstate pipeline is by definition 
equal to its adjusted rate base.  Hence, the estimated capital (TOTCAPa,t) defined in  equation 
196 is equal to the adjusted rate base (APRBa,t) defined in equation 178:

APRB=TOTCAP ta,ta, (201)

where,
TOTCAPa,t = estimated capital in dollars

APRBa,t = adjusted rate base in dollars
a = arc
t = forecast year

Substituting the adjusted rate base variable APRBa,t for the estimated capital TOTCAPa,t in 
equations 198 to 200,  the values of preferred stock, common stock, and long term debt by 
arc can be derived as functions of the capital structure ratios and the adjusted rate base.
Capital structure is the percent of total capitalization (adjusted rate base) represented by each 
of the three capital components: preferred equity, common equity, and long-term debt.  The 
percentages of total capitalization due to common stock, preferred stock, and long-term debt 
are considered fixed throughout the forecast.  Assuming that the total capitalization fractions 
remain the same over the forecast horizon, the values of preferred stock, common stock, and 
long-term debt can be derived as follows:

APRB*GLTDSTR=LTDS

APRB*GCMESTR=CMES

APRB*GPFESTR=PFES

ta,ata,

ta,ata,

ta,ata,

(202)

where,
PFESa,t = value of preferred stock in nominal dollars

CMESa,t = value of common equity in nominal dollars
LTDSa,t = long-term debt in nominal dollars

GPFESTRa = ratio of preferred stock to adjusted rate base for existing and 
new capacity (fraction) [referred to as capital structure for 
preferred stock]

GCMESTRa = ratio of common stock to adjusted rate base for existing and 
new capacity (fraction)[referred to as capital structure for 
common stock]

GLTDSTRa = ratio of long term debt to adjusted rate base for existing and 
new capacity (fraction)[referred to as capital structure for long 
term debt]

APRBa,t = adjusted pipeline rate base (dollars)
a = arc
t = forecast year
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In the forecast year update phase, the capital structures (GPFESTRa, GCMESTRa, and 
GLTDSTRa) at the arc level in the above equations are held constant over the forecast period.  
They are defined below as the average adjusted rate base weighted capital structures over all 
pipelines associated with an arc and over the historical time period (1997-2006).

APRB

)APRB*GPFESTR(

=GPFESTR

tp,a,

p

6200

7199=t

tp,a,tp,a,

p

6200

7199=t

a (203)

APRB

)APRB*GCMESTR(

=GCMESTR

tp,a,

p

6200

7199=t

tp,a,tp,a,

p

6200

7199=t

a (204)

APRB

)APRB*GLTDSTR(

=GLTDSTR

tp,a,

p

6200

7199=t

tp,a,tp,a,

p

6200

7199=t

a (205)

where,
GPFESTRa = historical average capital structure for preferred stock for 

existing and new capacity (fraction), held constant over the 
forecast period 

GCMESTRa = historical average capital structure for common stock for 
existing and new capacity (fraction), held constant over the 
forecast period

GLTDSTRa = historical average capital structure for long term debt for 
existing and new capacity (fraction), held constant over the 
forecast period

GPFESTRa,p,t = capital structure for preferred stock  (fraction) by pipeline 
company in the historical years (1997-2006) (Appendix E,
D_PFES)

GCMESTRa,p,t = capital structure for common stock  (fraction) by pipeline 
company in the historical years (1997-2006) (Appendix E,
D_CMES)

GLTDSTRa,p,t = capital structure for long term debt (fraction) by pipeline 
company in the historical years (1997-2006) (Appendix 
E,D_LTDS)

APRBa,p,t = adjusted rate base (capitalization) by pipeline company in the 
historical years (1997-2006) (Appendix E, D_APRB)

p = pipeline company
a = arc
t = historical year
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The weighted average cost of capital in the forecast year in equation 197 is forecast as 
follows:

)GLTDSTR*LTDR(

+)GCMESTR*CMER(+)GPFESTR*PFER(=WAROR

ata,

ata,ata,ta,
(206)

where,
WARORa,t = weighted-average after-tax rate of return on capital (fraction)

PFERa,t = coupon rate for preferred stock (fraction), function of AA 
utility bond rate [equation 192]

CMERa,t = common equity rate of return (fraction), function of AA utility 
bond rate [equation 193]

LTDRa,t = long-term debt rate (fraction), function of AA utility bond rate 
[equation 194]

GPFESTRa = historical average capital structure for preferred stock for 
existing and new capacity (fraction), held constant over the 
forecast period

GCMESTRa = historical average capital structure for common stock for 
existing and new capacity (fraction), held constant over the 
forecast period

GLTDSTRa = historical average capital structure for long term debt for 
existing and new capacity (fraction), held constant over the 
forecast period

a = arc
t = forecast year

The weighted-average after-tax rate of return on capital (WARORa,t) is applied to the 
adjusted rate base (APRBa,t) to project the total return on rate base (after taxes), also known 
as the after-tax operating income, which is a major component of the revenue requirement.

Projection of Revenue Requirement Components

The approach to the projection of revenue requirement components is summarized in 
Table 6-5.  Given the rate base, rates of return, and capitalization structure projections 
discussed above, the revenue requirement components are relatively straightforward to 
project.  The capital-related components include total return on rate base (after taxes); 
Federal and State income taxes; deferred income taxes; other taxes; and depreciation,
depletion, and amortization costs.  Other components include total operating and 
maintenance expenses, and regulatory amortization, which is small and thus assumed to be 
negligible in the forecast period.  The total operating and maintenance expense variable 
includes expenses for transmission of gas for others; administrative and general expenses; 
and sales, customer accounts and other expenses.  The total cost of service (revenue 
requirement) at the arc level for a forecast year is determined as follows: 

TOM+TOTAX+DDA+TRRB=TCOS ta,ta,ta,ta,ta, (207)

where,
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Table 6-5.  Approach to Projection of Revenue Requirements

Projection Component Approach

1.  Capital-Related Costs

a. Total return on rate base Direct calculation from projected rate base and 
rates of return

b. Federal/State income taxes Accounting algorithms based on tax rates

c. Deferred income taxes Difference in the accumulated deferred income 
taxes between years t and t-1

2. Depreciation, Depletion, and Amortization Estimated equation and accounting algorithm

3. Total Operating and Maintenance Expenses Estimated equation

4. Other Taxes Previous year’s other taxes adjusted to inflation 
rate and growth in capacity

TCOSa,t = total cost-of-service or revenue requirement for existing and 
new capacity (dollars)

TRRBa,t = total return on rate base for existing and new capacity after 
taxes (dollars)

DDAa,t = depreciation, depletion, and amortization for existing and new 
capacity (dollars)

TOTAXa,t = total Federal and State income tax liability for existing and new 
capacity (dollars)

TOMa,t = total operating and maintenance expenses for existing and new 
capacity (dollars)

a = arc
t = forecast year

The total return on rate base for existing and new capacity is computed from the projected 
weighted cost of capital and estimated rate base, as follows:

APRB*WAROR=TRRB ta,ta,ta, (208)

where,
TRRBa,t = total return on rate base (after taxes) for existing and new 

capacity in dollars
WARORa,t = weighted-average after-tax rate of return on capital for existing 

and new capacity (fraction)
APRBa,t = adjusted pipeline rate base for existing and new capacity in 

dollars
a = arc
t = forecast year 

The return on rate base for existing and new capacity on an arc can be broken out into the 
three components:
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APRB*PFER*GPFESTR=PFEN ta,ta,ata, (209)

APRB*CMER*GCMESTR=CMEN ta,ta,ata, (210)

APRB*LTDR*GLTDSTR=LTDN ta,ta,ata, (211)

where,
PFENa,t = total return on preferred stock for existing and new capacity 

(dollars)
GPFESTRa = historical average capital structure for preferred stock for 

existing and new capacity (fraction), held constant over the 
forecast period

PFERa,t = coupon rate for preferred stock for existing and new capacity 
(fraction)

APRBa,t = adjusted rate base for existing and new capacity (dollars)
CMENa,t = total return on common stock equity for existing and new 

capacity (dollars)
GCMESTRa = historical average capital structure for common stock for

existing and new capacity (fraction), held constant over the 
forecast period

CMERa,t = common equity rate of return for existing and new capacity 
(fraction)

LTDNa,t = total return on long-term debt for existing and new capacity 
(dollars)

GLTDSTRa = historical average capital structure ratio for long term debt for 
existing and new capacity (fraction), held constant over the 
forecast period

LTDRa,t = long-term debt rate for existing and new capacity (fraction)
a = arc
t = forecast year 

Next, annual depreciation, depletion, and amortization DDAa,t for a network arc in year t is 
calculated as the sum of depreciation, depletion, and amortization for the combined existing 
and new capacity associated with the arc.  DDAa,t is defined earlier in equation 187.

Next, total taxes consist of Federal income taxes, State income taxes, deferred income taxes, 
and other taxes.  Federal income taxes and State income taxes are calculated using average 
tax rates.  The equation for total taxes is as follows:

OTTAX+DIT+FSIT=TOTAX ta,ta,ta,ta, (212)

SIT+FIT=FSIT ta,ta,ta, (213)

where,
TOTAXa,t = total Federal and State income tax liability for existing and new 

capacity (dollars)
FSITa,t = Federal and State income tax for existing and new capacity 

(dollars)
FITa,t = Federal income tax for existing and new capacity (dollars)



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module

127 

SITa,t = State income tax for existing and new capacity (dollars)
DITa,t = deferred income taxes for existing and new capacity (dollars)

OTTAXa,t = all other Federal, State, or local taxes for existing and new 
capacity (dollars)

a = arc
t = forecast year

Federal income taxes are derived from returns to common stock equity and preferred stock 
(after-tax profit) and the Federal tax rate.  The after-tax profit is determined as follows:

)GCMESTR*CMER+GPFESTR*PFER(*APRB=ATP ata,ata,ta,ta, (214)

where,
ATPa,t = after-tax profit for existing and new capacity (dollars)

APRBa,t = adjusted pipeline rate base for existing and new capacity 
(dollars)

PFERa,t = coupon rate for preferred stock for existing and new capacity 
(fraction)

GPFESTRa = historical average capital structure for preferred stock for 
existing and new capacity (fraction), held constant over the 
forecast period

CMERa,t = common equity rate of return for existing and new capacity 
(fraction)

GCMESTRa = historical average capital structure for common stock for 
existing and new capacity (fraction), held constant over the 
forecast period

a = arc
t = forecast year

and the Federal income taxes are:

FRATE)-1. / ATP(FRATE*=FIT ta,ta, (215)

where,
FITa,t = Federal income tax for existing and new capacity (dollars)

FRATE = Federal income tax rate (fraction, Appendix E)
ATPa,t = after-tax profit for existing and new capacity (dollars)

a = arc
t = forecast year

State income taxes are computed by multiplying the sum of taxable profit and the associated 
Federal income tax by a weighted-average State tax rate associated with each pipeline 
company.  The weighted-average State tax rate is based on peak service volumes in each 
State served by the pipeline company.  State income taxes are computed as follows:

)ATP+FIT(*SRATE=SIT ta,ta,ta, (216)

where,
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SITa,t = State income tax for existing and new capacity (dollars)
SRATE = average State income tax rate (fraction, Appendix E)

FITa,t = Federal income tax for existing and new capacity (dollars)
ATPa,t = after-tax profits for existing and new capacity (dollars)

a = arc
t = forecast year

Deferred income taxes for existing and new capacity at the arc level are the differences in the 
accumulated deferred income taxes between year t and year t-1.

ADIT-ADIT=DIT 1t-a,ta,ta, (217)

where,
DITa,t = deferred income taxes for existing and new capacity (dollars)

ADITa,t = accumulated deferred income taxes for existing and new 
capacity (dollars)

a = arc
t = forecast year

Other taxes consist of a combination of ad valorem taxes (which grow with company 
revenue), property taxes (which grow in proportion to gross plant), and all other taxes 
(assumed constant in real terms).  Other taxes in year t are determined as the previous year’s 
other taxes adjusted for inflation and capacity expansion.

)PCWGDP_MC / PCWGDP_MC(*EXPFAC*OTTAX=OTTAX 1t-tta,1t-a,ta, (218)

where,
OTTAXa,t = all other taxes assessed by Federal, State, or local governments 

except income taxes for existing and new capacity (dollars)
EXPFACa,t = capacity expansion factor (see below)

MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic
Activity Module)

a = arc
t = forecast year

The capacity expansion factor is expressed as follows:

PTCURPCAP / PTCURPCAP=EXPFAC 1t-a,ta,ta, (219)

where,
EXPFACa,t = capacity expansion factor (growth in capacity)

PTCURPCAPa,t = current pipeline capacity (Bcf) for existing and new capacity
a = arc
t = forecast year

Last, the total operating and maintenance costs for existing and new capacity by arc 
(R_TOMa,t) are determined using a log-linear form, given the economies of scale inherent in 
gas transmission.  The estimated equation used for R_TOM (Appendix F, Table F3) is 
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determined as a function of gross plant in service, GPISa, a level of accumulated depreciation 
relative to gross plant in service, DEPSHRa, and a time trend, TECHYEAR, that proxies the 
state of technology, as defined below:

e*TOM_K=TOMR_
))9G487(G*654G3G2G-(1*(

ta,
a0, GGGG

(220)

where,
R_TOMa,t = total operating and maintenance cost for existing and new 

capacity (2005 real dollars)
TOM_K = correction factor estimated in stage 2 of the regression equation 

estimation process (Appendix F, Table F3)

0,a = TOM_C, constant term estimated by arc (Appendix F, Table 

0,a = B_ARCxx_yy)
G2 = 1 * log(GPISa,t-1)
G3 = 2 * DEPSHRa,t-1

G4 = 3 * 2006.0
G5 = 4 * (TECHYEAR-2006.0)
G6 = * log(R_TOMa,t-1)
G7 = 1 * log(GPISa,t-2)
G8 = 2 * DEPSHRa,t-2

G9 = 4 * (TECHYEAR - 1.0- 2006.0)
log = natural logarithm operator

= estimated autocorrelation coefficient (Appendix F, Table F3.6 -
- TOM_RHO)

1 = TOM_GPIS1, estimated coefficient on the change in gross 
plant in service (Appendix F, Table F3.6)

2 = TOM_DEPSHR, estimated coefficient for the accumulated 
depreciation of the plant relative to the GPIS (Appendix F, 
Table F3.6)

3 = TOM_BYEAR, estimated coefficient for the time trend 
variable TECHYEAR (Appendix F, Table F3.6)

4 = TOM_BYEAR_EIA = TOM_BYEAR, estimated future rate of 
decline in R_TOM due to technology improvements and 
efficiency gains.  EIA assumes that this coefficient is the same 
as the coefficient for the time trend variable TECHYEAR 
(Appendix F, Table F3.6)

DEPSHRa,t = level of the accumulated depreciation of the plant relative to 
the gross plant in service for existing and new capacity at the 
beginning of year t.  This variable is a proxy for the age of the 
capital stock.

GPISa,t = capital cost of plant in service for existing and new capacity in 
dollars (not deflated)

TECHYEAR = MODYEAR (time trend in 4 digit Julian units, the minimum 
value of this variable in the sample being 1997, otherwise 
TECHYEAR=0 if less than 1997)

a = arc
t = forecast year
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For consistency the total operating and maintenance costs are converted to nominal dollars:

PCWGDP_MC

PCWGDP_MC
*TOM_R=TOM

2000

t
ta,ta, (221)

where,
TOMa,t = total operating and maintenance costs for existing and new 

capacity (nominal dollars)
R_TOMa,t = total operating and maintenance costs for existing and new 

capacity (2005 real dollars)
MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 

Activity Module)
a = arc
t = forecast year

Once all four components (TRRBa,t, DDAa,t, TOTAXa,t, TOMa,t) of the cost-of-service 
TCOSTa,t of equation 207 are computed by arc in year t, each of them  will be disaggregated 
into fixed and variable costs which in turn will be disaggregated further into reservation and 
usage costs using the allocation factors for a straight fixed variable (SFV) rate design  
summarized in Table 6-6.89 Note that the return on rate base (TRRBa,t) has three 
components (PFENa,t, CMENa,t, and LTDNa,t [equations 209, 210, and 211]). 

Disaggregation of Cost-of-Service Components into Fixed and Variable Costs

Let Itemi,a,t be a cost-of-service component (i=cost component index, a=arc, and t=forecast 
year).  Using the first group of rate design allocation factors  Table 6-6), all the 
components of cost-of-service computed in the above section can be split into  fixed and 
variable costs, and then summed over the cost categories to determine fixed and variable 
costs-of-service as follows:

)Item*(=FC ta,i,i

i

ta, (222)

]Item*)-[(1.0=VC ta,i,i

i

ta, (223)

VC+FC=TCOS ta,ta,ta, (224)

where,
TCOSa,t = total cost-of-service for existing and new capacity (dollars)

FCa,t = fixed cost for existing and new capacity (dollars)
VCa,t = variable cost for existing and new capacity (dollars)

Itemi,a,t = cost-of-service component index at the arc level

i = first group of allocation factors (ratios) to disaggregate the 
cost-of-service components into fixed and variable costs

89 The allocation factors of SFV rate design are given in percent in this table for illustration purposes.  They are converted 
into ratios immediately after they are read in from the input file by dividing by 100.
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Table 6-6.  Percentage Allocation Factors for a Straight Fixed Variable (SFV) Rate 

Design

Cost-of-service Items

(percentage)

[Itemi,a,t, i=cost component 
index, a=arc, t=year]

Break up cost-of-

service items into 

fixed and variable 

costs

Break up fixed cost 

items into reservation 

and usage costs

Break up variable 

cost items into 

reservation and usage 

costs

Itemi,a,t FCi,a,t VCi,a,t RFCi,a,t UFCi,a,t RVCi,a,t UVCi,a,t

Cost Allocation Factors i 100 - i i 100 - i i 100- i

After-tax Operating Income

Return on Preferred Stocks 100 0 100 0 0 100

Return on Common Stocks 100 0 100 0 0 100

Return on Long-Term Debt 100 0 100 0 0 100

Normal Operating Expenses

Depreciation 100 0 100 0 0 100

Income Taxes 100 0 100 0 0 100

Deferred Income Taxes 100 0 100 0 0 100

Other Taxes 100 0 100 0 0 100

Total O&M 60 40 100 0 0 100

i = first group of allocation factors (ratios) to disaggregate the 
cost-of-service components into fixed and variable costs

i = subscript to designate a cost-of-service component (i=1 for 
PFEN, i=2 for CMEN, i=3 for LTDN, i=4 for DDA, i=5 for 
FSIT, i=6 for DIT, i=7 for OTTAX, and i=8 for TOM)

a = arc
t = forecast year

Disaggregation of Fixed and Variable Costs into Reservation and Usage Costs

Each type of cost-of-service component (fixed or variable) in the above equations can be 
further disaggregated into reservation and usage costs using the second and third groups of 
rate design allocat Table 6-6), as follows:

)Item**(=RFC ta,i,ii

i

ta, (225)

]Item**)-[(1.0=UFC ta,i,ii

i

ta, (226)

]Item*)-(1.0*[=RVC ta,i,ii

i

ta, (227)
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]Item*)-(1.0*)-[(1.0=UVC ta,i,ii

i

ta, (228)

UVC+RVC+UFC+RFC=TCOS ta,ta,ta,ta,ta, (229)

where,
TCOSa,t = total cost-of-service for existing and new capacity (dollars)

RFCa,t = fixed reservation cost for existing and new capacity (dollars)
UFCa,t = fixed usage cost for existing and new capacity (dollars)
RVCa,t = variable reservation cost for existing and new capacity (dollars)
UVCa,t = variable usage cost for existing and new capacity (dollars)

Itemi,a,t = cost-of-service component index at the arc level
= first group of allocation factors to disaggregate cost-of-service 

components into fixed and variable costs
= second group of allocation factors to disaggregate fixed costs 

into reservation and usage costs
= third group of allocation factors to disaggregate variable costs 

into reservation and usage costs
i = subscript to designate a cost-of-service component  (i=1 for 

PFEN, i=2 for CMEN, i=3 for LTDN, i=4 for DDA, i=5 for 
FSIT, i=6 for DIT, i=7 for OTTAX, and i=8 for TOM)

a = arc
t = forecast year

The summation of fixed and variable reservation costs (RFC and RVC) yields the total 
reservation cost (RCOST).  This can be disaggregated further into peak and off-peak 
reservation costs, which are used to develop variable tariffs for peak and off-peak time 
periods.  The summation of fixed and variable usage costs (UFC and UVC), which yields the 
total usage cost (UCOST), is used to compute the annual average fixed usage fees.  Both 
types of rates are developed in the next section.  The equations for the reservation and usage 
costs can be expressed as follows:

)RVC+RFC(=RCOST ta,ta,ta, (230)

)UVC+UFC(=UCOST ta,ta,ta, (231)

where,
RCOSTa,t = reservation cost for existing and new capacity (dollars)
UCOSTa,t = annual usage cost for existing and new capacity (dollars)

RFCa,t = fixed reservation cost for existing and new capacity (dollars)
UFCa,t = fixed usage cost for existing and new capacity (dollars)
RVCa,t = variable reservation cost for existing and new capacity (dollars)
UVCa,t = variable usage cost for existing and new capacity (dollars)

a = arc
t = forecast period

As Table 6-6 indicates, all the fixed costs are included in the reservation costs and all the 
variable costs are included in the usage costs.
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Computation of Rates for Forecast Years

The reservation and usage costs-of-service RCOST and UCOST determined above are used 
separately to develop two types of rates at the arc level: variable tariffs and annual fixed 
usage fees.  The determination of both rates is described below.

Variable Tariff Curves

Variable tariffs are proportional to reservation charges and are broken up into peak and off-
peak time periods.  Variable tariffs are derived directly from variable tariff curves which are
developed based on reservation costs, utilization rates, annual flows, and other curve 
parameters.

In the PTS code, these variable curves are defined by a FUNCTION (NGPIPE_VARTAR) 
which is called by the ITS to compute the variable tariffs for peak and off-peak by arc and by 
forecast year.  In this pipeline function, the tariff curves are segmented such that tariffs 
associated with current capacity and capacity expansion are represented by separate but 
similar equations.  A uniform functional form is used to define these tariff curves for both the 
current capacity and capacity expansion segments of the tariff curves.  It is defined as a 
function of a base point [price and quantity (PNOD, QNOD)] using different process-specific 

parameters, peak or off-peak flow, and a price elasticity.  This functional form is presented 
below:

current capacity segment:

)QNOD / Q(*PNOD=VARTARNGPIPE_
ALPHA_PIPE

ta,ta,ta,ta, (232)

capacity expansion segment:

)QNOD / Q(*PNOD=VARTARNGPIPE_
_PIPE2ALPHA

ta,ta,ta,ta, (233)

such that,

for peak transmission tariffs:

)PCWGDP_MC*QNOD(

PKSHR_YR*RCOST
=PNOD

tta,

ta,

ta, (234)

NETFLOWPT=QNOD ta,ta, (235)

for off-peak transmission tariffs:
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)PCWGDP_MC*QNOD(

PKSHR_YR)-(1.0*RCOST
=PNOD

tta,

ta,

ta, (236)

NETFLOWPT=QNOD ta,ta, (237)

where,
NGPIPE_VARTARa,t = function to define pipeline tariffs (87$/Mcf)

PNODa,t = base point, price (87$/Mcf)
QNODa,t = base point, quantity (Bcf)

Qa,t = flow along pipeline arc (Bcf)
ALPHA_PIPE = price elasticity for pipeline tariff curve for current capacity 

(Appendix E)
ALPHA2_PIPE = price elasticity for pipeline tariff curve for capacity expansion 

segment (Appendix E)
RCOSTa,t = reservation cost-of-service (million dollars)

PTNETFLOWa,t = natural gas network flow (throughput, Bcf)
PKSHR_YR = portion of the year represented by the peak season (fraction)

MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 
Activity Module)

a = arc
t = forecast year

Annual Fixed Usage Fees

The annual fixed usage fees (volumetric charges) are derived directly from the usage costs, 
peak and off-peak utilization rates, and annual arc capacity.  These fees are computed as the 
average fees over each forecast year, as follows:

]PCWGDP_MC*)PTCURPCAP*PTOPUTZ*PKSHR_YR)-(1.0

+PTCURPCAP*PTPKUTZ*PKSHR_YR[( / UCOST=FIXTAR

tta,ta,

ta,ta,ta,ta,

(238)

where,
FIXTARa,t = annual fixed usage fees for existing and new capacity 

(87$/Mcf)
UCOSTa,t = annual usage cost for existing and new capacity (million 

dollars)
PKSHR_YR = portion of the year represented by the peak season (fraction)
PTPKUTZa,t = peak pipeline utilization (fraction)

PTCURPCAPa,t = current pipeline capacity (Bcf)
PTOPUTZa,t = off-peak pipeline utilization (fraction)

MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 
Activity Module)

a = arc
t = forecast year
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As can be seen from the allocation factors in Table 6-6, usage costs (UCOST) are less than 
10 percent of reservation costs (RCOST).  Therefore, annual fixed usage fees which are 
proportional to usage costs are expected to be less than 10 percent of the variable tariffs.  In 
general, these fixed fees are within the range of 5 percent of the variable tariffs which are 
charged to firm customers.

Canadian Fixed and Variable Tariffs

Fixed and variables tariffs along Canadian import arcs are defined using input data.  Fixed 
tariffs are obtained directly from the data (Appendix E, ARC_FIXTARn,a,t), while variables 
tariffs are calculated in the FUNCTION subroutine (NGPIPE_VARTAR) and are based on 
pipeline utilization and a maximum expected tariff, CNMAXTAR.  If the pipeline utilization 
along a Canadian arc for any time period (peak or off-peak)  is less than 50 percent, then the 
pipeline tariff is set to a low level (70 percent of CNMAXTAR).  If the Canadian pipeline 
utilization is between 50 and 90 percent, then the pipeline tariff is set to a level between 70 
and 80 percent of CNMAXTAR.  The sliding scale is determined using the corresponding 
utilization factor, as follows:

0.25]*)CANUTIL-(0.9*[CNMAXTAR

-2.0]*0.9)-(1.0*[CNMAXTAR-CNMAXTAR=VARTARNGPIPE_

ta,

ta,
(239)

If the Canadian pipeline utilization is greater than 90 percent, then the pipeline tariff is set to 
between 80 and 100 percent of CNMAXTAR.  This is accomplished again using Canadian 
pipeline utilization, as follows:

2.0]*)CANUTIL-(1.0*[CNMAXTAR

-CNMAXTAR=VARTARNGPIPE_

ta,

ta,
(240)

where,

QNOD

Q
=CANUTIL

ta,

ta,

ta, (241)

for peak period:

PTPKUTZ*PKSHR_YR*PTCURPCAP=QNOD ta,ta,ta, (242)

for off-peak period:

PTOPUTZ*PKSHR_YR)-(1.0*PTCURPCAP=QNOD ta,ta,ta, (243)

and,

NGPIPE_VARTARa,t = function to define pipeline tariffs (87$/Mcf)
CNMAXTAR = maximum effective tariff (87$/Mcf, ARC_VARTAR, 

Appendix E)
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CANUTILa,t = pipeline utilization (fraction)
QNODa,t = base point, quantity (Bcf)

Qa,t = flow along pipeline arc (Bcf)
PKSHR_YR = portion of the year represented by the peak season (fraction)
PTPKUTZa,t = peak pipeline utilization (fraction)

PTCURPCAPa,t = current pipeline capacity (Bcf)
PTOPUTZa,t = off-peak pipeline utilization (fraction)

a = arc
t = forecast year

For the eastern and western Canadian storage regions, the “variable” tariff is set to zero and 
only the assumed “fixed” tariff (Appendix E, ARC_FIXTAR) is applied.

Storage Tariff Routine Methodology

Background

This section describes the methodology used to assign a storage tariff for each of the 12 
NGTDM regions.  All variables and equations presented below are used for the forecast time 
period (1999-2030).  If the time period t is less than 1999, the associated variables are set to 
the initial values read in from the input file (Foster’s storage financial database90 by region 
and year, 1990-1998).

This section starts with the presentation of the natural gas storage cost-of-service equation by 
region. The equation sums four components to be forecast: after-tax91 total return on rate 
base (operating income); total taxes; depreciation, depletion, and amortization; and total 
operating and maintenance expenses.  Once these four components are computed, the 
regional storage cost of service is projected and, with the associated effective storage 
capacity provided by the ITS, a storage tariff curve can be established (as described at the 
end of this section).

Cost-of-Service by Storage Region

The cost-of-service (or revenue requirement) for existing and new storage capacity in an 
NGTDM region can be written as follows:

STTOM+STTOTAX+STDDA+STBTOI=STCOS tr,tr,tr,tr,tr, (244)

where,
STCOSr,t = total cost-of-service or revenue requirement for existing and 

new capacity (dollars)

90 Natural Gas Storage Financial Data, compiled by Foster Associates, Inc., Bethesda, Maryland for EIA under purchase 
order #01-99EI36663 in December of 1999.  This data set includes financial information on 33 major storage companies.  
The primary source of the data is FERC Form 2 (or Form 2A for the smaller pipelines).  These data can be purchased from 
Foster Associates.

91‘After-tax’ in this section refers to ‘after taxes have been taken out.’
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STBTOIr,t = total return on rate base for existing and new capacity (after-tax 
operating income) (dollars)

STDDAr,t = depreciation, depletion, and amortization for existing and new 
capacity (dollars)

STTOTAXr,t = total Federal and State income tax liability for existing and new 
capacity (dollars)

STTOMr,t = total operating and maintenance expenses for existing and new 
capacity (dollars)

r = NGTDM region
t = forecast year

The storage cost-of-service by region is first computed in nominal dollars and subsequently 
converted to 1987$ for use in the computation of a base for regional storage tariff, PNOD 
(87$/Mcf).  PNOD is used in the development of a regional storage tariff curve.  An 
approach is developed to project the storage cost-of-service in nominal dollars by NGTDM 
region in year t and is provided in Table 6-7.

Table 6-7.  Approach to Projection of Storage Cost-of-Service

Projection Component Approach

1.  Capital-Related Costs

a. Total return in rate base Direct calculation from projected rate base and 
rates of return

b. Federal/State income taxes Accounting algorithms based on tax rates

c. Deferred income taxes Difference in the accumulated deferred income 
taxes between years t and t-1

2.  Depreciation, Depletion, and Amortization Estimated equation and accounting algorithm

3. Total Operating and Maintenance Expenses Estimated equation 

Computation of total return on rate base (after-tax operating income), 
STBTOIr,t

The total return on rate base for existing and new capacity is computed from the projected 
weighted cost of capital and estimated rate base, as follows:

STAPRB*STWAROR=STBTOI tr,tr,tr, (245)

where,
STBTOIr,t = total return on rate base (after-tax operating income) for 

existing and new capacity in dollars
STWARORr,t = weighted-average after-tax rate of return on capital for existing 

and new capacity (fraction)
STAPRBr,t = adjusted storage rate base for existing and new capacity in 

dollars
r = NGTDM region
t = forecast year

The return on rate base for existing and new storage capacity in an NGTDM region can be 
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broken out into three components as shown below.

STAPRB*STPFER*STGPFESTR=STPFEN tr,tr,rtr, (246)

STAPRB*STCMER*STGCMESTR=STCMEN tr,tr,rtr, (247)

STAPRB*STLTDR*STGLTDSTR=STLTDN tr,tr,rtr, (248)

where,
STPFENr,t = total return on preferred stock for existing and new capacity 

(dollars)
STPFERr,t = coupon rate for preferred stock for existing and new capacity 

(fraction)
STGPFESTRr = historical average capital structure for preferred stock for 

existing and new capacity (fraction), held constant over the 
forecast period

STAPRBr,t = adjusted rate base for existing and new capacity (dollars)
STCMENr,t = total return on common stock equity for existing and new 

capacity (dollars)
STGCMESTRr = historical average capital structure for common stock for 

existing and new capacity (fraction), held constant over the 
forecast period

STCMERr,t = common equity rate of return for existing and new capacity 
(fraction)

STLTDNr,t = total return on long-term debt for existing and new capacity 
(dollars)

STGLTDSTRr = historical average capital structure ratio for long term debt for 
existing and new capacity (fraction), held constant over the 
forecast period

STLTDRr,t = long-term debt rate for existing and new capacity (fraction)
r = NGTDM region
t = forecast year 

Note that the total return on rate base is the sum of the above equations and can be expressed 
as:

)STLTDN+STCMEN+STPFEN(=STBTOI tr,tr,tr,tr, (249)

It can be seen from the above equations that the weighted average rate of return on capital for 
existing and new storage capacity, STWARORr,t, can be determined as follows:

STGLTDSTR*STLTDR

+STGCMESTR*STCMER+STGPFESTR*STPFER=STWAROR

rtr,

rtr,rtr,tr,

(250)

The historical average capital structure ratios STGPFESTRr, STGCMESTRr, and 
STGLTDSTRr in the above equation are computed as follows:
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STAPRB

STPFES

=STGPFESTR

tr,

1998

1990=t

tr,

1998

1990=t
r (251)

STAPRB

STCMES

=STGCMESTR

tr,

1998

1990=t

tr,

1998

1990=t
r (252)

STAPRB

STLTDS

=STGLTDSTR

tr,

1998

1990=t

tr,

1998

1990=t
r (253)

where,
STGPFESTRr = historical average capital structure for preferred stock for 

existing and new capacity (fraction), held constant over the 
forecast period

STGCMESTRr = historical average capital structure for common stock for 
existing and new capacity (fraction), held constant over the 
forecast period

STGLTDSTRr = historical average capital structure ratio for long term debt for 
existing and new capacity (fraction), held constant over the 
forecast period

STPFESr,t = value of preferred stock for existing capacity (dollars) [read in 
as D_PFES]

STCMESr,t = value of common stock equity for existing capacity (dollars) 
[read in as D_CMES]

STLTDSr,t = value of long-term debt for existing capacity (dollars) [read in 
as D_LTDS]

STAPRBr,t = adjusted rate base for existing capacity (dollars) [read in as 
D_APRB]

r = NGTDM region
t = forecast year

In the STWAROR equation, the rate of return variables for preferred stock, common equity, 
and debt (STPFERr,t, STCMERr,t, and STLTDRr,t) are related to forecast macroeconomic 
variables.  These rates of return can be determined as a function of nominal AA utility bond 
index rate (provided by the Macroeconomic Module) and a regional historical average 
constant deviation as follows:

STPFERADJ_+100.0 / RMPUAANSMC_=STPFER rttr, (254)
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STCMERADJ_+100.0 / RMPUAANSMC_=STCMER rttr, (255)

STLTDRADJ_+100.0 / RMPUAANSMC_=STLTDR rttr, (256)

where,
STPFERr,t = rate of return for preferred stock

STCMERr,t = common equity rate of return
STLTDRr,t = long-term debt rate

MC_RMPUAANSt = AA utility bond index rate provided by the Macroeconomic 
Activity Module (MC_RMCORPUAA, percentage)

ADJ_STPFERr = historical weighted average deviation constant (fraction) for 
preferred stock rate of return  (1990-1998)

ADJ_STCMERr = historical weighted average deviation constant (fraction) for 
common equity rate of return  (1990-1998)

ADJ_STLTDRr = historical weighted average deviation constant (fraction) for 
long term debt rate (1990-1998)

r = NGTDM region
t = forecast year

The historical weighted average deviation constants by NGTDM region are computed as 
follows:

STGPIS

STGPIS*100.) / RMPUAANSMC_-
STLTDS

STLTDN
(

=STLTDRADJ_

tr,

1998

1990=t

tr,t

tr,

tr,
1998

1990=t

r (257)

STGPIS

STGPIS*100.) / RMPUAANSMC_-
STPFES

STPFEN
(

=STPFERADJ_

tr,

1998

1990=t

tr,t

tr,

tr,
1998

1990=t

r (258)

STGPIS

STGPIS*100.) / RMPUAANSMC_-
STCMES

STCMEN
(

=STCMERADJ_

tr,

1998

1990=t

tr,t

tr,

tr,
1998

1990=t

r (259)

where,
ADJ_STLTDRr = historical weighted average deviation constant (fraction) for 

long term debt rate 
ADJ_STCMERr = historical weighted average deviation constant (fraction) for 

common equity rate of return 
ADJ_STPFERr = historical weighted average deviation constant (fraction) for 

preferred stock rate of return 
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STPFENr,t = total return on preferred stock for existing capacity (dollars) 
[read in as D_PFEN]

STCMENr,t = total return on common stock equity for existing capacity 
(dollars) [read in as D_CMEN]

STLTDNr,t = total return on long-term debt for existing capacity (dollars) 
[read in as D_LTDN]

STPFESr,t = value of preferred stock for existing capacity (dollars) [read in 
as D_PFES]

STCMESr = value of common stock equity for existing capacity (dollars) 
[read in as D_CMES]

STLTDSr = value of long-term debt for existing capacity (dollars) [read in 
as D_LTDS]

MC_RMPUAANSt= AA utility bond index rate provided by the Macroeconomic 
Activity Module (MC_RMCORPPUAA, percentage)

STGPISr,t = original capital cost of plant in service (dollars) [read in as 
D_GPIS]

r = NGTDM region
t = forecast year

Computation of adjusted rate base, STAPRBr,t
92

The adjusted rate base for existing and new storage facilities in an NGTDM region has three 
components and can be written as follows:

STADIT-STCWC+STNPIS=STAPRB tr,tr,tr,tr, (260)

where,

STAPRBr,t = adjusted storage rate base for existing and new capacity 
(dollars) 

STNPISr,t = net plant in service for existing and new capacity (dollars) 
STCWCr,t = total cash working capital for existing and new capacity 

(dollars) 
STADITr,t = accumulated deferred income taxes for existing and new 

capacity (dollars)
r = NGTDM region
t = forecast year

The net plant in service is the level of gross plant in service minus the accumulated 
depreciation, depletion, and amortization.  It is given by the following equation: 

STADDA-STGPIS=STNPIS 1t-r,tr,tr, (261)

92In this section, any variable ending with “_E” will signify that the variable is for the existing storage capacity as of the 
end of 1998, and any variable ending with “_N” will mean that the variable is for the new storage capacity added from 1999 
to 2025.
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where,
STNPISr,t = net plant in service for existing and new capacity (dollars) 
STGPISr,t = gross plant in service for existing and new capacity (dollars) 

STADDAr,t = accumulated depreciation, depletion, and amortization for 
existing and new capacity (dollars)

r = NGTDM region
t = forecast year

The gross and net plant-in-service variables can be written as the sum of their respective 
existing and new gross and net plants in service as follows:

N_STGPIS+E_STGPIS=STGPIS tr,tr,tr, (262)

N_STNPIS+E_STNPIS=STNPIS tr,tr,tr, (263)

where,
STGPISr,t = gross plant in service for existing and new capacity (dollars) 
STNPISr,t = net plant in service for existing and new capacity (dollars) 

STGPIS_Er,t = gross plant in service for existing capacity (dollars) 
STGPIS_Nr,t = gross plant in service for new capacity (dollars) 
STNPIS_Er,t = net plant in service for existing capacity (dollars) 
STNPIS_Nr,t = net plant in service for new capacity (dollars) 

r = NGTDM region
t = forecast year

For the same reason as above, the accumulated depreciation, depletion, and amortization for 
t-1 can be split into its existing and new accumulated depreciation:

N_STADDA+E_STADDA=STADDA 1t-r,1t-r,1t-r, (264)

where,
STADDAr,t = accumulated depreciation, depletion, and amortization for 

existing and new capacity (dollars) 
STADDA_Er,t = accumulated depreciation, depletion, and amortization for 

existing capacity (dollars) 
STADDA_Nr,t = accumulated depreciation, depletion, and amortization for new 

capacity (dollars) 
r = NGTDM region
t = forecast year

The accumulated depreciation for the current year t is expressed as last year’s accumulated 
depreciation plus this year’s depreciation.  For the separate existing and new storage 
capacity, their accumulated depreciation, depletion, and amortization can be expressed 
separately as follows:

ESTDDA_+ESTADDA_=ESTADDA_ tr,1t-r,tr, (265)

NSTDDA_+NSTADDA_=NSTADDA_ tr,1t-r,tr, (266)
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where,
STADDA_Er,t = accumulated depreciation, depletion, and amortization for 

existing capacity (dollars) 
STADDA_Nr,t = accumulated depreciation, depletion, and amortization for new 

capacity (dollars) 
STDDA_Er,t = depreciation, depletion, and amortization for existing capacity 

(dollars) 
STDDA_Nr,t = depreciation, depletion, and amortization for new capacity 

(dollars) 
r = NGTDM region
t = forecast year

Total accumulated depreciation, depletion, and amortization for the combined existing and 
new capacity by storage region in year t is determined as the sum of previous year’s 
accumulated depreciation, depletion, and amortization and current year’s depreciation, 
depletion, and amortization for that total capacity.

STDDA+STADDA=STADDA tr,1t-r,tr, (267)

where,
STADDAr,t = accumulated depreciation, depletion, and amortization for 

existing and new capacity in dollars
STDDAr,t = annual depreciation, depletion, and amortization for existing 

and new capacity in dollars
r = NGTDM region
t = forecast year

Computation of annual depreciation, depletion, and amortization, STDDAr,t

Annual depreciation, depletion, and amortization for a storage region in year t is the sum of 
depreciation, depletion, and amortization for the combined existing and new capacity 
associated with that region. 

N_STDDA+E_STDDA=STDDA tr,tr,tr, (268)

where,
STDDAr,t = annual depreciation, depletion, and amortization for existing 

and new capacity in dollars
STDDA_Er,t = depreciation, depletion, and amortization costs for existing 

capacity in dollars
STDDA_Nr,t = depreciation, depletion, and amortization costs for new 

capacity in dollars
r = NGTDM region
t = forecast year

A regression equation is used to determine the annual depreciation, depletion, and 
amortization for existing capacity associated with an NGTDM region, while an accounting 
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algorithm is used for new storage capacity. For existing capacity, this depreciation expense 
by NGTDM region is forecast as follows:

STNEWCAP*APSTDDA_NEWC+

ESTNPIS_*STDDA_NPIS+CREGSTDDA_=ESTDDA_

tr,

1t-r,rtr,
(269)

where,
STDDA_Er,t = annual depreciation, depletion, and amortization costs for 

existing capacity in dollars
STDDA_CREGr = constant term estimated by region (Appendix F, Table F3)

STDDA_NPIS = estimated coefficient for net plant in service for existing 
capacity (Appendix F, Table F3)

STDDA_NEWCAP = estimated coefficient for the change in gross plant in service for 
existing capacity (Appendix F, Table F3)

STNPIS_Er,t = net plant in service for existing capacity (dollars)
STNEWCAPr,t = change in gross plant in service for existing capacity (dollars)

r = NGTDM region
t = forecast year

The accounting algorithm used to define the annual depreciation, depletion, and amortization 
for new capacity assumes straight-line depreciation over a 30-year life, as follows:

30 / NSTGPIS_=NSTDDA_ tr,tr, (270)

where,
STDDA_Nr,t = annual depreciation, depletion, and amortization for new 

capacity in dollars
STGPIS_Nr,t = gross plant in service for new capacity in dollars

30 = 30 years of plant life
r = NGTDM region  
t = forecast year

In the above equation, the capital cost of new plant in service ( STGPIS_Nr,t) in year t is 
computed as the accumulated new capacity expansion expenditures from 1999 to year t and 
is determined by the following equation:

STNCAE=NSTGPIS_ sr,

t

1999=s

tr, (271)

where,
STGPIS_Nr,t = gross plant in service for new capacity expansion in dollars

STNCAEr,s = new capacity expansion expenditures occurring in year s after 
1998 (in dollars)

s = the year new expansion occurred
r = NGTDM region  
t = forecast year
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The new capacity expansion expenditures allowed in the rate base within a forecast year are 
derived for each NGTDM region from the amount of incremental capacity additions 
determined by the ITS:

1,000,000.*STCAPADD*STCCOST=STNCAE tr,tr,tr, (272)

where,
STNCAEr,t = total capital cost to expand capacity for an NGTDM region 

(dollars)
STCCOSTr,t = capital cost per unit of natural gas storage expansion (dollars 

per Mcf)
STCAPADDr,t = storage capacity additions as determined in the ITS (Bcf/yr)

r = NGTDM region
t = forecast year

The capital cost per unit of natural gas storage expansion in an NGTDM region 
(STCCOSTr,t) is computed as its 1998 unit capital cost times a function of a capacity 
expansion factor relative to the 1998 storage capacity.  This expansion factor represents a 
relative change in capacity since 1998.  Whenever the ITS forecasts storage capacity 
additions in year t in an NGTDM region, the increased capacity is computed for that region 
from 1998 and  the unit capital cost is computed.  Hence, the capital cost to expand capacity 
in an NGTDM region can be estimated from any amount of capacity additions in year t 
provided by the ITS and the associated unit capital cost.  This capital cost represents the 
investment cost for generic storage companies associated with that region.  The unit capital 
cost (STCCOSTr,t) is computed by the following equations:

STCSTFAC)+(1.0*e*CREG_STCCOST=STCCOST
)98STEXPFAC*BETAREG(

rtr,
rr

(273)

where,
STCCOSTr,t = capital cost per unit of natural gas storage expansion (dollars 

per Mcf)
STCCOST_CREGr = 1998 capital cost per unit of natural gas storage expansion 

(1998 dollars per Mcf)
BETAREGr = expansion factor parameter (set to STCCOST_BETAREG, 

Appendix E)
STEXPFAC98r = relative change in storage capacity since 1998

STCSTFAC = factor to set a particular storage region’s expansion cost, based 
on an average [Appendix E]

r = NGTDM region
t = forecast year

The relative change in storage capacity is computed as follows:

1.0-
PTCURPSTR

PTCURPSTR
=98STEXPFAC

r,1998

tr,

r (274)
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where,
PTCURPSTRr,t = current storage capacity (Bcf)

PTCURPSTRr,1998 = 1998 storage capacity (Bcf)
r = NGTDM region
t = forecast year

Computation of total cash working capital, STCWCr,t

The total cash working capital represents the level of working capital at the beginning of year 
t deflated using the chain weighted GDP price index with 1996 as a base year.  This cash 
working capital variable is expressed as a non-linear function of total gas storage capacity 
(base gas capacity plus working gas capacity) as follows:

DSTTCAP*STCWC_R

*DSTTCAP*e=STCWC_R
APSTCWC_TOTC*-

2t-r,1t-r,

APSTCWC_TOTC
1t-r,

))-(1*CREG(STCWC_
tr,

r

(275)

where,
R_STCWCr,t = total cash working capital at the beginning of year t for existing 

and new capacity (1996 real dollars)
STCWC_CREGr = constant term, estimated by region (Appendix F, Table F3)

= autocorrelation coefficient from estimation (Appendix F, Table 
F3 — STCWC_RHO)

DSTTCAPr,t = total gas storage capacity (Bcf)
STCWC_TOTCAP = estimated DSTTCAP coefficient (Appendix F, Table F3)

r = NGTDM region
t = forecast year

This total cash working capital in 1996 real dollars is converted to nominal dollars to be 
consistent with the convention used in this submodule.

PCWGDP_MC

PCWGDP_MC
*STCWC_R=STCWC

1996

t
tr,tr, (276)

where,
STCWCr,t = total cash working capital at the beginning of year t for existing 

and new capacity (nominal dollars)
R_STCWCr,t = total cash working capital at the beginning of year t for existing 

and new capacity (1996 real dollars)
MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 

Activity Module)
r = NGTDM region
t = forecast year

Computation of accumulated deferred income taxes, STADITr,t

The level of accumulated deferred income taxes for the combined existing and new capacity 
in year t in the adjusted rate base equation is a stock (not a flow) and depends on income tax 
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regulations in effect, differences in tax, and book depreciation.  It can be expressed as a 
linear function of its own lagged variable and the change in the level of gross plant in service 
between time t and t-1.  The forecasting equation can be written as follows:

)NEWCAPWCAP*(STADIT_NE

+)STADITIT*(STADIT_ADSTADIT_C+=STADIT

tr,

1t-r,tr,
(277)

where,
STADITr,t = accumulated deferred income taxes in dollars

STADIT_C = constant term from estimation (Appendix F, Table F3)
STADIT_ADIT = estimated coefficient for lagged accumulated deferred income 

taxes (Appendix F, Table F3)
STADIT_NEWCAP = estimated coefficient for change in gross plant in service 

(Appendix F, Table F3)
NEWCAPr,t = change in gross plant in service for the combined existing and 

new capacity between years t and t-1 (in dollars)
r = NGTDM region
t = forecast year

Computation of Total Taxes, STTOTAXr,t

Total taxes consist of Federal income taxes, State income taxes, deferred income taxes, and 
other taxes.  Federal income taxes and State income taxes are calculated using average tax 
rates.  The equation for total taxes is as follows:

STOTTAX+STDIT+STFSIT=STTOTAX tr,tr,tr,tr, (278)

STSIT+STFIT=STFSIT tr,tr,tr, (279)

where,
STTOTAXr,t = total Federal and State income tax liability for existing and new 

capacity (dollars)
STFSITr,t = Federal and State income tax for existing and new capacity 

(dollars)
STFITr,t = Federal income tax for existing and new capacity (dollars)
STSITr,t = State income tax for existing and new capacity (dollars)
STDITr,t = deferred income taxes for existing and new capacity (dollars)

STOTTAX = all other taxes assessed by Federal, State, or local governments 
for existing and new capacity (dollars)

r = NGTDM region
t = forecast year

Federal income taxes are derived from returns to common stock equity and preferred stock 
(after-tax profit) and the Federal tax rate.  The after-tax profit is the operating income 
excluding the total long-term debt, which is determined as follows:
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)STGCMESTR*STCMER

+STGPFESTR*STPFER(*STAPRB=STATP

rtr,

rtr,tr,tr,
(280)

)STCMEN+STPFEN(=STATP tr,tr,tr, (281)

where,
STATPr,t = after-tax profit for existing and new capacity (dollars)

STAPRBr,t = adjusted pipeline rate base for existing and new capacity
(dollars)

STPFERr,t = coupon rate for preferred stock for existing and new capacity 
(fraction)

STGPFESTRr = historical average capital structure for preferred stock for 
existing and new capacity (fraction), held constant over the 
forecast period

STCMERr,t = common equity rate of return for existing and new capacity 
(fraction)

STGCMESTRr = historical average capital structure for common stock for 
existing and new capacity (fraction), held constant over the 
forecast period

STPFENr,t = total return on preferred stock for existing and new capacity 
(dollars)

STCMENr,t = total return on common stock equity for existing and new 
capacity (dollars)

r = NGTDM region
t = forecast year

and the Federal income taxes are 

FRATE)-(1. / )STATP(FRATE*=STFIT tr,tr, (282)

where,
STFITr,t = Federal income tax for existing and new capacity (dollars)
FRATE = Federal income tax rate (fraction, Appendix E)

STATPr,t = after-tax profit for existing and new capacity (dollars)
r = NGTDM region
t = forecast year

State income taxes are computed by multiplying the sum of taxable profit and the associated 
Federal income tax by a weighted-average State tax rate associated with each NGTDM 
region.  State income taxes are computed as follows:

)STATP+STFIT(*SRATE=STSIT tr,tr,tr, (283)

where,
STSITr,t = State income tax for existing and new capacity (dollars)
SRATE = average State income tax rate (fraction, Appendix E)
STFITr,t = Federal income tax for existing and new capacity (dollars)

STATPr,t = after-tax profits for existing and new capacity (dollars)
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r = NGTDM region
t = forecast year

Deferred income taxes for existing and new capacity at the arc level are the differences in the 
accumulated deferred income taxes between year t and year t-1.

STADIT-STADIT=STDIT 1t-r,tr,tr, (284)

where,
STDITr,t = deferred income taxes for existing and new capacity (dollars)

STADITr,t = accumulated deferred income taxes for existing and new 
capacity (dollars)

r = NGTDM region
t = forecast year

Other taxes consist of  a combination of ad valorem taxes (which grow with company 
revenue), property taxes (which grow in proportion to gross plant), and all other taxes 
(assumed constant in real terms).  Other taxes in year t are determined as the previous year’s 
other taxes adjusted for inflation.

)PCWGDP_MC / PCWGDP_MC(*STOTTAX=STOTTAX 1t-t1t-r,tr, (285)

where,
STOTTAXr,t = all other taxes assessed by Federal, State, or local governments 

except income taxes for existing and new capacity (dollars) 
[read in as D_OTTAXr,t , t=1990-1998] 

MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 
Activity Module)

r = NGTDM region
t = forecast year

Computation of total operating and maintenance expenses, STTOMr,t

The total operating and maintenance costs (including administrative costs) for existing and 
new capacity in an NGTDM region are determined in 1996 real dollars using a log-linear 
form with correction for serial correlation.  The estimated equation is determined as a 
function of working gas storage capacity for region r at the beginning of period t.  In 
developing the estimations, the impact of regulatory change and the differences between 
producing and consuming regions were analyzed.93 Because their impacts were not supported 
by the data, they were not accounted for in the estimations. The final estimating equation is:

DSTWCAP*STTOM_R

*DSTWCAP*e=STTOM_R
CAPSTTOM_WORK*-

2t-r,1t-r,

CAPSTTOM_WORK
1t-r,

))-(1*(STTOM_C
tr,

(286)

93The gas storage industry changed substantially when in 1994  FERC Order 636 required jurisdictional pipeline 
companies to operate their storage facilities on an open-access basis.  The primary customers and use of storage in 
producing regions are significantly different from consuming regions.
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where,
R_STTOMr,t = total operating and maintenance cost for existing and new 

capacity (1996 real dollars)
STTOM_C = constant term from estimation (Appendix F, Table F3)

= autocorrelation coefficient from estimation (Appendix F, Table 
F3 -- STTOM_RHO)

DSTWCAPr,t = level of gas working capacity for region r during year t
STTOM_WORKCAP = estimated DSTWCAP coefficient (Appendix F, Table F3)

r = NGTDM region
t = forecast year

Finally, the total operating and maintenance costs are converted to nominal dollars to be 
consistent with the convention used in this submodule.

PCWGDP_MC

PCWGDP_MC
*STTOM_R=STTOM

1996

t
tr,tr, (287)

where,
STTOMr,t = total operating and maintenance costs for existing and new 

capacity (nominal dollars)
R_STTOMr,t = total operating and maintenance costs for existing and new 

capacity (1996 real dollars)
MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 

Activity Module)
r = NGTDM region
t = forecast year

Computation of Storage Tariff

The regional storage tariff depends on the storage cost of service, current working gas 
capacity, utilization rate, natural gas storage activity, and other factors.  The functional form 
is similar to the pipeline tariff curve, in that it will be built from a regional base point [price 
and quantity (PNOD,QNOD)].  The base regional storage tariff (PNODr,t) is determined as a 
function of the cost of service (STCOSr,t (equation 244)) and other factors discussed below.  
QNODr,t is set to an effective working gas storage capacity by region, which is defined as a 
regional working gas capacity times its utilization rate.  Hence, once the storage cost of 
service is computed by region, the base point can be established.  Minor adjustments to the 
storage tariff routine will be necessary in order to obtain the desired results.  

In the model, the storage cost of service used represents only a portion of the total storage 
cost of service, the revenue collected from the customers for withdrawing during the peak 
period the quantity of natural gas stored during the off-peak period.  This portion is defined 
as a user-set percentage (STRATIO, Appendix E) representing the portion (ratio) of revenue 
requirement obtained by storage companies for storing gas during the off-peak and 
withdrawing it for the customers during the peak period.  This would include charges for 
injections, withdrawals, and reserving capacity.



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module

151 

The cost of service STCOSr,t is computed using the Foster storage financial database which 
represents only the storage facilities owned by the interstate natural gas pipelines in the U.S. 
which have filed a Form 2 financial report with the FERC.  Therefore, an adjustment to this 
cost of service to account for all the storage companies by region is needed.  For example,  at 
the national level, the Foster database shows the underground storage working gas capacity at 
2.3 Tcf in 1998 and the EIA storage gas capacity data show much higher working gas 
capacity at 3.8 Tcf.  Thus, the average adjustment factor to obtain the “actual” cost of service 
across all regions in the U.S. is 165 percent.  This adjustment factor, STCAP_ADJr,t, varies 
from region to region. 

To complete the design of the storage tariff computation, two more factors need to be  
incorporated:  the regional storage tariff curve adjustment factor and the regional efficiency 
factor for storage operations, which makes the storage tariff more competitive in the long-
run.

Hence, the regional average storage tariff charged to customers for moving natural gas stored 
during the off-peak period and withdrawn during the peak period can be computed as 
follows:

)100.STR_EFF/-(1.0

*ADJ_STR*ADJ_STCAP*STRATIO

*
.)1,000,000*QNOD*PCWGDP_MC(

STCOS
=PNOD

t

tr,tr,

tr,t

tr,

tr,

(288)

where,

PTCURPSTR_FS

PTCURPSTR
=ADJ_STCAP

tr,

tr,

tr, (289)

PTSTUTZ*PTCURPSTR=QNOD tr,tr,tr, (290)

and,
PNODr,t = base point, price (87$/Mcf)

STCOSr,t = storage cost of service for existing and new capacity (dollars)
QNODr,t = base point, quantity (Bcf)

MC_PCWGDPt = GDP chain-type price deflator (from the Macroeconomic 
Activity Module)

STRATIOr,t = portion of revenue requirement obtained by moving gas from 
the off-peak to the peak period (fraction, Appendix E)

STCAP_ADJr,t = adjustment factor for the cost of service to total U.S. (ratio)
ADJ_STR = storage tariff curve adjustment factor (fraction, Appendix E)
STR_EFF = efficiency factor (percent) for storage operations (Appendix E)

PTSTUTZr,t = storage utilization (fraction)
PTCURPSTRr,t = current storage capacity (Bcf)
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FS_PTCURPSTRr,t = Foster storage working gas capacity (Bcf) [read in as 
D_WCAP]

r = NGTDM region
t = forecast year

Finally, the storage tariff curve by region can be expressed as a function of a base point 
[price and quantity (PNOD, QNOD)], storage flow, and a price elasticity, as follows:

current capacity segment:

)QNOD / Q(*PNOD=VARTARNGSTR_1X
ALPHA_STR

tr,tr,tr,tr, (291)

capacity expansion segment:

)QNOD / Q(*PNOD=VARTARNGSTR_1X
_STR2ALPHA

tr,tr,tr,tr, (292)

where,

X1NGSTR_VARTARr,t = function to define storage tariffs (87$/Mcf)
PNODr,t = base point, price (87$/Mcf)
QNODr,t = base point, quantity (Bcf)

Qr,t = regional storage flow (Bcf)
ALPHA_STR = price elasticity for storage tariff curve for current capacity 

(Appendix E)
ALPHA2_STR = price elasticity for storage tariff curve for capacity expansion 

segment (Appendix E)
r = NGTDM region
t = forecast year

Alaska and MacKenzie Delta Pipeline Tariff Routine

A single routine (FUNCTION NGFRPIPE_TAR) estimates the potential per-unit pipeline 
tariff for moving natural gas from either the North Slope of Alaska or the MacKenzie Delta 
to the market hub in Alberta, Canada for the years beyond the specified in-service date.  The 
tariff estimates are based on a simple cost-of-service rate base methodology, given the 
infrastructure’s initial capital cost at the beginning of the construction period (FR_CAPITL0 
in billion dollars, Appendix E), the assumed number of years for the project to be completed 
(FRPCNSYR, Appendix E), the associated discount rate for the project  (FR_DISCRT, 
Appendix E), the initial capacity (a function of delivered volume FR_PVOL, Appendix E), 
and the number of years over which the final cost of capitalization is assumed completely 
amortized (INVEST_YR=15).  The input values vary depending on whether the tariff being 
calculated is associated with a pipeline for Alaska or for MacKenzie Delta gas.  The cost of 
service consists of the following four components:  depreciation, depletion, and amortization; 
after-tax operating income (known as the return on rate base); total operating and 
maintenance expenses; and total income taxes. The computation of each of the four 
components in nominal dollars per Mcf is described below:
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Depreciation, depletion, and amortization, FR_DDAt

The depreciation is computed as the final cost of capitalization at the start of operations 
divided by the amortization period.  The depreciation equation is provided below:

INVEST_YR / 1FR_CAPITL=DDAFR_ t (293)

where,
FR_DDAt = depreciation, depletion, and amortization costs (thousand 

nominal dollars)
FR_CAPITL1 = final cost of capitalization at the start of operations (thousand 

nominal dollars)
INVEST_YR = investment period allowing recovery (parameter, 

INVEST_YR=15)
t = forecast year

The structure of the final cost of capitalization, FR_CAPITL1, is computed as follows:

]r)+(1+...+)r+(1+r)+[(1

*FR_PCNSYR / 0FR_CAPIT=1FR_CAPITL

FR_PCNSYR2
(294)

where,
FR_CAPITL1 = final cost of capitalization at the start of operations (thousand 

nominal dollars)
FR_CAPITL0 = initial capitalization (thousand FR_CAPYR dollars), where 

FR_CAPYR is the year dollars associated with this assumed 
capital cost (Appendix E)

FR_PCNSYR = number of construction years (Appendix E)
r = cost of debt, fraction, which is equal to the nominal 10-year 

Treasury bill (MC_RMTCM10Y or TNOTE, in percent) plus a 
debt premium in percent (debt premium set to FR_DISCRT, 
Appendix E) 

The net plant in service is tied to the depreciation by the following formulas:

DDAFR_+ADDAFR_=ADDAFR_

ADDAFR_-GPISFR_=NPISFR_

t1t-t

ttt
(295)

where,
FR_GPISt = original capital cost of plant in service (gross plant in service) 

in thousand nominal dollars, set to FR_CAPITL1.
FR_NPISt = net plant in service (thousand nominal dollars) 

FR_ADDAt = accumulated depreciation, depletion, and amortization in 
thousand nominal dollars

t = forecast year
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After-tax operating income (return on rate base), FR_TRRBt

This after-tax operating income also known as the return on rate base is computed as the net 
plant in service times an annual rate of return (FR_ROR, Appendix E).  The net plant in 
service, FR_NPISt, gets updated each year and is equal to the initial gross plant in service 
minus accumulated depreciation.  Net plant in service becomes the adjusted rate base when 
other capital related costs such as materials and supplies, cash working capital, and 
accumulated deferred income taxes are equal to zero.

The return on rate base is computed as follows:

NPIS_FR*WACC=TRRB_FR ttt (296)

where,

EQUITYtCOST_OF_*IO)FR_DEBTRAT-(1.0

+DEBTtCOST_OF_*IOFR_DEBTRAT=WACCt
(297)

and

100./FR_DISCRT)+TNOTE(=DEBTCOST_OF_ tt (298)

100. / TNOTE(=EQUITYCOST_OF_ tt (299)

where,
FR_TRRBt = after-tax operating income or return on rate base (thousand 

nominal dollars)
WACCt = weighted average cost of capital (fraction), nominal

FR_NPISt = net plant in service (thousand nominal dollars)
COST_OF_DEBTt = cost of debt (fraction)

COST_OF_EQUITYt = cost of equity (fraction)
TNOTEt = nominal 10-year Treasury bill rate, (MC_RMTCM10Yt,

percent) provided by the Macroeconomic Activity Module
FR_DISCRT = user-set debt premium, percent (Appendix E)

FR_ROR_PREM = user-set risk premium, percent (Appendix E)
t = forecast year

Total taxes, FR_TAXESt

Total taxes consist of Federal and State income taxes and taxes other than income taxes.  
Each tax category is computed based on a percentage times net profit.  These percentages are 
drawn from the Foster financial report’s 28 major interstate natural gas pipeline companies.  
The percentage for income taxes (FR_TXR) is computed as the average over five years 
(1992-1996) of tax to net operating income ratio from the Foster report.  Likewise, the 
percentage (FR_OTXR) for taxes other than income taxes is computed as the average over 
five years (1992-1996) of taxes other than income taxes to net operating income ratio from 
the same report. Total taxes are computed as follows:

NETPFTFR_*FR_OTXR)+(FR_TXR=TAXESFR_ tt (300)
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where,
FR_TAXESt = total taxes (thousand nominal dollars)

FR_NETPFTt = net profit (thousand nominal dollars)
FR_TXR = 5-year average Lower 48 pipeline income tax rate, as a proxy 

(Appendix E)
FR_OTXR = 5-year average Lower 48 pipeline other income tax rate, as a 

proxy (Appendix E)
t = forecast year

Net profit, FR_NETPFT, is computed as the return on rate base (FR_TRRBt) minus the long-
term debt (FR_LTDt), which is calculated as the return on rate base times long-term debt rate 
times the debt to capital structure ratio.  The net profit and long-term debt equations are 
provided below:

)LTDFR_-TRRB(FR_=NETPFTFR_ ttt (301)

NPISFR_*100.0 / FR_DISCRT)+TNOTE(

*IOFR_DEBTRAT=LTDFR_

tt

t
(302)

where,
FR_LTDt = long-term debt (thousand nominal dollars)
FR_NPISt = net plant in service (thousand nominal dollars)

FR_DEBTRATIO = 5-year average Lower 48 pipeline debt structure ratio 
(Appendix E)

FR_NETPFTt = net profit (thousand nominal dollars)
FR_TRRBt = return on rate base (thousand nominal dollars) 

TNOTEt = nominal 10-year Treasury bill, (MC_RMTCM10Y, percent) 
provided by the Macroeconomic Activity Module

FR_DISCRT = user-set debt premium, percent (Appendix E)
t = forecast year

In the above equations, the long-term debt rate is assumed equal to the 10-year Treasury bill
plus a debt premium, which represents a risk premium generally charged by financial 
institutions.  When 10-year Treasury bill rates are needed for years beyond the last forecast 
year (LASTYR), the variable TNOTEt becomes the average over a number of years 
(FR_ESTNYR, Appendix E) of the 10-year Treasury bill rates for the last forecast years.  

Cost of Service, FR_COSt

The cost of service is the sum of four cost-of-service components computed above, as 
follows:
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1000.0)*1.1484*FR_PVOLMC_PCWGDP

MC_PCWGDPFR_TOM

FR_TAXESFR_DDAFR_TRRBFR_COS

*)

/
t

(*

(

FR_CAPYR

FR_CAPYR

tttt

(303)

where,
FR_COSt = cost of service (thousand nominal dollars)

FR_TRRBt = return on rate base (thousand nominal dollars)
FR_DDAt = depreciation (thousand nominal dollars)

FR_TAXESt = total taxes (thousand nominal dollars)
FR_TOMFR_CAPYR = total operating and maintenance expenses (in nominal dollars 

per Mcf, set constant in real terms) (Appendix E)
MC_PCWGDPt = GDP price deflator (from Macroeconomic Activity Module)

FR_PVOL = maximum volume delivered to Alberta in dry terms (Bcf/year)
1.1484 = factor to convert delivered dry volume to wet gas volume 

entering the pipeline as a proxy for the pipeline capacity
t = forecast year

Hence, the annual pipeline tariff in nominal dollars is computed by dividing the above cost of 
service by total pipeline capacity, as follows:

1000.0)*1484.1(FR_PVOL* / COSFR_=COS tt (304)

where,
COSt = per-unit cost of service or annual pipeline tariff (nominal 

dollars/Mcf)
t = forecast year

To convert this nominal tariff to real 1987$/Mcf, the GDP implicit price deflator variable 
provided by the Macroeconomic Activity Module is needed.  The real tariff equation is 
written as follows:

PCWGDP_MC / COS=COSR ttt (305)

where,
COSRt = annual real pipeline tariff (1987 dollars/Mcf)

MC_PCWGDPt = GDP price deflator (from Macroeconomic Activity Module)
t = forecast year

Last, the annual average tariff is computed as the average over a number of years 
(FR_AVGTARYR, Appendix E) of the first successive annual cost of services.
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7. Model Assumptions, Inputs, and Outputs

This last chapter summarizes the model and data assumptions used by the Natural Gas 
Transmission and Distribution Module (NGTDM) and lists the primary data inputs to and 
outputs from the NGTDM.  

Assumptions

This section presents a brief summary of the assumptions used within the NGTDM.  
Generally, there are two types of data assumptions that affect the NGTDM solution values.  
The first type can be derived based on historical data (past events), and the second type is 
based on experience and/or events that are likely to occur (expert or analyst judgment).  A 
discussion of the rationale behind assumed values based on analyst judgment is beyond the 
scope of this report.  Most of the FORTRAN variables related to model input assumptions, 
both those derived from known sources and those derived through analyst judgment, are 
identified in this chapter, with background information and actual values referenced in 
Appendix E.

The assumptions summarized in this section are mentioned in Chapters 2 through 6.  They 
are used in NGTDM equations as starting values, coefficients, factors, shares, bounds, or user 
specified parameters.  Six general categories of data assumptions have been defined:  
classification of market services, demand, transmission and distribution service pricing, 
pipeline tariffs and associated regulation, pipeline capacity and utilization, and supply 
(including imports).  These assumptions, along with their variable names, are summarized 
below.

Market Service Classification

Nonelectric sector natural gas customers are classified as either core or noncore customers, 
with core customers defined as the type of customer that is expected to generally transport 
their gas under firm (or near firm) transportation agreements and noncore customers to 
generally transport their gas under non-firm (interruptible or short-term capacity release) 
transportation agreements.  The residential, commercial, and transportation (natural gas 
vehicles) sectors are assumed to be core customers.  The transportation sector is further 
subdivided into fleet and personal vehicle customers.  Industrial and electric generator end 
users fall into both categories, with industrial boilers and refineries assumed to be noncore 
and all other industrial users assumed to be core, and gas steam units or gas combined cycle 
units assumed to be core and all other electric generators assumed to be noncore.  Currently 
the core/noncore distinction for electric generators is not being used in the model.
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Demand

The peak period is defined (using PKOPMON) to run from December through March, with the off-
peak period filling up the remainder of the year.

The Alaskan natural gas consumption levels for residential and commercial sectors are 
primarily defined as a function of the number of customers (AK_RN, AK_CM, Tables F1, F2), which in 
turn are set based on an exogenous projection of the population in Alaska (AK_POP). Alaskan 
gas consumption is disaggregated into North and South Alaska in order to separately 
compute the natural gas production forecasts in these regions.  Lease, plant, and pipeline fuel 
related to an Alaska pipeline or a gas-to-liquids facility are set at an assumed percentage of 
their associated gas volumes (AK_PCTPLT, AK_PCTPIP, AK_PCTLSE).   The remaining lease and plant 
fuel is assumed to be consumed in the North and set based on historical trends.  The amount 
of gas consumed by other sectors in North Alaska is small enough to assume as zero and to 
allow for the setting of South Alaska volumes equal to the totals for the State.  Industrial 
consumption in South Alaska is set to the exogenously specified sum of the level of gas 
consumed at the Agrium fertilizer plant and at the liquefied natural gas plant (AK_QIND_S).
Pipeline fuel in the South is set as a percentage (AK_PCTPIP) of consumption and exports.  
Production in the south is set to total consumption levels in the region.  In the north 
production equals the flow along an Alaska pipeline to Alberta, any gas needed to support the 
production of gas-to-liquids, associated lease, plant, and pipeline fuel for these two 
applications, and the other calculated lease and plant fuel. The forecast for reporting 
discrepancy in Alaska (AK_DISCR) is set to an average historical value.  To compute natural gas 
prices by end-use sector for Alaska, fixed markups derived from historical data (AK_RM, AK_CM, 

AK_IN, AK_EM) are added to the average Alaskan natural gas wellhead price over the North and 
South regions.  The wellhead price is set using a simple estimated equation (AK_F).
Historically based percentages and markups are held constant throughout the forecast period.

The shares (NG_CENSHR) for disaggregating nonelectric Census Division demands to NGTDM 
regions are held constant throughout the forecast period and are based on average historical 
relationships (SQRS, SQCM, SQIN, SQTR).  Similarly, the shares for disaggregating end-use 
consumption levels to peak and off-peak periods are held constant throughout the forecast, 
and are directly (United States -- PKSHR_DMD, PKSHR_UDMD_F, PKSHR_UDMD_I) or partially (Canada --

PKSHR_CDMD) historically based.  Canadian consumption levels are set exogenously (CN_DMD)

based on another published forecast, and adjusted if the associated world oil price changes.  
Consumption, base level production, and domestically consumed LNG imports into Mexico 
are set exogenously (PEMEX_GFAC, IND_GFAC, ELE_GFAC, RC_GFAC, PRD_GFAC, MEXLNG). After the base 
level production is adjusted based on the average U.S. wellhead price, exports to Mexico are 
set to balance supply and consumption.  Historically based shares (PKSHR_ECAN, PKSHR_EMEX, 

PKSHR_ICAN, PKSHR_IMEX, PKSHR_ILNG) are applied to projected/historical values for natural gas 
exports and imports (SEXP, SIMP, CANEXP, Q23TO3, FLO_THRU_IN,OGQNGEXP).  These historical based 
shares are generated from monthly historical data (QRS, QCM, QIN, QEU, MON_QEXP, MON_QIMP).

Lease and plant fuel consumption in each NGTDM region is computed as an historically 
derived percentage (using SQLP) of dry gas production (PCTLP) in each NGTDM/OGSM region.  
These percentages are held constant throughout the forecast period.  Pipeline fuel use is 
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derived using historically (SQPF) based factors (PFUEL_FAC) relating pipeline fuel use to the 
quantity of natural gas exiting a regional node.  Values for the most recent historical year are 
derived from monthly-published figures (QLP_LHIS, NQPF_TOT).

Pricing of Distribution Services

End-use prices for residential, commercial, industrial, transportation, and electric generation 
customers are derived by adding markups to the regional hub price of natural gas.  Each 
regional end-use markup consists of an intraregional tariff (INTRAREG_TAR), an intrastate tariff 
(INTRAST_TAR), a distribution tariff (endogenously defined), and a city gate benchmark factor 
[endogenously defined based on historical seasonal city gate prices (HCGPR)].  Historical 
distributor tariffs are derived for all sectors as the difference between historical city gate and 
end-use prices (SPRS, SPCM, SPIN, SPEU, SPTR, PRS, PCM PIN, PEU).94 Historical industrial end-use prices 
are derived in the module using an econometrically estimated equation (Table F5).95 The 
residential, commercial, industrial, and electric generator distributor tariffs are also based on 
econometrically estimated equations (Tables F4, F6, F7, and F8).  The distributor tariff for 
the personal (PV) and fleet vehicle (FV) components of the transportation sector are set using 
historical data, a decline rate (TRN_DECL), state and federal taxes (STAX, FTAX), and assumed 
dispensing costs/charges (RETAIL_COST), and for personal vehicles at retail stations, a capital 
cost recovery markup (CNG_RETAIL_MARKUP).

Prices for exports (and fixed volume imports) are based on historical differences between 
border prices (SPIM, SPEX, MON_PIMP, MON_PEXP) and their closest market hub price (as determined 
in the module when executed during the historical years). 

Pipeline and Storage Tariffs and Regulation

Peak and off-peak transportation rates for interstate pipeline services (both between NGTDM 
regions and within a region) are calculated assuming that the costs of new pipeline capacity 
will be rolled into the existing rate base.  Peak and off-peak market transmission service rates 
are based on a cost-of-service/rate-of-return calculation for current pipeline capacity times an 
assumed utilization rate (PKUTZ, OPUTZ).  To reflect recent regulatory changes related to 
alternative ratemaking and capacity release developments, these tariffs are discounted (based 
on an assumed price elasticity) as pipeline utilization rates decline.  

In the computation of natural gas pipeline transportation and storage rates, the Pipeline Tariff 
Submodule uses a set of data assumptions based on historical data or expert judgment.  These 
include the following: 

94All historical prices are converted from nominal to real 1987 dollars using a price deflator (GDP_B87).
95Traditionally industrial prices have been derived by collecting sales data from local distribution companies.  More 

recently, industrial customers have not relied on LDCs to purchase their gas.  As a result, annually published industrial 
natural gas prices only represent a rather small portion of the total population.  In the module, these published prices are 
adjusted using an econometrically estimated equation based on EIA’s survey of manufacturers to derive a more 
representative set of industrial prices.
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Factors (AFX, AFR, AVR) to allocate each company’s line item costs into the fixed and variable 
cost components of the reservation and usage fees

Capacity reservation shares used to allocate cost of service components to portions of the 
pipeline network

Average pipeline capital cost (2005 dollars) per unit of expanded capacity by arc (AVGCOST)

used to derive total capital costs to expand pipeline capacity
Storage capacity expansion cost parameters (STCCOST_CREG, STCCOST_BETAREG, STCSTFAC) used to 

derive total capital costs to expand regional storage capacity
Input coefficients (ALPHA_PIPE, ALPH2_PIPE, ALPHA_STR, ALPHA2_STR, ADJ_STR, STR_EFF) for 

transportation and storage rates
Pipeline tariff curve parameters by arc (PKSHR_YR, PTPKUTZ, PTOPUTZ, ALPHA_PIPE, ALPHA2_PIPE)

Storage tariff curve parameters by region (STRATIO, STCAP_ADJ, PTSTUTZ, ADJ_STR, STR_EFF, 

ALPHA_STR, ALPHA2_STR)

In order to determine when a pipeline from either Alaska or the MacKenzie Delta to Alberta 
could be economic, the model estimates the tariff that would be charged on both pipelines 
should they be built, based on a number of assumed values.  A simple cost-of-service/rate-of-
return calculation is used, incorporating the following:  initial capitalization (FR_CAPITLO),
return on debt (FR_DISCRT) and return on equity (FR_ROR_PREM) (both specified as a premium 
added to the 10-year Treasury bill rate), total debt as a fraction of total capital (FR_DEBTRATIO),
operation and maintenance expenses (FR_TOM0), federal income tax rate (FR_TXR), other tax rate 
(FR_OTXR), levelized cost period (FR_AVGTARYR), and depreciation period (INVEST_YR).  In order to 
establish the ultimate charge for the gas in the lower 48 States assumptions were made for the 
minimum wellhead price (FR_PMINWPC) including production, treatment, and fuel costs, as well 
as the average differential between Alberta and the lower 48 (ALB_TO_L48) and a risk premium 
(FR_PRISK) to reflect cost and market uncertainties.  The market price in the lower 48 states 
must be maintained over a planning horizon (FR_PPLNYR) before construction would begin.  
Construction is assumed to take a set number of years (FR_PCNSYR) and result in a given initial 
capacity based on initial delivered volumes (FR_PVOL).  An additional expansion is assumed on 
the condition of an increase in the market price (FR_PADDTAR, FR_PEXPFAC).

Pipeline and Storage Capacity and Utilization

Historical and planned interregional, intraregional, and Canadian pipeline capacities are 
assigned in the module for the historical years and the first few years (NOBLDYR) into the 
forecast (ACTPCAP, PTACTPCAP, PLANPCAP, SPLANPCAP, PER_YROPEN, CNPER_YROPEN).  The flow of natural 
gas along these pipeline corridors in the peak and off-peak periods of the historical years is 
set, starting with historical shares (HPKSHR_FLOW), to be consistent with the annual flows 
(HAFLOW, SAFLOW) and other known seasonal network volumes (e.g., consumption, production).  

A similar assignment is used for storage capacities (PLANPCAP, ADDYR).  The module only 
represents net storage withdrawals in the peak period and net storage injections in the off-
peak period, which are known historically (HNETWTH, HNETINJ, SNETWTH, NWTH_TOT, NINJ_TOT).

For the forecast years, the use of both pipeline and storage capacity in each seasonal period is 
limited by exogenously set maximum utilization rates (PKUTZ, OPUTZ, SUTZ), although these are 
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currently not active for pipelines.  They were originally intended to reflect an expected 
variant in the load throughout a season.  Adjustments are now being made within the module, 
during the flow sharing algorithm, to reflect the seasonal load variation.

The decision concerning the share of gas that will come from each incoming source into a 
region for the purpose of satisfying the regions consumption levels (and some of the 
consumption upstream) is based on the relative costs of the incoming sources and assumed 
parameters (GAMMAFAC, MUFAC).  During the process of deciding the flow of gas through the 
network, an iterative process is used that requires a set of assumed parameters for assessing 
and responding to nonconvergence (PSUP_DELTA, QSUP_DELTA, QSUP_SMALL, QSUP_WT, MAXCYCLE).

Supply

The supply curves for domestic lower 48 nonassociated dry gas production and for 
conventional and tight gas production from the WCSB are based on an expected production 
level, the former of which is set in the OGSM. Expected production from the WCSB is set in 
the NGTDM using a series of three econometric equations for new successful wells drilled, 
quantity proved per well drilled, and expected quantity produced per current level proved,
and is dependent on resource assumptions (RESBASE, RESTECH). A set of parameters (PARM_SUPCRV3, 

PARM_SUPCRV5, SUPCRV, PARM_SUPELAS) defines the price change from a base or expected price as 
production deviates from this expected level.  These supply curves are limited by minimum 
and maximum levels, calculated as a factor (PARM_MINPR, MAXPRRFAC, MAXPRRCAN) times the 
expected production levels.  Domestic associated-dissolved gas production is provided by the 
Oil and Gas Supply Module.  Eastern Canadian production from other than the WCSB is set 
exogenously (CN_FIXSUP). Natural gas production in Canada from both coal beds and shale is 
based on assumed production withdrawal profiles from their perspective resource base totals 
(ULTRES, ULTSHL) at an assumed exogenously specified price path and is adjusted relative to how 
much the actual western Canadian price differs from the assumed.  Production from the 
frontier areas in Canada (i.e., the MacKenzie Delta) is set based on the assumed size of the 
pipeline to transport the gas to Alberta, should the pipeline be built.   Production from Alaska 
is a function of the consumption in Alaska and the potential capacity of a pipeline from 
Alaska to Alberta and/or a gas-to-liquids facility.

Imports from Mexico and Canada at each border crossing point are represented as follows:  
(1) Mexican imports are set exogenously (EXP_FRMEX) with the exception of LNG imported into 
Baja for U.S. markets; (2) Canadian imports are set endogenously (except for the imports 
into the East North Central region, (Q23TO3) and limited to Canadian pipeline capacities 
(ACTPCAP, CNPER_YROPEN), which are set in the module, and expand largely in response to the 
introduction of Alaskan gas into the Alberta system.  Total gas imports from Canada exclude 
the amount of gas that travels into the United States and then back into Canada (FLO_THRU_IN).

Liquefied natural gas imports are represented with an east and west supply curves to North 
America generated based on output results from EIA’s International Natural Gas Model and 
shared to representative regional terminals based on regasification capacity, last year’s 
imports, and relative prices.  Regasification capacity is set based on known facilities, either 
already constructed or highly likely to be (LNGCAP).
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The three supplemental production categories (synthetic production of natural gas from coal 
and liquids and other supplemental fuels) are represented as constant supplies within the 
Interstate Transmission Submodule, with the exception of any production from potential new 
coal-to-gas plants.  Synthetic production from the existing coal plant is set exogenously 
(SNGCOAL).  Forecast values for the other two categories are held constant throughout the 
forecast and are set to historical values (SNGLIQ, SUPPLM) within the module.  The algorithm for 
determining the potential construction of new coal-to-gas plants uses an extensive set of 
detailed cost figures to estimate the total investment and operating costs of a plant (including 
accounting for emissions costs, electricity credits, and lower costs over time due to learning) 
for use within a discounted cash flow calculation.  If positive cash flow is estimated to occur 
the number of generic plants built is based on a Mansfield-Blackman market penetration 
algorithm. Throughout the forecast, the annual synthetic gas production levels are split into 
seasonal periods using an historically (NSUPLM_TOT) based share (PKSHR_SUPLM).

The supply component uses an assortment of input values in defining historical production 
levels and prices (or revenues) by the regions and categories required by the module 
(QOF_ALST, QOF_ALFD, QOF_LAST, QOF_LAFD, QOF_CA, ROF_CA, QOF_LA, ROF_LA, QOF_TX, ROF_TX, AL_ONSH, 
AL_OFST, AL_OFFD, LA_ONSH, LA_OFST, lA_OFFD , ADW, NAW, TGD, MISC_ST, MISC_GAS, MISC_OIL, SMKT_PRD, 

SDRY_PRD, HQSUP, HPSUP, WHP_LHIS, SPWH).  A set of seasonal shares (PKSHR_PROD) have been defined 
based on historical values (MONMKT_PRD) to split production levels of supply sources that are 
nonvariant with price (CN_FIXSUP and others) into peak and off-peak categories.

Discrepancies that exist between historical supply and disposition level data are modeled at 
historical levels (SBAL_ITM) in the NGTDM and kept constant throughout the forecast years at 
average historical levels (DISCR, CN_DISCR).

Model Inputs

The NGTDM inputs are grouped into six categories:  mapping and control variables, annual 
historical values, monthly historical values, Alaskan and Canadian demand/supply variables, 
supply inputs, pipeline and storage financial and regulatory inputs, pipeline and storage 
capacity and utilization related inputs, end-use pricing inputs, and miscellaneous inputs.  
Short input data descriptions and identification of variable names that provide more detail 
(via Appendix E) on the sources and transformation of the input data are provided below.

Mapping and Control Variables

Variables for mapping from States to regions (SNUM_ID, SCH_ID, SCEN_DIV, SITM_REG, SNG_EM, 

SNG_OG, SIM_EX, MAP_PRDST)

Variables for mapping import/export borders to States and to nodes (CAN_XMAPUS, 

CAN_XMAPCN, MEX_XMAP, CAN_XMAP)

Variables for handling and mapping arcs and nodes (PROC_ORD,ARC_2NODE, NODE_2ARC, 

ARC_LOOP, SARC_2NODE, SNODE_2ARC, NODE_ANGTS, CAN_XMAPUS)

Variables for mapping supply regions (NODE_SNGCOAL, MAPLNG_NG, OCSMAP, PMMMAP_NG, 

SUPSUB_NG, SUPSUB_OG)

Variables for mapping demand regions (EMMSUB_NG, EMMSUB_EL, NGCENMAP)
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Annual Historical Values

Offshore natural gas production and revenue data (QOF_ALST, QOF_ALFD, QOF_LAST, QOF_LAFD, 

QOF_CA, ROF_CA, QOF_LA, ROF_LA, QOF_TX, ROF_TX, QOF_AL, ROF_AL, QOF_MS, ROF_MS, QOF_GM, 
ROF_GM, PRICE_CA, PRICE_LA, PRICE_AL, PRICE_TX, GOF_LA, GOF_AL, GOF_TX, GOF_CA, AL_ONSH, 
AL_OFST, AL_OFFD, LA_ONSH, LA_OFST, LA_OFFD, AL_ONSH2, AL_OFST2, AL_ADJ)

State-level supply prices (SPIM, SPWH)

State/sub-state-level natural gas production and other supply/storage data (ADW, NAW, TGD, 

TGW, MISC_ST, MISC_GAS, MISC_OIL, SMKT_PRD, SDRY_PRD, SIMP, SNET_WTH, SUPPLM)

State-level consumption levels (SBAL_ITM, SEXP, SQPF, SQLP, SQRS, SQCM, SQIN, SQEU, SQTR)

State-level end-use prices (SPEX, SPRS, SPCM, SPIN, SPEU, SPTR)

Miscellaneous (GDP_B87, OGHHPRNG)

Monthly Historical Values

State-level natural gas production data (MONMKT_PRD)

Import/export volumes and prices by source (MON_QIMP, MON_PIMP, MON_QEXP, MON_PEXP, HQIMP)

Storage data (NWTH_TOT, NINJ_TOT, HNETWTH, HNETINJ)

State-level consumption and prices (CON & PRC -- QRS, QCM, QIN, QEU, PRS, PCM, PIN, PEU)

Electric power gas consumption and prices (CON_ELCD, PRC_EPMCD, CON_EPMGR, PRC_EPMGR)

Miscellaneous monthly/seasonal data (NQPF_TOT, NSUPLM_TOT, WHP_LHIS, QLP_LHIS, HCGPR)

Alaskan, Canadian, & Mexican Demand/Supply Variables

Alaskan lease, plant, and pipeline fuel parameters (AK_PCTPLT, AK_PCTPIP, AK_PCTLSE)

Alaskan consumption parameters (AK_QIND_S, AK_RN, AK_CM, AK_POP, AK_HDD, HI_RN)

Alaskan pricing parameters (AK_RM, AK_CM, AK_IN, AK_EM)

Canadian production and end-use consumption (CN_FIXSUP, CN_DMD, PKSHR_PROD, PKSHR_CDMD)

Exogenously specified Canadian import/export related volumes (CANEXP, Q23TO3,

FLO_THRU_IN)

Historical western Canadian production and wellhead prices (HQSUP, HPSUP)

Unconventional western Canadian production parameters (ULTRES, ULTSHL, RESBASE, PKIYR, 

LSTYR0, PERRES, RESTECH, TECHGRW)

Mexican production, LNG imports, and end-use consumption (PEMEX_GFAC, 

IND_GFAC,ELE_GFAC,RC_GFAC, PRD_GFAC, MEXLNG)

Supply Inputs

Liquefied natural gas supply curves and pricing (LNGCAP, PARM_LNGCRV3, 

PARM_LNGCRV5,PARM_LNGELAS, LNGPPT, LNGQPT, LNGMIN,PERQ, BETA,LNGTAR)

Supply curve parameters (SUPCRV, PARM_MINPR, PARM_SUPCRV3, PARM_SUPCRV5, PARM_SUPELAS, 

MAXPRRFAC, MAXPRRNG, PARM_MINPR)

Synthetic natural gas projection (SNGCOAL, SNGLIQ, NRCI_INV, NRCI_LABOR_NRCI_OPER,INFL_RT, 

FEDTAX_RT, STTAX_RT, INS_FAC, TAX_FAC, MAINT_FAC, OTH_FAC,BEQ_OPRAVG, BEQ_OPRHRSK,
EMRP_OPRAVG, EMRP_OPRHRSK, EQUITY_OPRAVG, EQUITY_OPRHRSK, BEQ_BLDAVG, BEQ_BLDHRSK, 

EMRP_BLDAVG, EMRP_BLDHRSK, EQUITY_BLDAVG, EQUITY_BLDHRSK, BA_PREM, PCLADJ, CTG_CAPYR$, 

PRJSDECOM, CTG_BLDYRS, CTG_PRJLIFE, CTG_OSBLFAC, CTG_PCTENV, CTG_PCTCNTG, CTG_PCTLND,
CTG_PCTSPECL, CTG_PCTWC, CTG_STAFF_LCFAC, CTG_OH_LCFAC, CTG_FSIYR, CTG_INCBLD, 

CTG_DCLCAPCST, CTG_DCLOPRCST, CTG_BASHHV, CTG_BASCOL, CTG_BCLTON, CTG_BASSIZ, CTG_BASCGS, 

CTG_BASCGSCO2, CTG_BASCGG, CTG_BASCGGCO2,CTG_NCL, CTG_NAM, CTG_CO2,LABORLOC, CTG_PUCAP, 
XBM_ISBL, XBM_LABOR, CTG_BLDX, CTG_IINDX, CTG_SINVST )
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Pipeline and Storage Financial and Regulatory Inputs

Rate design specification (AFX_PFEN, AFR_PFEN, AVR_PFEN, AFX_CMEN, AFR_CMEN, AVR_CMEN, AFX_LTDN, 

AFR_LTDN, AVR_LTDN, AFX_DDA, AFR_DDA, AVR_DDA, AFX_FSIT, AFR_FSIT, AVR_FSIT, AFX_DIT, AFR_DIT, 

AVR_DIT, AFX_OTTAX, AFR_OTTAX, AVR_OTTAX, AFX_TOM, AFR_TOM, AVR_TOM)

Pipeline rate base, cost, and volume parameters (D_TOM, D_DDA, D_OTTAX, D_DIT, D_GPIS, D_ADDA, 

D_NPIS, D_CWC, D_ADIT, D_APRB, D_GPFES, D_GCMES, D_GLTDS, D_PFER, D_CMER, D_LTDR)

Storage rate base, cost, and volume parameters (D_TOM, D_DDA, D_ADDA, D_OTTAX, D_FSIT, D_DIT, 

D_LTDN, D_PFEN, D_CMEN, D_GPIS, D_NPIS, D_CWC, D_ADIT, D_APRB, D_LTDS, D_PFES, D_CMES, D_TCAP, 

D_WCAP)

Pipeline and storage revenue requirement forecasting equation parameters (Table F3)

Rate of return set for generic pipeline companies (MC_RMPUAANS, ADJ_PFER, ADJ_CMER, ADJ_LTDR)

Rate of return set for existing and new storage capacity (MC_RMPUAANS, ADJ_STPFER, 

ADJ_STCMER, ADJ_STLTDR)

Federal and State income tax rates (FRATE, SRATE)

Depreciation schedule (30 year life)

Pipeline capacity expansion cost parameter for capital cost equations (AVGCOST)

Pipeline capacity replacement cost parameter (PCNT_R)

Storage capacity expansion cost parameters for capital cost equations (STCCOST_CREG, 

STCCOST_BETAREG, STCSTFAC)

Parameters for interstate pipeline transportation rates (PKSHR_YR, PTPKUTZ, PTOPUTZ, ALPHA_PIPE, 

ALPHA2_PIPE)

Canadian pipeline and storage tariff parameters (ARC_FIXTAR, ARC_VARTAR, CN_FIXSHR)

Parameters for storage rates (STRATIO, STCAP_ADJ, PTSTUTZ, ADJ_STR, STR_EFF, ALPHA_STR, ALPHA2_STR)

Parameters for Alaska-to-Alberta and MacKenzie Delta-to-Alberta pipelines (FR_CAPITL0, 

FR_CAPYR, FR_PCNSYR, FR_DISCRT, FR_PVOL, INVEST_YR,FR_ROR_PREM, FR_TOM0, FR_DEBTRATIO, FR_TXR, 

FR_OTXR, FR_ESTNYR, FR_AVGTARYR)

Pipeline and Storage Capacity and Utilization Related Inputs

Canadian natural gas pipeline capacity and planned capacity additions (ACTPCAP, PTACTPCAP, 

PLANPCAP, CNPER_YROPEN)

Maximum peak and off-peak primary and secondary pipeline utilizations (PKUTZ, OPUTZ, 

SUTZ, MAXUTZ, XBLD)

Interregional planned pipeline capacity additions along primary and secondary arcs
(PLANPCAP, SPLANPCAP, PER_YROPEN)

Maximum storage utilization (PKUTZ)

Existing storage capacity and planned additions (PLANPCAP, ADDYR)

Net storage withdrawals (peak) and injections (off-peak) in Canada (HNETWTH, HNETINJ)

Historical flow data (HPKSHR_FLOW, HAFLOW, SAFLOW)

Alaska-to-Alberta and MacKenzie Delta-to-Alberta pipeline (FR_PMINYR, FR_PVOL, FR_PCNSYR, 

FR_PPLNYR, FR_PEXPFAC, FR_PADDTAR, FR_PMINWPR, FR_PRISK, FR_PDRPFAC, FR_PTREAT, FR_PFUEL)

End-Use Pricing Inputs

Residential, commercial, industrial, and electric generator distributor tariffs (OPTIND, 

OPTCOM, OPTRES, OPTELP, OPTELO, RECS_ALIGN, NUM_REGSHR, HHDD)

Intrastate and intraregional tariffs (INTRAST_TAR, INTRAREG_TAR)

Historical city gate prices (HCGPR)
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State and Federal taxes, costs to dispense, and other compressed natural gas pricing and 
infrastructure development parameters (STAX, FTAX, RETAIL_COST, NSTAT, TRN_DECL,

MAX_CNG_BUILD, CNG_HRZ, CNG_WACC, CNG_BUILDCOST)

Miscellaneous

Network processing control variables (MAXCYCLE, NOBLDYR,ALPHAFAC,  GAMMAFAC, PSUP_DELTA, 

QSUP_DELTA, QSUP_SMALL, QSUP_WT, PCT_FLO, SHR_OPT, PCTADJSHR)

Miscellaneous control variables (PKOPMON, NGDBGRPT, SHR_OPT, NOBLDYR)

STEO input data (STEOYRS, STQGPTR, STQLPIN, STOGWPRNG, STPNGRS, STPNGIN, STPNGCM, STPNGEL, 

STOGPRSUP, NNETWITH, STDISCR, STENDCON, STSCAL_CAN, STINPUT_SCAL, STSCAL_PFUEL, STSCAL_LPLT, 

STSCAL_WPR, STSCAL_DISCR, STSCAL_SUPLM, STSCAL_NETSTR, STSCAL_FPR, STSCAL_IPR, STPHAS_YR, 

STLNGIMP)

Model Outputs

Once a set of solution values are determined within the NGTDM, those values required by 
other modules of NEMS are passed accordingly.  In addition, the NGTDM module results are 
presented in a series of internal and external reports, as outlined below.

Outputs to NEMS Modules

The NGTDM passes its solution values to different NEMS modules as follows:

Pipeline fuel consumption and lease and plant fuel consumption by Census Division (to 
NEMS PROPER and REPORTS)

Natural gas wellhead prices by Oil and Gas Supply Module region (to NEMS REPORTS, 
Oil and Gas Supply Module, and Petroleum Market Module)

Core and noncore natural gas prices by sector and Census Division (to NEMS PROPER 
and REPORTS, and NEMS demand modules)

Fraction of retail fueling stations that sell compressed natural gas (to Transportation 
Sector Module)

Dry natural gas production and supplemental gas supplies by Oil and Gas Supply Module 
region (NEMS REPORTS and Oil and Gas Supply Module)

Peak/off-peak, core/ noncore natural gas prices to electric generators by 
NGTDM/Electricity Market Module region (to NEMS PROPER and REPORTS and 
Electricity Market Module) 

Coal consumed, electricity generated, and CO2 produced in the process of converting 
coal into pipeline quality synthetic gas in newly constructed plants (to Coal Market 
Module, Electricity Market Module, and NEMS PROPER) 

Dry natural gas production by PADD region (to Petroleum Market Module) 
Nonassociated dry natural gas production by NGTDM/Oil and Gas Supply Module 

region (to NEMS REPORTS and Oil and Gas Supply Module)
Natural gas imports, exports, and associated prices by border crossing (to NEMS 

REPORTS)
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Internal Reports

The NGTDM produces reports designed to assist in the analysis of NGTDM model results.  
These reports are controlled with a user-defined variable (NGDBGRPT), include the 
following information, and are written to the indicated output file:

Primary peak and off-peak flows, shares, and maximum constraints going into each node 
(NGOBAL)

Historical and forecast values historically based factors applied in the module 
(NGOBENCH)

Intermediate results from the Distributor Tariff Submodule (NGODTM) 
Intermediate results from the Pipeline Tariff Submodule (NGOPTM)
Convergence tracking and error message report (NGOERR)
Aggregate/average historical values for most model elements (NGOHIST)
Node and arc level prices and quantities along the network by cycle (NGOTREE)

External Reports

In addition to the reports described above, the NGTDM produces external reports to support 
recurring publications.  These reports contain the following information:

Natural gas end-use prices and consumption levels by end-use sector, type of service 
(core and noncore), and Census Division (and for the United States)

Natural gas used to in a gas-to-liquids conversion process in Alaska
Natural gas wellhead prices and production levels by NGTDM region (and the average 

for the lower 48 States), including a price for the Henry Hub
Natural gas end-use and city gate prices and margins
Natural gas import and export volumes and import prices by source or destination
Pipeline fuel consumption by NGTDM region (and for the United States)
Natural gas pipeline capacity (entering and exiting a region) by NGTDM region and by 

Census Division
Natural gas flows (entering and exiting a region) by NGTDM region and Census Division
Natural gas pipeline capacity between NGTDM regions
Natural gas flows between NGTDM regions
Natural gas underground storage and pipeline capacity by NGTDM region
Unaccounted for natural gas96

96Unaccounted for natural gas is a balancing item between the amount of natural gas consumed and the amount supplied.  
It includes reporting discrepancies, net storage withdrawals (in historical years), and differences due to convergence 
tolerance levels.
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Appendix A. NGTDM Model Abstract

Model Name: Natural Gas Transmission and Distribution Module

Acronym: NGTDM

Title: Natural Gas Transmission and Distribution Module

Purpose: The NGTDM is the component of the National Energy Modeling System 
(NEMS) that represents the mid-term natural gas market.  The purpose of 
the NGTDM is to derive natural gas supply and end-use prices and flow 
patterns for movements of natural gas through the regional interstate 
network.  The prices and flow patterns are derived by obtaining a market 
equilibrium across the three main components of the natural gas market:  
the supply component, the demand component, and the transmission and 
distribution network that links them. 

Status: ACTIVE

Use: BASIC

Sponsor: Office of Energy Analysis
Office of Petroleum, Gas, and Biofuels Analysis, EI-33
Model Contact:  Joe Benneche
Telephone:  (202) 586-6132

Documentation: Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Module (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, June
2011).

Previous 

Documentation: Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Module (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, June  
2010).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Module (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, June 
2009).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Module (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, 
January 2009).
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Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Module (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, 
October 2007).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Module (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, 
August 2006).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Module (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, May 
2005).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Module (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, 
March 2004)

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Module (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, May 
2003)

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Module (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, 
January 2002).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Model (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, 
January 2001).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Model (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, 
January 2000).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Model (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062 (Washington, DC, 
February 1999).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Model (NGTDM) of the National
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Energy Modeling System (NEMS), DOE/EIA-M062/1 (Washington, DC, 
December 1997).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Model (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062/1 (Washington, DC, 
December 1996).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Model (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062/1 (Washington, DC, 
December 1995).

Energy Information Administration, Model Documentation, Natural Gas 

Transmission and Distribution Model (NGTDM) of the National Energy 

Modeling System, Volume II:  Model Developer’s Report,  DOE/EIA-
M062/2 (Washington, DC, January 1995).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Model (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062/1 (Washington, DC, 
February 1995).

Energy Information Administration, Model Documentation of the Natural 

Gas Transmission and Distribution Model (NGTDM) of the National 

Energy Modeling System (NEMS), DOE/EIA-M062/1 (Washington, DC, 
February 1994).

Reviews 

Conducted: Paul R.  Carpenter, PhD, The Brattle Group.  “Draft Review of Final Design 
Proposal Seasonal/North American Natural Gas Transmission Model.”  
Cambridge, MA, August 15, 1996.

Paul R. Carpenter, PhD, Incentives Research, Inc. “Review of the 
Component Design Report Natural Gas Annual Flow Module (AFM) for the 

Natural Gas Transmission and Distribution Model (NGTDM) of the 

National Energy Modeling System (NEMS).” Boston, MA, Aug 25, 1992.

Paul R. Carpenter, PhD, Incentives Research, Inc. “Review of the 
Component Design Report Capacity Expansion Module (CEM) for the 

Natural Gas Transmission and Distribution Model (NGTDM) of the 

National Energy Modeling System (NEMS).” Boston, MA, Apr 30, 1993.

Paul R. Carpenter, PhD, Incentives Research, Inc. “Review of the 
Component Design Report Pipeline Tariff Module (PTM) for the Natural 

Gas Transmission and Distribution Model (NGTDM) of the National 

Energy Modeling System (NEMS).”  Boston, MA, Apr 30, 1993.
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Paul R. Carpenter, PhD, Incentives Research, Inc. “Review of the 
Component Design Report Distributor Tariff Module (DTM) for the Natural 

Gas Transmission and Distribution Model (NGTDM) of the National 

Energy Modeling System (NEMS).”  Boston, MA, Apr 30, 1993.

Paul R. Carpenter, PhD, Incentives Research, Inc. “Final Review of the 
National Energy Modeling System (NEMS) Natural Gas Transmission and
Distribution Model (NGTDM).” Boston, MA, Jan 4, 1995.

Archival: The NGTDM is archived as a component of the NEMS on compact disc 
storage compatible with the PC multiprocessor computing platform upon 
completion of the NEMS production runs to generate the Annual Energy 

Outlook 2011, DOE/EIA-0383(2011).  The archive package can be 
downloaded from ftp://ftp.eia.doe.gov/pub/forecasts/aeo.

Energy System 

Covered: The NGTDM models the U.S. natural gas transmission and distribution 
network that links the suppliers (including importers) and consumers of 
natural gas, and in so doing determines the regional market clearing natural 
gas end-use and supply (including border) prices.

Coverage: Geographic:  Demand regions are the 12 NGTDM regions, which are based 
on the nine Census Divisions with Census Division 5 split further into South 
Atlantic and Florida, Census Division 8 split further into Mountain and 
Arizona/New Mexico, and Census Division 9 split further into California 
and Pacific with Alaska and Hawaii handled separately.  Production is 
represented in the lower 48 at 17 onshore and 3 offshore regions.  
Import/export border crossings include three at the Mexican border, seven at 
the Canadian border, and 12 liquefied natural gas import terminals.  In a 
separate component, potential liquefied natural gas production and 
liquefaction for U.S. import is represented for 14 international ports.  A 
simplified Canadian representation is subdivided into an eastern and 
western region, with potential LNG import facilities on both shores.  
Consumption, production, and LNG imports to serve the Mexico gas market 
are largely assumption based and serve to set the level of exports to Mexico 
from the United States.

Time Unit/Frequency:  Annually through 2035, including a peak (December 
through March) and off-peak forecast.

Product(s):  Natural gas

Economic Sector(s):  Residential, commercial, industrial, electric generators 
and transportation

Data Input Sources:

(Non-DOE) The Safe, Accountable, Flexible, Efficient Transportation Equity Act:  A 
Legacy for Users (SAFETEA-LU), Section 1113.
—Federal vehicle natural gas (VNG) taxes
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Canadian Association of Petroleum Producers Statistical Handbook
— Historical Canadian supply and consumption data
Mineral Management Service.
— Revenues and volumes for offshore production in Texas, California, 

and Louisiana
Foster Pipeline and Storage Financial Cost Data
— pipeline and storage financial data
Data Resources Inc., U.S. Quarterly Model
— Various macroeconomic data
Oil and Gas Journal, “Pipeline Economics”
— Pipeline annual capitalization and operating revenues
Board of Governors of the Federal Reserve System Statistical Release, 
“Selected Interest Rates and Bond Prices”
— Real average yield on 10 year U.S. government bonds
Hart Energy Network’s Motor Fuels Information Center at
www.hartenergynetowrk.com/motorfuels/state/doc/glance/glnctax.htm
—compressed natural gas vehicle taxes by state
National Oceanic and Atmospheric Association
—State level heating degree days
U.S. Census
—State level population data for heating degree day weights
Natural Gas Week
—Canada storage withdrawal and capacity data
PEMEX Prospective de Gas Natural
—Historical Mexico raw gas production by region
Informes y Publicaciones, Anuario Estadísticas, Estadísticas Operativas,
Producción de gas natural
—Historical Mexico raw gas production by region
Sener Prospectiva del Mercado de gas natural 2006-2015
—Mexico LNG import projections

Data Input Sources:

(DOE) Forms and/or Publications:

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 
DOE/EIA-0216.
— Annual estimate of gas production for associated-dissolved and 

nonassociated categories by State/sub-state.
Natural Gas Annual, DOE/EIA-0131.
— By state -- natural gas consumption by sector, dry production, 

imports, exports, storage injections and withdrawals, balancing 
item, state transfers, number of residential customers, fraction of 
industrial market represented by historical prices, and wellhead, 
city gate, and end-use prices.

— Supplemental supplies
Natural Gas Monthly, DOE/EIA-0130.
— By month and state – natural gas consumption by sector, marketed 

production, net storage withdrawals, end-use prices by sector, city 
gate prices
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— By month – quantity and price of imports and exports by country, 
wellhead prices, lease and plant consumption, pipeline 
consumption, supplemental supplies

State Energy Data System (SEDS).
— State level annual delivered natural gas prices when not available 

in the Natural Gas Annual. 
Electric Power Monthly, DOE/EIA-0226.
— Monthly volume and price paid for natural gas by electric 

generators
Annual Energy Review, DOE/EIA-0384
— Gross domestic product and implicit price deflator
EIA-846, “Manufacturing Energy Consumption Survey”
— Base year average annual core industrial end-use prices
Short-Term Energy Outlook, DOE/EIA-0131.
— National natural gas projections for first two years beyond history
— Historical natural gas prices at the Henry Hub
Department of Energy, Natural Gas Imports and Exports, Office of 
Fossil Energy
— Import and export volumes and prices by border location
Department of Energy, Alternate Fuels & Advanced Vehicles Data 
Center, including Alternate Fuel Price Report, Office of Energy 
Efficiency and Renewable Energy
— Sample of retail prices paid for compressed natural gas for vehicles
— State motor fuel taxes
EIA-191, “Underground Gas Storage Report”
— Used in part to develop working gas storage capacity data
EIA-457, “Residential Energy Consumption Survey”
— Number of residential natural gas customers
International Energy Outlook, DOE/EIA-0484.
— Projection of natural gas consumption in Canada and Mexico.
International Energy Annual, DOE/EIA-0484.
— Historical natural gas data on Canada and Mexico.

Models and other:

National Energy Modeling System (NEMS)
— Domestic supply and demand representations are provided 

interactively as inputs to the NGTDM from other NEMS models
International Natural Gas Model (INGM) 
— Provides information for setting LNG supply curves exogenously 

in the NGTDM

General Output

Descriptions: Average natural gas end-use prices levels by sector and region
Average natural gas production volumes and prices by region
Average natural gas import and export volumes and prices by region 
and type
Pipeline fuel consumption by region
Lease and plant fuel consumption by region
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Lease and plant fuel consumption by region
Flow of gas between regions by peak and off-peak period
Pipeline capacity additions and utilization levels by arc
Storage capacity additions by region

Related Models: NEMS (part of)

Model Features: Model Structure:  Modular; three major components: the Interstate 
Transmission Submodule (ITS), the Pipeline Tariff Submodule (PTS), 
and the Distributor Tariff Submodule (DTS).
— ITS Integrating submodule of the NGTDM.  Simulates the natural 

gas price determination process by bringing together all 
major economic and technological factors that influence 
regional natural gas trade in the United States.  Determines 
natural gas production and imports, flows and prices, pipeline 
capacity expansion and utilization, storage capacity 
expansion and utilization for a simplified network 
representing the interstate natural gas pipeline system 

— PTS Develops parameters for setting tariffs in the ITM for 
transportation and storage services provided by interstate 
pipeline companies

— DTS Develops markups for distribution services provided by 
LDC’s and intrastate pipeline companies.

Modeling Technique:  
— ITS, Heuristic algorithm, operates iteratively until supply/demand 

convergence is realized across the network
— PTS, Econometric estimation and accounting algorithm
— DTS, Econometric estimation
— Canada and Mexico supplies based on a combination of estimated 

equations and basic assumptions. 

Model Interfaces: NEMS 

Computing Environment:

Hardware Used:  Personal Computer
Operating System:  UNIX simulation
Language/Software Used:  FORTRAN
Storage Requirement: 2,700K bytes for input data storage; 1,100K 
bytes for source code storage; and 17,500K bytes for compiled 
code storage
Estimated Run Time: Varies from NEMS iteration and from 
computer processor, but rarely exceeds a quarter of a second per 
iteration and generally is less than 5 hundredths of a second.
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Status of Evaluation Efforts:

Model developer’s report entitled “Natural Gas Transmission and Distribution Model, 
Model Developer’s Report for the National Energy Modeling System,” dated November 
14, 1994.

Date of Last Update: January 2011.
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Module of the National Energy Modeling System.

Energy Information Administration, Model Documentation Report:  Industrial Sector Demand 

Module of the National Energy Modeling System.

Energy Information Administration, Model Documentation Report:  Transportation Sector 

Demand Module of the National Energy Modeling System.

Energy Information Administration, Documentation of the Electricity Market Module.

Energy Information Administration, Documentation of the Oil and Gas Supply Module.

Energy Information Administration, EIA Model Documentation:  Petroleum Market Module of 

the National Energy Modeling System.
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Appendix D.  Model Equations

This appendix presents the mapping of each equation (by equation number) in the documentation 
with the subroutine in the NGTDM code where the equation is used or referenced.
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Chapter 2 Equations
EQ. # SUBROUTINE (or FUNCTION *)

1 NGDMD_CRVF* (core), NGDMD_CRVI* (noncore)

2-19 NGSUP_PR*

20-25 NGOUT_CAN

26-39 NGCAN_FXADJ

40 NGOUT_MEX

41 NGSETLNG_INGM

42-54 NGTDM_DMDALK

Chapter 4 Equations
EQ. # SUBROUTINE (or FUNCTION *)

55, 58 NGSET_NODEDMD, NGDOWN_TREE

56, 59 NGSET_NODECDMD

57, 60 NGSET_YEARCDMD

61, 62 NGDOWN_TREE

63 NGSET_INTRAFLO

64 NGSET_INTRAFLO

65 NGSHR_CALC

66 NGDOWN_TREE

67 NGSET_MAXFLO*

68-71 NGSET_MAXPCAP

72-76 NGSET_MAXFLO*

77-79 NGSET_ACTPCAP

80-81 NGSHR_MTHCHK

82-85 NGSET_SUPPR

86-87 NGSTEO_BENCHWPR

88 NGSTEO_BENCHWPR

89-90 NGSET_ARCFEE
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91-94 NGUP_TREE

95 NGSET_STORPR

96-97 NGUP_TREE

98 NGCHK_CONVNG

99 NGSET_SECPR

100 NGSET_BENCH, HNGSET_CGPR

101-106 NGSET_SECPR

Chapter 5 Equations
EQ. # SUBROUTINE (or FUNCTION *)

107-118 NGDTM_FORECAST_DTARF

119-120 NGDTM_FORECAST_TRNF

121-126 NGTDM_CNGBUILD

Chapter 6 Equations
EQ. # SUBROUTINE (or FUNCTION *)

127-132, 136-154, 203-205 NGPREAD

133-135, 155-156 NGPIPREAD

176-194, 206, 208-221 NGPSET_PLCOS_COMPONENTS

157-166, 172, 207, 222-231,
238

NGPSET_PLINE_COSTS

167-171, 232-237, 238-243 NGPIPE_VARTAR*

251-253 NGSTREAD

244-250, 254-256, 260-287 NGPSET_STCOS_COMPONENTS

257-259 NGPST_DEVCONST

173-175, 288-292 X1NGSTR_VARTAR*

195-202 (accounting relationships, not part of code)

293-205 NGFRPIPE_TAR*
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Appendix E. Model Input Variable Mapped to Data Input Files

This appendix provides a list of the FORTRAN variables, and their associated input files, that 
are assigned values through FORTRAN READ statements in the source code of the NGTDM.  
Information about all of these variables and their assigned values (including sources, derivations, 
units, and definitions) are provided in the indicated input files of the NGTDM.  The data file 
names and versions used for the AEO2011 are identified below.  These files are located on the 
EIA NEMS-F8 NT server. Electronic copies of these input files are available as part of the 
NEMS2011 archive package.  The archive package can be downloaded from 
ftp://ftp.eia.doe.gov/pub/forecasts/aeo.  In addition, the files are available upon request from Joe 
Benneche at (202) 586-6132 or Joseph.Benneche@eia.doe.gov.

ngcan.txt V1.68 nghismn.txt V1.30 ngptar.txt V1.26
ngcap.txt V1.32 nglngdat.txt V1.79 nguser.txt V1.150
ngdtar.txt V1.38 ngmap.txt V1.7
nghisan.txt V1.35 ngmisc.txt V1.155
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Variable File

ACTPCAP NGCAN
ACTPCAP NGCAP
ADDYR NGCAP
ADJ_PIP NGPTAR
ADJ_STR NGPTAR
ADW NGHISAN
AFR_CMEN NGPTAR
AFR_DDA NGPTAR
AFR_DIT NGPTAR
AFR_FSIT NGPTAR
AFR_LTDN NGPTAR
AFR_OTTAX NGPTAR
AFR_PFEN NGPTAR
AFR_TOM NGPTAR
AFX_CMEN NGPTAR
AFX_DDA NGPTAR
AFX_DIT NGPTAR
AFX_FSIT NGPTAR
AFX_LTDN NGPTAR
AFX_OTTAX NGPTAR
AFX_PFEN NGPTAR
AFX_TOM NGPTAR
AK_C NGMISC
AK_CM NGMISC
AK_CN NGMISC
AK_D NGMISC
AK_E NGMISC
AK_EM NGMISC
AK_ENDCONS_N NGMISC
AK_F NGMISC
AK_G NGMISC
AK_HDD NGMISC
AK_IN NGMISC
AK_PCTLSE NGMISC
AK_PCTPIP NGMISC
AK_PCTPLT NGMISC
AK_POP NGMISC
AK_QIND_S NGMISC
AK_RM NGMISC
AK_RN NGMISC
AKPIP1 NGMISC
AKPIP2 NGMISC
AL_ADJ NGHISAN
AL_OFFD NGHISAN
AL_OFST NGHISAN
AL_OFST2 NGHISAN
AL_ONSH NGHISAN
AL_ONSH2 NGHISAN
ALB_TO_L48 NGMISC
ALNGA NGLNGDAT
ALNGB NGLNGDAT
ALPHA_PIPE NGPTAR
ALPHA_STR NGPTAR
ALPHA2_PIPE NGPTAR
ALPHA2_STR NGPTAR
ALPHAFAC NGUSER

Variable File

ANUM NGMAP
ARC_FIXTAR NGCAN
ARC_VARTAR NGCAN
AVGCOST NGPTAR
AVR_CMEN NGPTAR
AVR_DDA NGPTAR
AVR_DIT NGPTAR
AVR_FSIT NGPTAR
AVR_LTDN NGPTAR
AVR_OTTAX NGPTAR
AVR_PFEN NGPTAR
AVR_TOM NGPTAR
BA_PREM NGMISC
BAJA_CAP NGMISC
BAJA_FIX NGMISC
BAJA_LAG NGMISC
BAJA_MAX NGMISC
BAJA_PRC NGMISC
BAJA_STAGE NGMISC
BAJA_STEP NGMISC
BEQ_BLDAVG NGMISC
BEQ_BLDHRSK NGMISC
BEQ_OPRAVG NGMISC
BEQ_OPRHRSK NGMISC
BNEWCAP_2003_2004 NGPTAR
BNEWCAP_POST2004 NGPTAR
BNEWCAP_PRE2003 NGPTAR
BPPRC NGCAN
BPPRCGR NGCAN
CAN_XMAPCN NGMAP
CAN_XMAPUS NGMAP
CANEXP NGCAN
CM_ADJ NGDTAR
CM_ALP NGDTAR
CM_LNQ NGDTAR
CM_PKALP NGDTAR
CM_RHO NGDTAR
CN_DMD NGCAN
CN_FIXSHR NGCAN
CN_FIXSUP NGCAN
CN_OILSND NGCAN
CN_UNPRC NGCAN
CN_WOP NGCAN
CNCAPSW NGUSER
CNG_BUILDCOST NGDTAR
CNG_HRZ NGDTAR
CNG_MARKUP NGDTAR
CNG_RETAIL_MARKUPNGDTAR
CNG_WACC NGDTAR
CNPER_YROPEN NGCAP
CNPLANYR NGCAN
CON NGHISMN
CON_ELCD NGHISMN
CON_EPMGR NGHISMN
CONNOL_ELAS NGCAN
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Variable File

CTG_BASCGG NGMISC
CTG_BASCGGCO2 NGMISC
CTG_BASCGS NGMISC
CTG_BASCGSCO2 NGMISC
CTG_BASCOL NGMISC
CTG_BASHHV NGMISC
CTG_BASSIZ NGMISC
CTG_BCLTON NGMISC
CTG_BLDX NGMISC
CTG_BLDX NGMISC
CTG_BLDYRS NGMISC
CTG_CAPYR$ NGMISC
CTG_CO2 NGMISC
CTG_DCLCAPCST NGMISC
CTG_DCLOPRCST NGMISC
CTG_FSTYR NGMISC
CTG_IINDX NGMISC
CTG_INCBLD NGMISC
CTG_INVLOC NGMISC
CTG_NAM NGMISC
CTG_NCL NGMISC
CTG_OH_LCFAC NGMISC
CTG_OSBLFAC NGMISC
CTG_PCTCNTG NGMISC
CTG_PCTENV NGMISC
CTG_PCTLND NGMISC
CTG_PCTSPECL NGMISC
CTG_PCTWC NGMISC
CTG_PRJLIFE NGMISC
CTG_PUCAP NGMISC
CTG_SINVST NGMISC
CTG_STAFF_LCFAC NGMISC
CWC_DISC NGPTAR
CWC_K NGPTAR
CWC_RHO NGPTAR
CWC_TOM NGPTAR
D_ADDA NGPTAR
D_ADDA NGPTAR
D_ADIT NGPTAR
D_ADIT NGPTAR
D_APRB NGPTAR
D_APRB NGPTAR
D_CMEN NGPTAR
D_CMER NGPTAR
D_CMER NGPTAR
D_CMES NGPTAR
D_CONST NGPTAR
D_CONST NGPTAR
D_CONST NGPTAR
D_CONST NGPTAR
D_CWC NGPTAR
D_CWC NGPTAR
D_DDA NGPTAR
D_DDA NGPTAR
D_DIT NGPTAR

Variable File

D_DIT NGPTAR
D_FLO NGPTAR
D_FSIT NGPTAR
D_GCMES NGPTAR
D_GLTDS NGPTAR
D_GPFES NGPTAR
D_GPIS NGPTAR
D_GPIS NGPTAR
D_LTDN NGPTAR
D_LTDR NGPTAR
D_LTDR NGPTAR
D_LTDS NGPTAR
DMAP NGMAP
D_MXPKFLO NGPTAR
D_NPIS NGPTAR
D_NPIS NGPTAR
D_OTTAX NGPTAR
D_OTTAX NGPTAR
D_PFEN NGPTAR
D_PFER NGPTAR
D_PFER NGPTAR
D_PFES NGPTAR
D_TCAP NGPTAR
D_TOM NGPTAR
D_TOM NGPTAR
D_WCAP NGPTAR
DDA_NEWCAP NGPTAR
DDA_NPIS NGPTAR
DECL_GASREQ NGCAN
DEXP_FRMEX NGMISC
DFAC_TOMEX NGMISC
DFR NGCAN
DFR NGCAN
DMASP NGCAN
DMASP NGCAN
EL_ALP NGDTAR
EL_CNST NGDTAR
EL_PARM NGDTAR
EL_RESID NGDTAR
EL_RHO NGDTAR
ELE_GFAC NGMISC
EMMSUB_EL NGMAP
EMMSUB_NG NGMAP
EMRP_BLDAVG NGMISC
EMRP_BLDHRSK NGMISC
EMRP_OPRAVG NGMISC
EMRP_OPRHRSK NGMISC
EQUITY_BLDAVG NGMISC
EQUITY_BLDHRSK NGMISC
EQUITY_OPRAVG NGMISC
EQUITY_OPRHRSK NGMISC
EXP_A NGPTAR
EXP_B NGPTAR
EXP_C NGPTAR
EXP_FRMEX NGMISC
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Variable File

FDGOM NGHISMN
FDIFF NGDTAR
FE_CCOST NGMISC
FE_EXPFAC NGMISC
FE_FR_TOM NGMISC
FE_PFUEL_FAC NGMISC
FE_R_STTOM NGMISC
FE_R_TOM NGMISC
FE_STCCOST NGMISC
FE_STEXPFAC NGMISC
FEDTAX_RT NGMISC
FIXLNGFLG NGMAP
FLO_THRU_IN NGCAN
FMASP NGCAN
FMASP NGCAN
FR_AVGTARYR NGMISC
FR_BETA NGMISC
FR_CAPITL0 NGMISC
FR_CAPYR NGMISC
FR_DEBTRATIO NGMISC
FR_DISCRT NGMISC
FR_ESTNYR NGMISC
FR_OTXR NGMISC
FR_PADDTAR NGMISC
FR_PCNSYR NGMISC
FR_PDRPFAC NGMISC
FR_PEXPFAC NGMISC
FR_PFUEL NGMISC
FR_PMINWPR NGMISC
FR_PMINYR NGMISC
FR_PPLNYR NGMISC
FR_PRISK NGMISC
FR_PTREAT NGMISC
FR_PVOL NGMISC
FR_ROR_PREM NGMISC
FR_TOM0 NGMISC
FR_TXR NGMISC
FRATE NGPTAR
FREE_YRS NGDTAR
FRMETH NGCAN
FSRGN NGMAP
FSTYR_GOM NGHISAN
FTAX NGDTAR
FUTWTS NGMISC
GAMMAFAC NGUSER
GDP_B87 NGMISC
GOF_AL NGHISAN
GOF_CA NGHISAN
GOF_LA NGHISAN
GOF_TX NGHISAN
HAFLOW NGMISC
HCG_BENCH NGDTAR
HCGPR NGHISAN
HCUMSUCWEL NGCAN
HDYWHTLAG NGDTAR

Variable File

HELE_SHR NGMISC
HFAC_GPIS NGPTAR
HFAC_REV NGPTAR
HHDD NGDTAR
HI_RN NGMISC
HIND_SHR NGMISC
HISTRESCAN NGCAN
HISTWELCAN NGCAN
HNETINJ NGCAN
HNETWTH NGCAN
HNETWTH NGHISMN
HPEMEX_SHR NGMISC
HPIMP NGHISAN
HPKSHR_FLOW NGMISC
HPKUTZ NGCAP
HPRC NGHISMN
HPSUP NGCAN
HQIMP NGHISAN
HQSUP NGCAN
HQTY NGHISMN
HRC_SHR NGMISC
HW_ADJ NGDTAR
HW_BETA0 NGDTAR
HW_BETA1 NGDTAR
HW_RHO NGDTAR
HYEAR NGHISAN
ICNBYR NGCAN
IEA_CON NGMISC
IEA_PRD NGMISC
IMASP NGCAN
IMASP NGCAN
IMP_TOMEX NGMISC
IN_ALP NGDTAR
IN_CNST NGDTAR
IN_DIST NGDTAR
IN_LNQ NGDTAR
IN_PKALP NGDTAR
IN_RHO NGDTAR
IND_GFAC NGMISC
INFL_RT NGMISC
INIT_GASREQ NGCAN
INS_FAC NGMISC
INTRAREG_TAR NGDTAR
INTRAST_TAR NGDTAR
IPR NGCAN
IRES NGCAN
IRG NGCAN
IRIGA NGCAN
IRIGA NGCAN
JNETWTH NGHISMN
LA_OFFD NGHISAN
LA_OFST NGHISAN
LA_ONSH NGHISAN
LABORLOC NGMISC
LEVELYRS NGPTAR
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Variable File

LNG_XMAP NGMAP
LNGA NGLNGDAT
LNGB NGLNGDAT
LNGCAP NGLNGDAT
LNGCRVOPT NGLNGDAT
LNGDATA NGMISC
LNGDIF_GULF NGLNGDAT
LNGDIFF NGMISC
LNGFIX NGLNGDAT
LNGMIN NGLNGDAT
LNGPPT NGLNGDAT
LNGPS NGLNGDAT
LNGQPT NGLNGDAT
LNGQS NGLNGDAT
LNGTAR NGLNGDAT
LSTYR_MMS NGHISAN
MAINT_FAC NGMISC
MAP_NG NGMAP
MAP_NRG_CRG NGDTAR
MAP_OG NGMAP
MAP_PRDST NGHISMN
MAP_STSUB NGHISAN
MAPLNG_NEW NGMAP
MAPLNG_NG NGMAP
MAX_CNG_BUILD NGDTAR
MAXCYCLE NGUSER
MAXPLNG NGLNGDAT
MAXPRRFAC NGMISC
MAXPRRNG NGMISC
MAXUTZ NGCAP
MBAJA NGMISC
MDPIP1 NGMISC
MDPIP2 NGMISC
MEX_XMAP NGMAP
MEX_XMAP NGMAP
MEXEXP_SHR NGMISC
MEXIMP_SHR NGMISC
MEXLNG NGMISC
MEXLNGMIN NGLNGDAT
MISC_GAS NGHISAN
MISC_OIL NGHISAN
MISC_ST NGHISAN
MON_PEXP NGHISMN
MON_PIMP NGHISMN
MON_QEXP NGHISMN
MON_QIMP NGHISMN
MONMKT_PRD NGHISMN
MSPLIT_STSUB NGHISAN
MUFAC NGUSER
NAW NGHISAN
NCNMX NGCAN
NELE_SHR NGMISC
NG_CENMAP NGMAP
NGCFEL NGHISMN
NGDBGCNTL NGUSER

Variable File

NGDBGRPT NGUSER
NIND_SHR NGMISC
NINJ_TOT NGHISMN
NLNGA NGLNGDAT
NLNGB NGLNGDAT
NLNGPTS NGLNGDAT
NNETWITH NGUSER
NOBLDYR NGUSER
NODE_ANGTS NGMAP
NODE_SNGCOAL NGMAP
NONU_ELAS_F NGDTAR
NONU_ELAS_I NGDTAR
NPEMEX_SHR NGMISC
NPROC NGMAP
NQPF_TOT NGHISMN
NRC_SHR NGMISC
NRCI_INV NGMISC
NRCI_LABOR NGMISC
NRCI_OPER NGMISC
NSRGN NGMAP
NSTAT NGDTAR
NSTSTOR NGHISMN
NSUPLM_TOT NGHISMN
NUM_REGSHR NGDTAR
NUMRS NGDTAR
NWTH_TOT NGHISMN
NYR_MISS NGHISAN
OCSMAP NGMAP
oEL_MRKUP_BETA NGDTAR
oEL_MRKUP_BETA NGDTAR
OEQGCELGR NGMISC
OEQGFELGR NGMISC
OEQGIELGR NGMISC
OF_LAST NGHISAN
OOGHHPRNG NGMISC
OOGQNGEXP NGMISC
OPPK NGCAP
OPTCOM NGDTAR
OPTELO NGDTAR
OPTELP NGDTAR
OPTIND NGDTAR
OPTRES NGDTAR
OQGCELGR NGMISC
OQGFEL NGMISC
OQGFELGR NGMISC
OQGIEL NGMISC
OQGIELGR NGMISC
OQNGEL NGMISC
OSQGFELGR NGMISC
OSQGIELGR NGMISC
OTH_FAC NGMISC
PARM_LNGCRV3 NGLNGDAT
PARM_LNGCRV5 NGLNGDAT
PARM_LNGELAS NGLNGDAT
PARM_MINPR NGUSER
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Variable File

PARM_SUPCRV3 NGUSER
PARM_SUPCRV5 NGUSER
PARM_SUPELAS NGUSER
PCLADJ NGMISC
PCNT_R NGPTAR
PCT_AL NGHISAN
PCT_LA NGHISAN
PCT_MS NGHISAN
PCT_TX NGHISAN
PCTADJSHR NGUSER
PCTFLO NGUSER
PEAK NGCAP
PEMEX_GFAC NGMISC
PEMEX_PRD NGMISC
PER_YROPEN NGCAP
PERFDTX NGHISAN
PERMG NGDTAR
PIPE_FACTOR NGPTAR
PKOPMON NGMISC
PKSHR_CDMD NGCAN
PKSHR_PROD NGCAN
PLANPCAP NGCAP
PLANPCAP NGCAP
PMMMAP_NG NGMAP
PNGIMP NGLNGDAT
PRAT NGCAN
PRAT NGCAN
PRC_EPMCD NGHISMN
PRC_EPMGR NGHISMN
PRCWTS NGMISC
PRCWTS2 NGMISC
PRD_GFAC NGMISC
PRD_MLHIS NGHISMN
PRICE_AL NGHISAN
PRICE_CA NGHISAN
PRICE_LA NGHISAN
PRICE_TX NGHISAN
PRJSDECOM NGMISC
PRMETH NGCAN
PROC_ORD NGMAP
PSUP_DELTA NGUSER
PTCURPCAP NGCAP
PTMAXPCAP NGCAN
PTMBYR NGPTAR
PTMSTBYR NGPTAR
PUTL_POW NGHISAN
Q23TO3 NGCAN
QAK_ALB NGMISC
QLP_LHIS NGHISMN
QMD_ALB NGMISC
QNGIMP NGLNGDAT
QOF_AL NGHISAN
QOF_ALFD NGHISAN
QOF_ALST NGHISAN
QOF_CA NGHISAN

Variable File

QOF_GM NGHISAN
QOF_LA NGHISAN
QOF_LAFD NGHISAN
QOF_MS NGHISAN
QOF_TX NGHISAN
QSUP_DELTA NGUSER
QSUP_SMALL NGUSER
QSUP_WT NGUSER
RC_GFAC NGMISC
RECS_ALIGN NGDTAR
RESBASE NGCAN
RESBASYR NGCAN
RESTECH NGCAN
RETAIL_COST NGDTAR
REV NGHISMN
RGRWTH NGCAN
RGRWTH NGCAN
ROF_AL NGHISAN
ROF_CA NGHISAN
ROF_GM NGHISAN
ROF_LA NGHISAN
ROF_MS NGHISAN
ROF_TX NGHISAN
RS_ADJ NGDTAR
RS_ALP NGDTAR
RS_COST NGDTAR
RS_LNQ NGDTAR
RS_PARM NGDTAR
RS_PKALP NGDTAR
RS_RHO NGDTAR
SCEN_DIV NGHISAN
SCH_ID NGHISAN
SELE_SHR NGMISC
SHR_OPT NGUSER
SIM_EX NGHISAN
SIND_SHR NGMISC
SITM_RG NGHISAN
SNG_EM NGHISAN
SNG_OG NGHISAN
SNGCOAL NGHISAN
SNGCOAL NGMISC
SNGLIQ NGHISAN
SPCNEWFAC NGPTAR
SPCNODID NGPTAR
SPCNODID NGPTAR
SPCNODN NGPTAR
SPCPNODBAS NGPTAR
SPEMEX_SHR NGMISC
SPIN_PER NGHISAN
SRATE NGPTAR
SRC_SHR NGMISC
STADIT_ADIT NGPTAR
STADIT_C NGPTAR
STADIT_NEWCAP NGPTAR
STAX NGDTAR
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Variable File

STCCOST_BETAREG NGPTAR
STCCOST_CREG NGPTAR
STCWC_CREG NGPTAR
STCWC_RHO NGPTAR
STCWC_TOTCAP NGPTAR
STDDA_CREG NGPTAR
STDDA_NEWCAP NGPTAR
STDDA_NPIS NGPTAR
STDISCR NGUSER
STENDCON NGUSER
STEOYRS NGUSER
STEP_CN NGCAN
STEP_MX NGCAN
STLNGIMP NGUSER
STLNGRG NGUSER
STLNGRGN NGUSER
STLNGYR NGUSER
STLNGYRN NGUSER
STOGPRSUP NGUSER
STOGWPRNG NGUSER
STPHAS_YR NGUSER
STPIN_FLG NGUSER
STPNGCM NGUSER
STPNGEL NGUSER
STPNGIN NGUSER
STPNGRS NGUSER
STQGPTR NGUSER
STQLPIN NGUSER
STR_EFF NGPTAR
STR_FACTOR NGPTAR
STRATIO NGPTAR
STSCAL_CAN NGUSER
STSCAL_DISCR NGUSER
STSCAL_FPR NGUSER
STSCAL_IPR NGUSER
STSCAL_LPLT NGUSER
STSCAL_NETSTR NGUSER
STSCAL_PFUEL NGUSER
STSCAL_SUPLM NGUSER
STSCAL_WPR NGUSER

Variable File

STSTATE NGHISMN
STTAX_RT NGMISC
STTOM_C NGPTAR
STTOM_RHO NGPTAR
STTOM_WORKCAP NGPTAR
STTOM_YR NGPTAR
SUPARRAY NGMAP
SUPCRV NGUSER
SUPREG NGMAP
SUPSUB_NG NGMAP
SUPSUB_OG NGMAP
SUPTYPE NGMAP
SUTZ NGCAP
SUTZ NGCAP
TAX_FAC NGMISC
TFD NGDTAR
TFDYR NGDTAR
TOM_BYEAR NGPTAR
TOM_BYEAR_EIA NGPTAR
TOM_DEPSHR NGPTAR
TOM_GPIS1 NGPTAR
TOM_K NGPTAR
TOM_RHO NGPTAR
TOM_YR NGPTAR
TRN_DECL NGDTAR
TTRNCAN NGCAN
URES NGCAN
URES NGCAN
URG NGCAN
URG NGCAN
UTIL_ELAS_F NGDTAR
UTIL_ELAS_I NGDTAR
WHP_LHIS NGHISMN
WLMETH NGCAN
WPR4CAST_FLG NGUSER
XBLD NGCAP
XBM_ISBL NGMISC
XBM_LABOR NGMISC
YDCL_GASREQ NGCAN



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module 188

Appendix F. Derived Data
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Table F1

Data: Parameter estimates for the Alaskan natural gas consumption equations for the 
residential and commercial sectors and the Alaskan natural gas wellhead price.

Author: Tony Radich, EIA, June 2007, reestimated by Margaret Leddy, EIA, July 2009

Source: Natural Gas Annual, DOE/EIA-0131.

Derivation: Annual data from 1974 through 2008 were transformed into logarithmic form, tested 
for unit roots, and examined for simple correlations.  When originally estimated, 
heating degree day quantity was calculated using a five-year average, but was
statistically insignificant in both the residential and commercial cases and dropped 
from the final estimations.  Lags of dependent variables were added as needed to 
remove serial correlation from residuals.  Heteroskedasticity-consistent standard error 
estimators were also used as needed.

Residential Natural Gas Consumption

The forecast equation for residential natural gas consumption is estimated below:

LN_CONS_RES = ( 0*(1 – -1) + ( 1 *(1 – -1)*LN_RES_CUST)
+ ( -1*(LN_CONS_RES(-1)*1000)))/1000.

where,
LN_CONS_RES = natural log of Alaska residential natural gas consumption in MMcf
LN_RES_CUST = natural log of thousands of Alaska residential gas customers. See the 

forecast equation for Alaska residential gas customers in Table F2.
(-1) = first lag

All variables are annual from 1974 through 2008.

Regression Diagnostics and Parameters Estimates:

Dependent Variable: LN_CONS_RES

Method: Least Squares

Date: 07/03/07 

Sample (adjusted): 1974 – 2008

Included observations: 35 after adjustments

Newey-West HAC Standard Errors & Covariance (lag truncation=3)

Variable Coefficient Std. Error t-Statistic Prob. Symbol

C 6.983794 0.608314 11.48058 0.0000 0

LN_RES_CUST 0.601932 0.136919 4.396257 0.0001 1

AR(-1) 0.364042 0.117856 3.088872 0.0041 -1
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R-squared 0.788754 Mean dependent var 9.486861

Adjusted R-squared 0.775552 S.D. dependent var 0.329138

S.E. of regression 0.155932 Akaike info criterion -0.79697

Sum squared resid 0.778077 Schwarz criterion -0.66366

Log likelihood 16.94702 Hannan-Quinn criter. -0.75095

F-statistic 59.74123 Durbin-Watson stat 1.957789

Prob(F-statistic) 0.00000

The equation for the Alaska residential natural gas consumption translates into the following forecast 
equation in the code:

AKQTY_F(1) = (exp(6.983794 * (1 - 0.364042)) * (AK_RN(t))**(0.601932 * 
(1 - 0.364042)) * (PREV_AKQTY(1,t-1)*1000)**
(0.364042))/1000.

where,
AKQTY_F(1) = residential Alaskan natural gas consumption, (Bcf)  

PREV_AKQTY(1,t-1) = previous year’s residential Alaskan natural gas consumption, (Bcf)
AK_RN(t) = residential consumers (thousands) at current year.  See Table F2

Commercial Natural Gas Consumption

The forecast equation for commercial natural gas consumption is estimated below:

LN_CONS_COM = ( 0*(1 – -1) + ( 1*LN_COM_CUST) +
(- -1* 1)*LN_COM_CUST(-1) + ( -1*
LN_CONS_COM(-1)*1000))/1000.

where,
LN_CONS_COM = natural log of Alaska commercial natural gas consumption in MMcf
LN_COM_CUST = natural log of thousands of Alaska commercial gas customers. See the 

forecast equation in Table F2.
(-1) = first lag

All variables are annual from 1974 through 2008.

Regression Diagnostics and Parameters Estimates:

Dependent Variable: LN_CONS_COM

Method: Least Squares

Date: 07/22/09   Time: 09:36

Sample (adjusted): 1974 2008

Included observations: 35 after adjustments

Convergence achieved after 9 iterations

Newey-West HAC Standard Errors & Covariance (lag truncation=3)
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Variable Coefficient Std. Error t-Statistic Prob. Symbol

C 9.425307 0.229458 41.07648 0.0000 0

LN_COM_CUST 0.205020 0.115140 1.780615 0.0845 1

AR(1) 0.736334 0.092185 7.987556 0.0000 -1

R-squared 0.696834 Mean dependent var 9.885287

Adjusted R-squared 0.677886 S.D. dependent var 0.213360

S.E. of regression 0.121093 Akaike info criterion -1.302700

Sum squared resid 0.469232 Schwarz criterion -1.169385

Log likelihood 25.79725 Hannan-Quinn criter. -1.256680

F-statistic 36.77630 Durbin-Watson stat 1.680652

Prob(F-statistic) 0.000000

The equation in the code for the Alaska commercial natural gas consumption follows:

AKQTY_F(2) = (exp(9.425307 * (1 - 0.736334)) * (AK_CN(t)**(0.205020)) *     
(AK_CN(t-1)**(-0.736334 * 0.205020)) *
(PREV_AKQTY(2,t-1)*1000.)**(0.736334)))/1000.

where,
AKQTY_F(2) = commercial Alaskan natural gas consumption, (Bcf)

PREV_AKQTY(2,t-1) = previous year’s commercial Alaskan natural gas consumption, (Bcf)
AK_CN(t) = commercial consumers (thousands) at current year. See Table F2

Natural Gas Wellhead Price

The forecast equation for natural gas wellhead price is determined below:

lnAK_WPRCt = -1*lnAK_WPRCt-1 1*(1- -1)*lnIRAC87

Dependent Variable: LN_WELLHEAD_PRICE

Method: Least Squares

Date: 07/22/09   Time: 13:25

Sample (adjusted): 1974 2008

Included observations: 35 after adjustments

Convergence achieved after 6 iterations

Coefficient Std. Error t-Statistic Prob. Symbol

LN_IRAC87 0.280760 0.101743 2.759499 0.0094 1

AR(1) 0.934077 0.040455 23.08940 0.0000 -1

R-squared 0.881227 Mean dependent var 0.135244

Adjusted R-squared 0.877628 S.D. dependent var 0.540629

S.E. of regression 0.189122 Akaike info criterion -0.437408

Sum squared resid 1.180310 Schwarz criterion -0.348531

Log likelihood 9.654637 Hannan-Quinn criter. -0.406727

Durbin-Watson stat 2.121742

Inverted AR Roots .93

The forecast equation becomes:
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AK_WPRCt = AK_WPRCt-1
0.934077 * oIT_WOPy,1

(0.280760*(1-0.934077))

where,
AK_WPRCt = average natural gas wellhead price (1987$/Mcf) in year t.

AK_F = Parameters for Alaskan natural gas wellhead price (Appendix E).
oIT_WOPy,1 or IRAC87 = World oil price (International Refinery Acquisition Cost) 

(1987$/barrel)
t = year index

Data used in estimating parameters in Tables F1 and F2

(mmcf) (mmcf) 1987$/Mcf 1987$/Mcf 1987$/Mcf Thousand Thousand Thousand (2000=1) 87$/bbl Mbbl

Res_Cons Com_Con Res_Price Com_Price
Wellhead 
Price Population

HDD, 
Alaska

Res_ 
Cust

Com_ 
Cust

GDP 
defl IRAC oil_prod

1973 5024 12277 3.61 1.79 0.34 336.4 12865 23 3 0.3185 9.38

1974 4163 13106 3.33 1.83 0.36 348.1 12655 22 4 0.3473 26.39

1975 10393 14415 3.14 1.87 0.58 384.1 12391 25 4 0.38 26.83

1976 10917 14191 3 1.89 0.71 409.8 11930 28 4 0.402 24.55

1977 11282 14564 2.93 2.29 0.68 418 12521 30 5 0.4275 24.88

1978 12166 15208 2.82 2.11 0.83 411.6 11400 33 5 0.4576 23.31

1979 7313 15862 2.53 1.52 0.77 413.7 11149 36 6 0.4955 32.01

1980 7917 16513 2.34 1.44 0.99 419.8 10765 37 6 0.5404 45.9

1981 7904 16149 2.41 1.73 0.77 434.3 11248 40 6 0.5912 45.87 587337

1982 10554 24232 2.09 1.86 0.74 464.3 11669 48 7 0.6273 39.15 618910

1983 10434 24693 2.62 2.18 0.82 499.1 10587 55 8 0.6521 32.89 625527

1984 11833 24654 2.69 2.24 0.79 524 12161 63 10 0.6766 31.25 630401

1985 13256 20344 2.95 2.48 0.78 543.9 11237 65 10 0.6971 28.34 666233

1986 12091 20874 3.34 2.6 0.51 550.7 11398 66 11 0.7125 14.38 681310

1987 12256 20224 3.21 2.41 0.94 541.3 11704 67.648 11.484 0.732 18.13 715955

1988 12529 20842 3.35 2.51 1.23 535 11116 68.612 11.649 0.7569 14.08 738143

1989 13589 21738 3.38 2.39 1.27 538.9 10884 69.54 11.806 0.7856 16.85 683979

1990 14165 21622 3.4 2.36 1.24 553.17 11101 70.808 11.921 0.8159 19.52 647309

1991 13562 20897 3.62 2.51 1.28 569.05 11582 72.565 12.071 0.8444 16.21 656349

1992 14350 21299 3.21 2.24 1.19 586.72 11846 74.268 12.204 0.8639 15.42 627322

1993 13858 20003 3.28 2.3 1.18 596.91 11281 75.842 12.359 0.8838 13.37 577495

1994 14895 20698 2.92 2.01 1.03 600.62 11902 77.67 12.475 0.9026 12.58 568951

1995 15231 24979 2.88 1.8 1.3 601.58 10427 79.474 12.584 0.9211 13.62 541654

1996 16179 27315 2.67 1.81 1.26 605.21 11498 81.348 12.732 0.9385 16.1 509999

1997 15146 26908 2.89 1.87 1.4 609.66 11165 83.596 12.945 0.9541 14.22 472949

1998 15617 27079 2.78 1.83 1 617.08 11078 86.243 13.176 0.9647 9.14 428850

1999 17634 27667 2.72 1.63 1.02 622 12227 88.924 13.409 0.9787 12.91 383199

2000 15987 26485 2.62 1.51 1.29 627.53 10908 91.297 13.711 1 20.28 355199

2001 16818 15849 3.02 2.26 1.42 632.24 12227 93.896 14.002 1.024 15.73 351411

2002 16191 15691 3.1 2.4 1.5 640.54 10908 97.077 14.342 1.0419 16.66 359335

2003 16853 17270 3.02 2.46 1.66 647.75 10174 100.4 14.502 1.064 19.06 355582

2004 18200 18373 3.26 2.77 2.29 656.83 10296 104.36 13.999 1.0946 24.01 332465

2005 18029 16903 3.71 3.19 3.08 663.25 10103 108.4 14.12 1.13 31.65 315420

2006 20616 18544 4.29 2.98 3.64 670.05 11269 112.27 14.384 1.1657 37.06 270486

2007 19843 18756 5.31 4.63 3.44 668.74 10815 115.5 13.408 1.1966 41.01 263595

2008 21440 18717.5 5.21 4.73 3.88 671.31 11640 118 13 1.225 55.44 249874
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Table F2

Data: Equations for the number of residential and commercial customers in Alaska

Author: Tony Radich, EIA, June, 2007 and Margaret Leddy, July 2009.

Source: Natural Gas Annual (1985-2000), DOE/EIA-0131, see Table F1.

Derivation:

a. Residential customers

Since 1967, the number of residential households has increased steadily, mirroring the population
growth in Alaska.  Because the current year’s population is highly dependent on the previous year’s 
value, the number of residential consumers was estimated based on its lag values.  The forecast 
equation is determined as follows:

NRSt = 0 + -1 * NRSt-1 -2 * NRSt-2 + 1 * POP

where,
NRS = natural log of thousands of Alaska residential gas customers (AK_RN in code)
POP = natural log of Alaska population in thousands (AK_POP in code, Appendix E)

t = year

Regression Diagnostics and Parameters Estimates:

Dependent Variable: NRS

Method: Least Squares

Date: 07/03/07   

Sample (adjusted): 1969-2005

Included observations: 37 after adjustments

Variable Coefficient Std. Error t-Statistic Prob. Symbol

C -2.677338 0.946058 -2.829994 0.0079 0

NRS(-1) 0.887724 0.166407 5.334659 0.0000 -1

NRS(-2) -0.184504 0.141213 -1.306569 0.2004 -2

POP 0.626436 0.201686 3.105990 0.0039 1

R-squared 0.995802 Mean dependent var 3.950822

Adjusted R-squared 0.995421 S.D. dependent var 0.602330

S.E. of regression 0.040760 Akaike info criterion -3.460402

Sum squared resid 0.054827 Schwarz criterion -3.286248

Log likelihood 68.01743 F-statistic 2609.424

Durbin-Watson stat 1.656152 Prob(F-statistic) 0.000000
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This translates into the following forecast equation in the code:

AK_RNt = exp[-2.677 + (0.888*log(AK_RNt-1)) - (0.185*log(AK_RNt-2))
+ (0.626*log(AK_POPt))]

b. Commercial customers

The number of commercial consumers, based on billing units, also showed a strong relationship to 
its lag value.  The forecast equation was determined using data from 1985 to 2008 as follows:

COM_CUSTt = + -1 * COM_CUSTt-1

where,
COM_CUST = number of Alaska commercial gas customers in year t, in 

thousands(AK_CM in the code)
t = year

Regression Diagnostics and Parameters Estimates:

Dependent Variable: COM_CUST

Method: Least Squares

07/14/09

Sample (adjusted): 1974-2008

Included observations: 35 after adjustments

Newey-West HAC Standard Errors & Covariance (lag truncation=3)

Variable Coefficient Std. Error t-Statistic Prob. Symbol

C 0.932946 0.294368 3.169323 0.0033 0

COM_CUST(-1) 0.937471 0.023830 39.33956 0.0000 -1

R-squared 0.982050 Mean dependent var 10.63666

Adjusted R-squared 0.981506 S.D. dependent var 3.534514

S.E. of regression 0.480669 Akaike info criterion 1.428171

Sum squared resid 7.624424 Schwarz criterion 1.517048

Log likelihood -22.99300 Hannan-Quinn criter. 1.458852

F-statistic 1805.422 Durbin-Watson 1.859586

Prob(F-statistic) 0.000000

This translates into the following forecast equation in the code:

AK_CNt = 0.932946 + (0.937471 * AK_CNt-1)
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Table F3

Data: Coefficients for the following Pipeline Tariff Submodule forecasting equations for 
pipeline and storage:  total cash working capital for the combined existing and new 
capacity; depreciation, depletion, and amortization expenses for existing capacity; 
accumulated deferred income taxes for the combined existing and new capacity; and 
total operating and maintenance expense for the combined existing and new capacity.

Author: Science Applications International Corporation (SAIC)

Source: Foster Pipeline Financial Data, 1997-2006
Foster Storage Financial Data, 1990-1998

Variables:

For Transportation:

R_CWC = total pipeline transmission cash working capital for existing and new
capacity (2005 real dollars)

DDA_E = annual depreciation, depletion, and amortization costs for existing 
capacity (nominal dollars)

NPIS_E = net plant in service for existing capacity in dollars (nominal dollars)
NEWCAP_E = change in existing gross plant in service (nominal dollars) between t 

and t-1 (set to zero during the forecast year phase since GPIS_Ea,t =
GPIS_Ea,t+1 for year t >= 2007)

ADIT = accumulated deferred income taxes (nominal dollars)
NEWCAP = change in gross plant in service between t and t-1 (nominal dollars)

R_TOM = total operating and maintenance cost for existing and new capacity 
(2005 real dollars)

GPIS = capital cost of plant in service for existing and new capacity   (nominal 
dollars)

DEPSHR = level of the accumulated depreciation of the plant relative to the gross 
plant in service for existing and new capacity at the beginning of year 
t.  This variable is a proxy for the age of the capital stock.

TECHYEAR = MODYEAR (time trend in Julian units, the minimum value of this 
variable in the sample being 1997, otherwise TECHYEAR=0 if less 
than 1997)

a = arc
t = forecast year

For Storage:

R_STCWC = total cash working capital at the beginning of year t for existing and 
new capacity (1996 real dollars)

DSTTCAP = total gas storage capacity (Bcf)
STDDA_E = annual depreciation, depletion, and amortization costs for existing 

capacity  (nominal dollars)
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STNPIS_E = net plant in service for existing capacity (nominal dollars)
STNEWCAP = change in gross plant in service for existing capacity (nominal dollars)

STADIT = accumulated deferred income taxes (nominal dollars)
NEWCAP = change in gross plant in service for the combined existing and new 

capacity between years t and t-1 (nominal dollars)
R_STTOM = total operating and maintenance cost for existing and new capacity 

(1996 real dollars)
DSTWCAP = level of gas working capacity for region r during year t (Bcf)

r = NGTDM region
t = forecast year

References: For transportation: “Memorandum describing the estimated and forecast equations 
for TOM, DDA, CWC, and ADIT for the new PTM,” by SAIC, June 23-July 22, 
2008.
For storage: “Memorandum describing the estimated and forecast equations for 
TOM, DDA, CWC, and ADIT for the new PTM,” by SAIC, May 31, 2000.

Derivation: Estimations were done by using an accounting algorithm in combination with 
estimation software.  Projections are based on a series of econometric equations 
which have been estimated using the Time Series Package (TSP) software.  
Equations were estimated by arc for pipelines and by NGTDM region for storage, 
as follows:  total cash working capital for the combined existing and new 
capacity; depreciation, depletion, and amortization expenses for existing capacity; 
accumulated deferred income taxes for the combined existing and new capacity; 
and total operating and maintenance expense for the combined existing and new 
capacity.  These equations are defined as follows:

(1) Total Cash Working Capital for the Combined Existing and New Capacity

For Transportation:

The equation was estimated using FERC Form 2 data over the period 1997 through 2006.  In this 
analysis, the data were aggregated to the ARC level so that the results would be more consistent with 
the previous model.

Because of economies in cash management, a log-linear specification between total operating and 
maintenance expenses, R_TOMa, and the level of cash working capital, R_CWCa was assumed. To 
control for arc specific effects, a binary variable was created for each of the arcs.  The associated 
coefficient represents the arc specific constant term.

The underlying notion of this equation is the working capital represents funds to maintain the capital 
stock and is therefore driven by changes in R_TOM

The forecasting equation is presented in two stages.
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Stage 1:

)R_TOMLn(*TOMCWC_)Ln(R_CWC

)R_TOMLn(*TOMCWC_(1*CWC_C=)CWCLn(R_

1ta,1ta,

ta,ata,

Stage 2:

))WCexp(Ln(R_C*CWC_K=CWCR_ ta,ta,

where,
R_CWC = total pipeline transmission cash working capital for existing and new 

capacity (2005 real dollars)
CWC_Ca = estimated arc specific constant for gas transported from node to node 

(see Table F3.2)
CWC_TOM = estimated R_TOM coefficient (see Table F3.2)

R_TOM = total operation and maintenance expenses in 2005 real dollars
CWC_K = correction factor estimated in stage 2 of the regression equation 

estimation process
= autocorrelation coefficient from estimation (see Table F3.2 --

CWC_RHO)

Ln is a natural logarithm operator and CWC_K is the correction factor estimated in equation two.

The results of this regression are reported below:

Dependent variable: R_CWC
Number of observations:  396

Mean of dep. var. = 18503.0 LM het. Test = 135.638 [.000]
Std. dev. of dep. var. = 283454.4 Durbin-Watson = 2.29318 [<1.00]
Sum of squared residuals = .116124E+11 Jarque-Bera test = 6902.15 [.000]
Variance of residuals = .293986E+08  Ramsey's RESET2 = .849453 [.357]
Std. error of regression = 5422.05 Schwarz B.I.C. = 3969.29
R-squared = .963435 Log likelihood = -3966.30
Adjusted R-squared = .963435

Estimated Standard

Variable Coefficient Error t-statistic P-value

CWC_K 1.01813 8.31E-03 122.551 [.000]

For Storage:

DSTTCAP*STCWC_R

*DSTTCAP*e=STCWC_R

1

1r0,

*-
2t-r,1t-r,

1t-r,
))-(1*(

tr,

where,

0,a = 0,r = REGr)
= STCWC_CREG (Appendix E)
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1 = 1.07386
= STCWC_TOTCAP (Appendix E)

t-statistic = (2.8) 
= 0.668332
= STCWC_RHO (Appendix E)

t-statistic = (6.8)
DW = 1.53

R-Squared = 0.99

(2) Total Depreciation, Depletion, and Amortization for Existing Capacity

(a)  existing capacity (up to 2000 for pipeline and up to 1998 for storage)

For Transportation:

The equation was estimated using FERC Form 2 data over the period 1997 through 2006.  In this 
analysis, the data were aggregated to the ARC level so that the results would be more consistent with 
the previous model. A linear specification was chosen given that DDA_E is generally believed to be 
proportional to the level of net plant.  The forecasting equation was estimated with a correction for 
first order serial correlation. 

ta,

1ta,aata,

NEWCAP_E*DDA_NEWCAP

NPISDDA_NPIS*ARC*DDA_C=DDA_E

where,
DDA_Ca = constant term estimated by arc for the binary variable ARCa (see Table 

F3.3, DDA_Ca = B_ARCxx_yy)
ARCa = binary variable created for each arc to control for arc specific effects

DDA_NPIS = estimated coefficient (see Table F3.3)
DDA_NEWCAP = estimated coefficient (see Table F3.3)

The standard errors in Table F3.3 are computed from heteroscedastic-consistent matrix 
(Robust-White). The results of this regression are reported below:

Dependent variable: DDA_E
Number of observations:  446

Mean of dep. var. = 25154.4 R-squared = .995361
Std. dev. of dep. var. = 33518.3 Adjusted R-squared = .994761
Sum of squared residuals = .231907E+10       LM het. Test = 30.7086 [.000]
Variance of residuals = .588597E+07      Durbin-Watson = 2.06651 [<1.00]
Std. error of regression = 2426.10

For Storage:

STNEWCAP*+E_STNPIS*+=E_STDDA tr,21t-r,1r0,tr,

where,
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0,a = 0,r = REGr)
= STDDA_CREG (Appendix E)

1, 2 = (0.032004, 0.028197)
= STDDA_NPIS, STDDA_NEWCAP (Appendix E)

t-statistic = (10.3)       (16.9)
DW = 1.62

R-Squared = 0.97

(b)  new capacity (generic pipelines and storage)

A regression equation is not used for the new capacity; instead, an accounting algorithm is 
used (presented in Chapter 6).

(3) Accumulated Deferred Income Taxes for the Combined Existing and New Capacity

For Transportation:

The equation was estimated using FERC Form 2 data over the period 1997 through 2006.  In this 
analysis, the data were aggregated to the ARC level so that the results would be more consistent with 
the previous model.  To control for arc specific effects, a binary variable ARCa was created for each 
of the arcs. The associated coefficient represents the arc specific constant term.

Because the level of deferred income taxes is a stock (and not a flow) it was hypothesized that a 
formulation that focused on the change in the level of accumulated deferred income taxes from the 
previous year, deltaADITa,t, would be appropriate.  Specifically, a linear relationship between the 
change in ADIT and the change in the level of gross plant in service, NEWCAPa,t, and the change in 
tax policy, POLICY_CHG, was assumed.  The form of the estimating equation is:  

ta,3ta,2

ta,1aata,

NEWCAP*NEWCAP*

NEWCAP*+ARC*ADIT_C=ADITdelta

where,
ADIT_Ca = constant term estimated by arc for the binary variable ARCa (see Table 

F3.5, ADIT_Ca = B_ARCxx_yy)

1 = BNEWCAP_PRE2003, estimated coefficient on the change in gross 
plant in service in the pre-2003 period because of changes in tax policy 
in 2003 and 2004 (Appendix F, Table F3.5). It is zero otherwise.

2 = BNEWCAP_2003_2004, estimated coefficient on the change in gross 
plant in service for the years 2003 and 2004 because of changes in tax 
policy (Appendix F, Table F3.5). It is zero otherwise.

3 = BNEWCAP_POST2004, estimated coefficient on the change in gross 
plant in service in the post-2004 period because of changes in tax 
policy (Appendix F, Table F3.5). It is zero otherwise.
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The estimation results are:

Dependent variable: DELTAADIT
Number of observations:  396

Mean of dep. var. = 6493.50 R-squared = .464802
Std. dev. of dep. var. = 17140.8 Adjusted R-squared = .383664
Sum of squared residuals = .621120E+11        LM het. test = 4.03824 [.044]
Variance of residuals = .181084E+09       Durbin-Watson = 2.44866 [<1.00]
Std. error of regression = 13456.8

For Storage:

NEWCAP*+STADIT*+=STADIT tr,21t-r,10tr,

where,

0 = -212.535
= STADIT_C (Appendix E)

1, 2 = (0.921962, 0.212610)
= STADIT_ADIT, STADIT_NEWCAP (Appendix E)

t-statistic = (58.8)       (8.4)
DW = 1.69

R-Squared = 0.98

(4) Total Operating and Maintenance Expense for the Combined Existing and New Capacity

For Transportation:

The equation was estimated using FERC Form 2 data over the period 1997 through 2006.  In this 
analysis, the data were aggregated to the ARC level so that the results would be more consistent with 
the previous model.  To control for arc specific effects, a binary variable ARCa was created for each 
of the arcs. The associated coefficient represents the arc specific constant term.

The forecasting equation is presented in two stages.

Stage 1:

))0.20061(TECHYEAR*EIATOM_BYEAR_2006*TOM_BYEAR

DEPSHR*TOM_DESHR)Ln(GPIS*1(TOM_GPIS

)Ln(R_TOM)0.2006(TECHYEAR*EIATOM_BYEAR_

2006*TOM_BYEARDEPSHR*TOM_DEPSHR

)Ln(GPIS*1TOM_GPIS(1*ARC*TOM_C=)TOMLn(R_

2ta,2ta,

1ta,

1ta,

1ta,aata,

Stage 2:

))OMexp(Ln(R_TTOM_K*=TOMR_ ta,ta,
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where Ln is a natural logarithm operator and TOM_K is the correction factor estimated in equation 
two, and where,

TOM_Ca = constant term estimated by arc for the binary variable ARCa (see 
Table F3.6, TOM_Ca = B_ARCxx_yy)

ARCa = binary variable created for each arc to control for arc specific effects
TOM_GPIS1 = estimated coefficient (see Table F3.6)

TOM_DEPSHR = estimated coefficient (see Table F3.6)
TOM_BYEAR = estimated coefficient (see Table F3.6)

TOM_BYEAR_EIA = future rate of decline in R_TOM due to technology improvements and 
efficiency gains.  EIA assumes that this rate is the same as 
TOM_BYEAR (see Table F3.6)

= first-order autocorrelation, TOM_RHO (see Table F3.6)

The results of this regression are reported below:

Dependent variable: R_TOM
Number of observations:  396

Mean of dep. var. = 52822.9 LM het. test = 28.7074 [.000]
Std. dev. of dep. var. = 76354.9 Durbin-Watson = 2.01148 [<1.00]
Sum of squared residuals = .668483E+11  Jarque-Bera test = 13559.1 [.000]
Variance of residuals = .169236E+09   Ramsey's RESET2 = 4.03086 [.045]
Std. error of regression = 13009.1 Schwarz B.I.C. = 4215.86
R-squared = .971019 Log likelihood = -4312.87
Adjusted R-squared = .971019

Estimated         Standard

Variable  Coefficient       Error        t-statistic     P-value

TOM_K 0.940181 6.691E-03 140.504       [.000]

For Storage:

DSTWCAP*STTOMR_

*DSTWCAP*e=STTOMR_

1

10

*-
2t-r,1t-r,

1t-r,
))-(1*(

tr,

where,

0 = -6.6702
= STTOM_C (Appendix E)

1 = 1.44442
= STTOM_WORCAP (Appendix E)

t-statistic = (33.6) 
= 0.761238
= STTOM_RHO (Appendix E)

t-statistic = (10.2)
DW = 1.39

R-Squared = 0.99
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Table F3.1. Summary Statistics for Storage Total Cash Working Capital Equation

Variable Coefficient Standard Error t-statistic

REG2 -2.30334 5.25413 -.438386

REG3 -1.51115 5.33882 -.283049

REG4 -2.11195 5.19899 -.406224

REG5 -2.07950 5.06766 -.410346

REG6 -1.24091 4.97239 -.249559

REG7 -1.63716 5.27950 -.310097

REG8 -2.48339 4.68793 -.529740

REG9 -3.23625 4.09158 -.790954

REG11 -2.15877 4.33364 -.498143

Table F3.2. Summary Statistics for Pipeline Total Cash Working Capital Equation

Variable Coefficient Standard-Error t-statistic P-value

CWC_TOM 0.381679 .062976 6.06073 [.000]

B_ARC01_01 4.83845 .644360 7.50892 [.000]

B_ARC02_01 5.19554 .644074 8.06668 [.000]

B_ARC02_02 6.37816 .781655 8.15982 [.000]

B_ARC02_03 4.38403 .594344 7.37625 [.000]

B_ARC02_05 5.02364 .684640 7.33764 [.000]

B_ARC03_02 5.51162 .651682 8.45754 [.000]

B_ARC03_03 6.10201 .772378 7.90028 [.000]

B_ARC03_04 4.10475 .572836 7.16566 [.000]

B_ARC03_05 4.69978 .665214 7.06507 [.000]

B_ARC03_15 4.99465 .600910 8.31180 [.000]

B_ARC04_03 5.56047 .718330 7.74083 [.000]

B_ARC04_04 6.15095 .783539 7.85021 [.000]

B_ARC04_07 4.26747 .590736 7.22400 [.000]

B_ARC04_08 4.12216 .611516 6.74089 [.000]

B_ARC05_02 5.50272 .732227 7.51505 [.000]

B_ARC05_03 4.93360 .667589 7.39018 [.000]

B_ARC05_05 6.03791 .774677 7.79409 [.000]

B_ARC05_06 3.27334 .516303 6.33995 [.000]

B_ARC06_03 5.80098 .714338 8.12078 [.000]

B_ARC06_05 5.76939 .741907 7.77644 [.000]

B_ARC06_06 6.73455 .807246 8.34262 [.000]

B_ARC06_07 3.52000 .555549 6.33606 [.000]

B_ARC06_10 4.64811 .665947 6.97970 [.000]

B_ARC07_04 5.60946 .732039 7.66279 [.000]

B_ARC07_06 6.35683 .778573 8.16471 [.000]

B_ARC07_07 6.81298 .828208 8.22616 [.000]

B_ARC07_08 3.60827 .543296 6.64144 [.000]



U.S. Energy Information Administration /
NEMS Model Documentation 2011: Natural Gas Transmission and Distribution Module 203

Variable Coefficient Standard-Error t-statistic P-value

B_ARC07_11 5.89640 .708385 8.32373 [.000]

B_ARC07_21 4.85140 .621031 7.81185 [.000]

B_ARC08_04 4.94307 .678799 7.28208 [.000]

B_ARC08_07 3.97367 .579267 6.85982 [.000]

B_ARC08_08 5.58162 .723678 7.71286 [.000]

B_ARC08_09 5.19274 .635784 8.16746 [.000]

B_ARC08_11 5.12277 .637835 8.03148 [.000]

B_ARC08_12 4.29097 .593945 7.22452 [.000]

B_ARC09_08 4.10222 .576694 7.11333 [.000]

B_ARC09_09 5.44178 .684020 7.95558 [.000]

B_ARC09_12 4.96229 .600227 8.26735 [.000]

B_ARC09_20 2.63716 .448339 5.88207 [.000]

B_ARC11_07 5.58226 .687702 8.11726 [.000]

B_ARC11_08 4.36952 .548152 7.97137 [.000]

B_ARC11_11 6.13044 .728452 8.41571 [.000]

B_ARC11_12 5.93253 .710336 8.35173 [.000]

B_ARC11_22 4.33062 .545420 7.93998 [.000]

B_ARC15_02 5.09861 .583090 8.74412 [.000]

B_ARC16_04 5.03673 .592859 8.49567 [.000]

B_ARC17_04 4.17798 .576943 7.24158 [.000]

B_ARC19_09 5.14500 .618100 8.32389 [.000]

B_ARC20_09 4.58498 .624006 7.34766 [.000]

B_ARC21_07 4.26846 .563536 7.57441 [.000]

CWC_RHO 0.527389 .048379 10.9011 [.000]

Table F3.3. Summary Statistics for Pipeline Depreciation, Depletion, and Amortization 

Equation

Variable Coefficient Standard-Error t-statistic P-value

DDA_NEWCAP .725948E-02 .200846E-02 3.61446 [.000]

DDA_NPIS .023390 .103991E-02 22.4923 [.000]

B_ARC01_01 4699.58 862.825 5.44674 [.000]

B_ARC02_01 5081.37 853.478 5.95372 [.000]

B_ARC02_02 43769.1 1954.50 22.3940 [.000]

B_ARC02_03 2050.29 814.056 2.51861 [.012]

B_ARC02_05 7876.12 880.047 8.94965 [.000]

B_ARC03_02 5973.21 842.863 7.08681 [.000]

B_ARC03_03 33063.3 1489.77 22.1936 [.000]

B_ARC03_04 1032.74 809.439 1.27588 [.202]

B_ARC03_05 2386.89 845.864 2.82184 [.005]

B_ARC03_15 7652.92 864.810 8.84924 [.000]

B_ARC04_03 19729.5 1118.66 17.6368 [.000]

B_ARC04_04 35522.7 2267.45 15.6663 [.000]

B_ARC04_07 1919.97 811.222 2.36677 [.018]
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Variable Coefficient Standard-Error t-statistic P-value

B_ARC04_08 747.069 822.607 .908172 [.364]

B_ARC05_02 15678.2 1114.41 14.0686 [.000]

B_ARC05_03 6452.49 855.092 7.54596 [.000]

B_ARC05_05 45000.5 1771.82 25.3979 [.000]

B_ARC05_06 446.742 809.035 .552191 [.581]

B_ARC06_03 11967.8 942.879 12.6928 [.000]

B_ARC06_05 22576.3 1243.19 18.1599 [.000]

B_ARC06_06 67252.9 2892.23 23.2530 [.000]

B_ARC06_07 1134.14 809.115 1.40170 [.161]

B_ARC06_10 15821.4 989.531 15.9888 [.000]

B_ARC07_04 15041.4 984.735 15.2746 [.000]

B_ARC07_06 48087.6 1908.12 25.2015 [.000]

B_ARC07_07 80361.2 3384.54 23.7436 [.000]

B_ARC07_08 833.829 809.565 1.02997 [.303]

B_ARC07_11 4732.17 928.814 5.09486 [.000]

B_ARC07_21 1452.16 922.486 1.57418 [.115]

B_ARC08_04 4920.06 1022.86 4.81008 [.000]

B_ARC08_07 1425.79 811.348 1.75731 [.079]

B_ARC08_08 34661.3 1694.49 20.4553 [.000]

B_ARC08_09 5962.90 873.649 6.82528 [.000]

B_ARC08_11 1088.95 824.202 1.32122 [.186]

B_ARC08_12 7610.79 899.215 8.46382 [.000]

B_ARC09_08 2857.54 814.127 3.50994 [.000]

B_ARC09_09 15070.9 1021.78 14.7496 [.000]

B_ARC09_12 3120.00 833.569 3.74295 [.000]

B_ARC09_20 279.322 917.025 .304595 [.761]

B_ARC11_07 4022.68 871.680 4.61485 [.000]

B_ARC11_08 325.210 809.288 .401846 [.688]

B_ARC11_11 5616.89 1025.31 5.47822 [.000]

B_ARC11_12 4041.93 940.189 4.29906 [.000]

B_ARC11_22 259.293 809.060 .320487 [.749]

B_ARC15_02 2125.53 812.198 2.61701 [.009]

B_ARC16_04 8017.53 871.030 9.20465 [.000]

B_ARC17_04 3316.38 860.323 3.85481 [.000]

B_ARC19_09 4216.02 853.774 4.93810 [.000]

B_ARC20_09 6238.31 834.249 7.47776 [.000]

B_ARC21_07 666.813 810.034 .823192 [.410]
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Table F3.4. Summary Statistics for Storage Depreciation, Depletion, and Amortization 

Equation

Variable Coefficient St-Error t-statistic

REG2 4485.56 1204.28 3.72467

REG3 6267.52 1806.17 3.47006

REG4 3552.55 728.230 4.87833

REG5 2075.31 646.561 3.20976

REG6 1560.07 383.150 4.07169

REG7 4522.42 1268.87 3.56412

REG8 1102.49 622.420 1.77129

REG9 65.2731 10.1903 6.40542

REG11 134.692 494.392 .272439

Table F3.5. Summary Statistics for Pipeline Accumulated Deferred Income Tax Equation 

Variable Coefficient

Standard-

Error t-statistic P-value

BNEWCAP_PRE2003 .067242 .023235 2.89405 [.004]

BNEWCAP_2003_2004 .132014 .013088 10.0865 [.000]

BNEWCAP_POST2004 .109336 .028196 3.87766 [.000]

B_ARC01_01 3529.80 4775.58 .739134 [.460]

B_ARC02_01 2793.71 4766.40 .586125 [.558]

B_ARC02_02 15255.3 5318.30 2.86844 [.004]

B_ARC02_03 767.648 4758.23 .161331 [.872]

B_ARC02_05 2479.86 4768.91 .520005 [.603]

B_ARC03_02 1663.09 4761.98 .349243 [.727]

B_ARC03_03 6184.51 4966.65 1.24521 [.213]

B_ARC03_04 -14.6495 4757.75 -.307908E-02 [.998]

B_ARC03_05 3183.89 4761.49 .668676 [.504]

B_ARC03_15 2531.19 4759.07 .531866 [.595]

B_ARC04_03 3660.65 4780.00 .765826 [.444]

B_ARC04_04 6076.87 4900.20 1.24013 [.215]

B_ARC04_07 -391.339 4757.90 -.082250 [.934]

B_ARC04_08 1798.04 4758.19 .377884 [.706]

B_ARC05_02 6654.17 4801.91 1.38573 [.166]

B_ARC05_03 1842.90 4762.25 .386982 [.699]

B_ARC05_05 6344.87 5220.98 1.21526 [.224]

B_ARC05_06 148.421 4757.73 .031196 [.975]

B_ARC06_03 2475.65 4775.18 .518441 [.604]

B_ARC06_05 5193.49 4996.38 1.03945 [.299]

B_ARC06_06 24991.1 5803.11 4.30650 [.000]

B_ARC06_07 -259.276 4757.72 -.054496 [.957]

B_ARC06_10 13015.7 4862.80 2.67659 [.007]

B_ARC07_04 189.221 4776.34 .039616 [.968]
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Variable Coefficient

Standard-

Error t-statistic P-value

B_ARC07_06 14166.3 5012.13 2.82640 [.005]

B_ARC07_07 16102.7 5680.52 2.83472 [.005]

B_ARC07_08 118.047 4758.11 .024810 [.980]

B_ARC07_11 -434.842 4808.84 -.090426 [.928]

B_ARC07_21 495.934 5498.36 .090197 [.928]

B_ARC08_04 4679.95 4780.56 .978955 [.328]

B_ARC08_07 365.793 4762.84 .076801 [.939]

B_ARC08_08 5133.64 5235.92 .980466 [.327]

B_ARC08_09 -3672.71 4770.23 -.769923 [.441]

B_ARC08_11 -1856.45 4762.76 -.389784 [.697]

B_ARC08_12 795.831 4808.51 .165505 [.869]

B_ARC09_08 537.433 4759.95 .112907 [.910]

B_ARC09_09 -1812.27 4829.76 -.375230 [.707]

B_ARC09_12 -2803.40 4761.86 -.588719 [.556]

B_ARC09_20 55.5366 5493.73 .010109 [.992]

B_ARC11_07 -1137.92 4772.21 -.238448 [.812]

B_ARC11_08 276.612 4757.86 .058138 [.954]

B_ARC11_11 7.99239 4874.89 .163950E-02 [.999]

B_ARC11_12 -1079.76 4825.77 -.223750 [.823]

B_ARC11_22 337.987 4759.18 .071018 [.943]

B_ARC15_02 429.875 4758.19 .090344 [.928]

B_ARC16_04 2744.23 4759.07 .576631 [.564]

B_ARC17_04 935.795 4757.97 .196680 [.844]

B_ARC19_09 -3806.27 4762.95 -.799141 [.424]

B_ARC20_09 1173.22 4768.48 .246037 [.806]

B_ARC21_07 586.673 4759.84 .123255 [.902]

Table F3.6. Summary Statistics for Pipeline Total Operating and Maintenance Expense 

Equation

Variable Coefficient Standard-Error t-statistic P-value

TOM_GPIS1 .256869 .114518 2.24304 [.025]

TOM_DEPSHR 1.69807 .429440 3.95415 [.000]

TOM_BYEAR -.019974 .718590E-02 -2.77955 [.005]

B_ARC01_01 45.8116 13.5505 3.38081 [.001]

B_ARC02_01 45.7428 13.5502 3.37580 [.001]

B_ARC02_02 47.4313 13.4380 3.52963 [.000]

B_ARC02_03 45.3570 13.6230 3.32944 [.001]

B_ARC02_05 46.3936 13.5393 3.42658 [.001]

B_ARC03_02 45.8277 13.5539 3.38115 [.001]

B_ARC03_03 47.1662 13.4461 3.50779 [.000]

B_ARC03_04 44.5365 13.6401 3.26512 [.001]

B_ARC03_05 45.9318 13.5464 3.39071 [.001]
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Variable Coefficient Standard-Error t-statistic P-value

B_ARC03_15 45.1262 13.5508 3.33015 [.001]

B_ARC04_03 46.5137 13.4799 3.45060 [.001]

B_ARC04_04 47.4725 13.4290 3.53508 [.000]

B_ARC04_07 45.0325 13.6249 3.30516 [.001]

B_ARC04_08 45.6096 13.5965 3.35451 [.001]

B_ARC05_02 46.8361 13.4859 3.47298 [.001]

B_ARC05_03 46.2316 13.5556 3.41052 [.001]

B_ARC05_05 47.2881 13.4422 3.51788 [.000]

B_ARC05_06 44.2555 13.6969 3.23105 [.001]

B_ARC06_03 46.4249 13.4976 3.43948 [.001]

B_ARC06_05 46.9210 13.4730 3.48260 [.000]

B_ARC06_06 47.6072 13.4045 3.55157 [.000]

B_ARC06_07 44.5090 13.6696 3.25606 [.001]

B_ARC06_10 46.0547 13.5171 3.40715 [.001]

B_ARC07_04 46.6884 13.4905 3.46084 [.001]

B_ARC07_06 47.2664 13.4316 3.51904 [.000]

B_ARC07_07 47.8651 13.3928 3.57395 [.000]

B_ARC07_08 44.7096 13.6750 3.26944 [.001]

B_ARC07_11 46.7847 13.5263 3.45880 [.001]

B_ARC07_21 45.4067 13.6138 3.33535 [.001]

B_ARC08_04 46.3290 13.5124 3.42864 [.001]

B_ARC08_07 45.1349 13.6437 3.30810 [.001]

B_ARC08_08 46.8373 13.4658 3.47825 [.001]

B_ARC08_09 45.7056 13.5495 3.37323 [.001]

B_ARC08_11 45.9766 13.5925 3.38250 [.001]

B_ARC08_12 45.1596 13.5537 3.33190 [.001]

B_ARC09_08 44.9927 13.6211 3.30317 [.001]

B_ARC09_09 46.2997 13.5103 3.42699 [.001]

B_ARC09_12 45.2655 13.5793 3.33342 [.001]

B_ARC09_20 43.2644 13.7686 3.14226 [.002]

B_ARC11_07 46.4472 13.5409 3.43015 [.001]

B_ARC11_08 44.9105 13.6898 3.28058 [.001]

B_ARC11_11 47.0985 13.5107 3.48603 [.000]

B_ARC11_12 46.8744 13.5270 3.46526 [.001]

B_ARC11_22 44.8071 13.7118 3.26778 [.001]

B_ARC15_02 44.8267 13.6116 3.29327 [.001]

B_ARC16_04 45.0068 13.5491 3.32175 [.001]

B_ARC17_04 44.8832 13.5582 3.31042 [.001]

B_ARC19_09 45.4861 13.5613 3.35412 [.001]

B_ARC20_09 45.5729 13.5745 3.35725 [.001]

B_ARC21_07 44.6298 13.6465 3.27041 [.001]

TOM_RHO .297716 .052442 5.67707 [.000]
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Table F4

Data: Equation for industrial distribution tariffs

Author: Ernest Zampelli, SAIC, 2009.

Source: The source for the peak and off-peak consumption data used in this estimation was the 
Natural Gas Monthly, DOE/EIA-0130.  State level city gate prices by month were 
averaged using quantity-weights to arrive at seasonal (peak and off-peak), regional 
level (12 NGTDM regions) prices.  The quantity-weights for the city gate prices 
consisted of residential consumption plus commercial consumption that is represented 
by on-system sales plus industrial consumption that is represented by on-system sales.  
Prices for the estimations were derived as described in Table F5.

Variables: TINr,n,t = industrial distributor tariff in region r, network n (1987 dollars per 
Mcf) [DTAR_SF3]

PREGr = 1, if observation is in region r during peak period (n=1), =0 otherwise
QINDr,t = industrial gas consumption in region r in year t (MMcf) 

[BASQTY_SF3+BASQTY_SI3]
r = NGTDM region
t = year

0 r r,n = estimated parameters for regional constants [PINREG15r and 
PINREGPK15r,n]

= estimated parameter for consumption
= autocorrelation coefficient

[Note:  Variables in brackets correspond to comparable variables used in the main 
body of the documentation and in the model code.]

Derivation: The industrial distributor tariff equation was estimated using backcasted data for the 
12 NGTDM regions over the 1990 to 2008 time period.  The equation was estimated 
in linear form with corrections for cross sectional heteroscedasticity and first order 
serial correlation using TSP version 5.0.  The form of the estimating equation follows:

)QIND*REG*)((*

TIN*QIND*REG*)(lnTIN

1tr,

r

pkr,pkr,r

1tr,tr,

r

pkr,pkr,r0tn,r,

Regression Diagnostics and Parameter Estimates:

FIRST-ORDER SERIAL CORRELATION OF THE ERROR

Dependent variable: TIN87
Number of observations:  456

Mean of dep. var. = .282327 R-squared = .711027
Std. dev. of dep. var. = 1.68053 Adjusted R-squared = .703199

Sum of squared residuals = 371.429 Durbin-Watson = 1.96827
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Variance of residuals = .838440 Schwarz B.I.C. = 640.302
Std. error of regression = .915663 Log likelihood = -600.506

Standard
Parameter Estimate Error t-statistic P-value Code Variable

WT .199135 .041539 4.79396 [.000]
NE .664368 .178794 3.71584 [.000] PINREG151

WNCNTL -.565428 .069519 -8.13339 [.000] PINREG154

ESCNTL -.248102 .053509 -4.63666 [.000] PINREG156

AZNM .395943 .093005 4.25725 [.000] PINREG1511

CA .605914 .097865 6.19132 [.000] PINREG1512

MIDATL_PK .418090 .101754 4.10881 [.000] PINREGPK152

WNCNTL_PK .354066 .079415 4.45840 [.000] PINREGPK154

ESCNTL_PK .203711 .074239 2.74398 [.006] PINREGPK156

WSCNTL_PK -.411782 .068533 -6.00852 [.000] PINREGPK157

WAOR_PK .263996 .092401 2.85709 [.004] PINREGPK159

QIND -.317443E-03 .482650E-04 -6.57708 [.000]
RHO .423561 .043665 9.70021 [.000]

Standard Errors computed from analytic second derivatives (Newton)

Data used for estimation

New 
Engl.

Mid Atl.
E.N. 
Central

W.N. 
Central

S.Atl Fl
E.S. 
Central

W.S. 
Central

Mtn-
AZNM

WA/OR Florida AZ/NM CA/HI

1 2 3 4 5 6 7 8 9 10 11 12

1990 QIN peak 25.238 156.14 453.96 140.9 185.23 152.15 948.57 56.599 46.146 30.06 13.198 177.12

1990 QIN off-peak 56.095 270.87 730.76 245.05 351.31 272.39 1987.3 93.839 81.168 54.881 24.473 388.08

1991 QIN peak 39.282 168.91 481.69 149.95 171.26 158.54 979.32 66.408 47.282 30.235 14.3 201.54

1991 QIN off-peak 82.376 282.18 729.31 254.99 330.64 288.33 2003.6 109.22 87.502 53.163 24.25 401.08

1992 QIN peak 54.227 204.09 498.51 155.99 185.1 166.54 1018.4 74.334 49.691 29.904 13.778 217.12

1992 QIN off-peak 108.78 354.7 777.87 263.94 353.2 304.97 1942.1 128.69 88.594 54.925 23.066 377.45

1993 QIN peak 61.814 224.11 529.31 166.97 185.5 176.42 1045.5 83.593 54.178 34.299 13.167 214.7

1993 QIN off-peak 123.32 366.69 786.37 283.17 358.16 305.77 2109.2 148.52 98.713 66.051 25.02 445.02

1994 QIN peak 60.862 243.6 553.36 190.76 182.9 170.14 1088.8 91.076 58.07 42.837 13.711 210.07

1994 QIN off-peak 111.77 398.1 795.93 320.33 380.72 299.53 2069.5 149.79 112.1 84.036 30.899 446.68

1995 QIN peak 67.612 274.81 564.08 174.94 198.2 181.21 1094.8 92.348 62.974 49.496 18.42 216.02

1995 QIN off-peak 117.09 462.71 842.05 302.97 408.65 323.96 2206 154.12 115.93 83.981 30.338 471.9

1996 QIN peak 54.363 285.51 578.99 166.26 193.94 178.95 1196.9 93.314 66.644 46.056 17.943 231.69

1996 QIN off-peak 112.99 481.59 876.22 283.25 385.99 324.38 2332 168.08 135.35 90.666 31.894 461.85

1997 QIN peak 48.405 234.18 527.5 180.9 213.68 185.66 1158.6 77.997 70.675 41.903 18.414 232.69

1997 QIN off-peak 86.131 402.1 814.07 291.91 398.91 334.13 2246.7 136.03 130.89 83.234 35.325 487.2

1998 QIN peak 52.54 226.19 506.96 165.78 200.57 186.74 1119.4 94.347 83.184 40.685 18.07 232.48

1998 QIN off-peak 95.549 375.1 771.51 298.64 370.18 328.87 2140.8 154.17 152.69 81.23 35.135 513.67

1999 QIN peak 55.157 197.85 523.25 160.89 221.22 201 1023.2 77.398 81.611 43.813 18.686 203.63

1999 QIN off-peak 100.84 332.74 804.58 274.65 340.85 366.69 2032.3 146.67 150.74 90.394 34.188 522.78

2000 QIN peak 54.493 152.64 539.34 163.07 194.49 200.21 1080.9 87.687 57.099 35.056 17.259 218.27

2000 QIN off-peak 86.042 262.25 788.24 285.56 364.74 347.3 2230.3 139.76 102.92 69.631 33.847 558.47

2001 QIN peak 49.565 139.45 480.99 150.12 155.17 168.54 1051.7 104.16 50.923 30.792 19.007 211.11

2001 QIN off-peak 85.579 228.74 699.46 258.24 303.54 299.32 1974.5 167.1 93.96 63.919 35.375 455.88

2002 QIN peak 52.54 144.33 470.45 121.75 173.22 176.85 1011.8 91.637 51.527 28.746 14.516 241.23

2002 QIN off-peak 81.724 234.44 758.81 221.6 328.78 305.4 2005.8 169.31 86.7 54.823 26.005 499.44

2003 QIN peak 39.744 139.83 481.39 158.53 175.69 176.28 982.91 89.808 47.009 25.345 13.858 252.4

2003 QIN off-peak 46.063 215.76 678.89 260.18 298.39 286.67 1906.9 146.28 86.394 47.99 25.8 527.13
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New 
Engl.

Mid Atl.
E.N. 
Central

W.N. 
Central

S.Atl Fl
E.S. 
Central

W.S. 
Central

Mtn-
AZNM

WA/OR Florida AZ/NM CA/HI

1 2 3 4 5 6 7 8 9 10 11 12

2004 QIN peak 37.198 136.43 491.51 156.64 176.4 173.92 973.99 91.339 49.641 23.374 16.187 271.43

2004 QIN off-peak 45.242 214.24 688.46 265.89 305.66 303.33 1907 146.72 89.858 40.229 26.574 564.84

2005 QIN peak 40.728 135.24 478.91 158.08 172.16 168.5 808.09 93.829 48.327 23.015 14.013 267.71

2005 QIN off-peak 45.586 205.31 681.74 260.6 290.89 283.02 1538.7 159.82 88.192 40.118 27.785 514.11

2006 QIN peak 35.807 124.55 429.28 162.89 161.04 157.39 787.35 97.212 50.66 24.302 13.762 244.48

2006 QIN off-peak 47.391 207.44 673.41 298.82 305.01 292.01 1573.2 151.07 90.187 45.419 22.924 488.02

2007 QIN peak 39.898 129.41 455.49 173.06 161.02 166.6 834.3 97.509 51.108 23.489 13.67 243.44

2007 QIN off-peak 47.76 206.79 665.3 304.43 293.52 287.93 1612 156.13 91.117 42.303 23.336 490.16

2008 QIN peak 41.994 131.75 450.39 195.27 158.12 162.98 834.03 101.53 55.157 25.683 13.962 255.11

2008 QIN off-peak 45.87 195.97 644.85 323.08 290.82 281.62 1594.9 157.55 89.092 45.653 24.509 509.07

1990 TIN peak 1.099 0.6688 0.3058 -0.1288 0.7025 0.1655 -0.5898 0.0125 0.6006 0.5055 0.3569 0.7677

1990 TIN off-peak 0.2422 0.2975 0.3219 -0.2679 0.3332 0.0103 -0.8011 -0.6182 0.3989 0.6069 0.4618 0.4976

1991 TIN peak 1.1651 0.7854 0.3182 -0.1239 0.6413 0.1569 -0.6598 -0.2375 0.5443 0.4694 0.4572 0.9729

1991 TIN off-peak 0.2206 0.1636 0.1991 -0.3464 0.1277 -0.0513 -0.6584 -0.7412 0.4784 0.5472 0.3259 0.5807

1992 TIN peak 1.2819 0.6984 0.2446 -0.0567 0.628 0.1737 -0.6297 -0.1706 0.5218 0.5658 1.2426 1.078

1992 TIN off-peak -0.1136 -0.164 -0.0413 -0.3214 0.0843 -0.1326 -0.5803 -0.9941 0.5634 0.4786 0.9993 0.2713

1993 TIN peak 1.1049 0.5098 0.1875 -0.0766 0.6265 0.1938 -0.5649 -0.1407 0.4983 0.5495 0.7831 0.3072

1993 TIN off-peak -0.5318 -0.1649 0.0392 -0.3932 0.0085 -0.1049 -0.4782 -0.5373 0.4175 0.689 0.6653 -0.1804

1994 TIN peak 1.1511 0.6644 0.3775 0.043 0.5115 0.3493 -0.4724 -0.4511 0.4197 0.0552 0.989 0.4388

1994 TIN off-peak -0.7697 0.0425 0.2089 -0.4502 -0.1338 -0.0533 -0.3722 -0.6965 0.1884 0.2237 0.5148 0.1871

1995 TIN peak 0.9682 0.5415 0.1336 0.0336 0.5657 0.368 -0.5873 -0.1514 0.2735 -0.0042 1.0843 1.3996

1995 TIN off-peak -0.6908 0.1533 -0.0909 -0.4184 0.0587 -0.091 -0.5336 -0.1512 0.2563 0.1373 0.8486 0.7801

1996 TIN peak 1.0885 0.4724 -0.0801 0.1501 0.3852 -0.0597 -0.2293 0.0624 0.3147 0.0629 0.7245 0.7635

1996 TIN off-peak -0.5643 -0.1022 -0.0573 -0.4768 0.0265 0.0109 -0.287 0.0885 0.0274 0.2877 0.6701 0.549

1997 TIN peak 0.9536 0.5591 0.1766 -0.1368 0.4308 0.1911 -0.4936 0.04 0.5014 -0.2748 0.3125 1.0975

1997 TIN off-peak -0.3627 -0.9394 -0.1531 -0.7348 -0.0943 -0.0291 -0.2262 0.2046 0.0767 0.1115 0.1918 0.4767

1998 TIN peak 0.7314 0.029 0.1798 -0.0513 0.1833 0.0944 -0.2879 -0.1103 0.1663 -0.0655 0.544 1.0797

1998 TIN off-peak -0.8255 -0.5106 0.0985 -0.5266 -0.3471 -0.2757 -0.1983 0.0953 0.0643 -0.0713 0.176 0.4421

1999 TIN peak 0.381 0.1165 0.1777 -0.0447 -0.0503 0.1269 -0.4494 0.5426 0.1491 0.6896 0.5158 0.6471

1999 TIN off-peak -0.8161 -0.787 -0.2143 -0.5001 -0.4758 -0.2064 -0.2569 0.2023 0.0292 -0.0932 0.0834 0.2283

2000 TIN peak 0.4368 0.3257 -0.1319 -0.1978 -0.0355 -0.0918 -0.5133 0.3527 0.5765 -0.0681 -0.0613 0.6967

2000 TIN off-peak -0.6324 -0.5654 -0.2139 -0.637 -0.4437 -0.2846 -0.3444 0.3139 -0.0557 0.2312 -0.0438 0.5583

2001 TIN peak -0.0298 0.5579 0.0726 -0.3949 -0.0079 -0.2461 -0.7083 0.157 -0.2738 -0.3584 -0.0328 -0.4836

2001 TIN off-peak -0.1169 0.2263 0.2662 -0.493 -0.4109 -0.0722 -0.3964 0.7435 0.3807 0.8896 0.7614 0.8027

2002 TIN peak 0.6619 0.4506 -0.1471 -0.2 -0.0309 0.19 -0.5569 0.8717 0.7349 0.8584 1.2169 1.054

2002 TIN off-peak -0.875 0.1446 -0.447 -0.351 -0.4161 -0.0017 -0.4194 0.9103 -0.0871 0.4439 0.6581 0.6936

2003 TIN peak 0.7842 1.1901 0.0288 -0.3011 0.018 0.3513 -0.222 0.5963 0.2737 -0.4933 0.3882 1.0483

2003 TIN off-peak 0.2361 0.7713 0.1791 -0.4924 -0.4897 -0.3577 -0.2159 0.6595 0.1605 0.5482 0.6927 0.8708

2004 TIN peak 1.2662 0.958 0.1488 -0.1974 0.0588 0.1299 -0.4422 0.2895 0.3958 0.1907 0.4129 1.176

2004 TIN off-peak 0.17 0.2825 -0.2684 -0.6077 -0.4935 -0.1755 -0.1804 0.2801 0.0213 0.433 0.4578 0.4561

2005 TIN peak 1.1769 0.9548 -0.071 0.0804 0.1706 0.2596 -0.513 0.4996 0.5463 -0.0684 0.4173 1.3857

2005 TIN off-peak 6.2644 0.1607 -0.6005 -0.8601 -0.6412 -0.2335 -0.2605 0.2672 0.0206 -0.6922 0.4917 0.3082

2006 TIN peak 0.7955 0.6048 -0.3683 0.1022 -0.2335 0.0381 -0.6599 0.3446 0.3204 0.599 0.3567 1.2178

2006 TIN off-peak 0.2617 -0.7368 -0.1778 -0.7105 -0.4412 -0.3876 -0.4774 0.2411 0.1519 1.1891 1.1094 0.9437

2007 TIN peak 1.3417 0.2697 -0.3644 0.0452 0.1393 -0.1848 -0.7233 -0.0415 0.6403 0.7626 0.7061 0.907

2007 TIN off-peak 0.2215 -0.0402 -0.1513 -0.3497 -0.1962 -0.1132 -0.7936 0.3232 0.5507 0.9501 0.8721 0.8912

2008 TIN peak 1.1063 0.3597 -0.1709 0.1381 0.1855 -0.1638 -0.62 0.1363 0.8461 1.0509 0.5912 0.9421

2008 TIN off-peak 0.5047 0.3785 0.2288 -0.1025 -0.0856 -0.255 -0.6044 0.071 -0.1388 1.2117 1.1816 1.1883
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Table F5

Data: Historical industrial sector natural gas prices by type of service, NGTDM region.

Derivation: The historical industrial natural gas prices published in the Natural Gas Annual 

(NGA) only reflect gas purchased through local distribution companies.  In order to 
approximate the average price to all industrial customers by service type and NGTDM 
region (HPGFINGR, HPGIINGR), data available at the Census Region level97 from 
the Manufacturing Energy Consumption Survey (MECS)98 for the years 1988, 1991, 
1994, 1998, and 2002 were used to estimate an equation for the regional MECS price 
as a function of the regional NGA industrial price and the regional supply price 
(quantity-weighted average of the gas wellhead price and import price). The 
procedure is outlined below.

1) Assign average Census Division industrial price using econometrically derived 
equation:

from estimating the following equation

2) Assign prices to the NGTDM regions that represent subregions of Census 
Divisions by multiplying the Census Division price from step 1 by the subregion 
price (as published in the NGA), divided by the Census Division price (as 
published in the NGA).  For the Pacific Division, the industrial price in Alaska 
from the NGA, with quantity weights, is used to approximate a Pacific Division 
price for the lower-48 (i.e., CA, WA, and OR), before this step is performed.

3) Core industrial prices are derived by applying an historical, regional, average 
average-to-firm price markup (FDIFF, in 1987$/Mcf, Northeast 0.11, North 
Central 0.14, South 0.67, West 0.39) to the established average regional industrial 
price (from step 2).  Noncore prices are calculated so that the quantity-weighted 
average of the core and noncore prices equal the original regional estimate.  The 
data used to generate the average-to-firm markups are presented below.

4) Finally, the peak and off-peak prices from the NGA are scaled to align with the 
core and noncore prices generated from step 3 on an average annual basis, to arrive 
at peak/off-peak, core/noncore industrial prices for the NGTDM regions. 

97Through a special request, the Census Bureau generated MECS data by Census Region and by service type (core versus noncore) 
based on an assumption of which industrial classifications are more likely to consume most of their purchased natural gas in boilers 
(core) or non-boiler applications (noncore). 

98A request was issued to the Census Bureau to obtain similar data from other MECS surveys to improve this estimation.

HPIN*NRGPW_*)39682exp(0.0*1871.00=NGPIN_ 726227.0
nr

2314040.
nrnr

HPIN*NRGlnPW_*=NGlnPIN_ nr2nr10nr
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Prices (87$/mcf) Consumption (Bcf)

1988 1991 1994 1988 1991 1994

Core

Northeast 3.39 3.05 3.04 335 299 310

North Central 3.04 2.37 2.42 864 759 935

South 2.91 2.40 2.53 643 625 699

West 3.21 2.70 2.55 217 204 227

Noncore

Northeast 3.05 2.78 2.67 148 146 187

North Central 2.60 2.01 2.17 537 648 747

South 1.96 1.57 1.75 2517 2592 2970

West 2.54 2.19 1.91 347 440 528

Price (87$/mcf)

1988 1991 1994 1998 2002

Northeast 3.297223 3.018058 2.941269 2.834076 3.498869

North Central 2.880355 2.247968 2.351399 2.247715 2.985983

South 2.162684 1.766014 1.939298 1.947017 2.634691

West 2.804912 2.398525 2.133228 2.217645 2.831414

Variables:

PIN_NG = Industrial natural gas prices by NGTDM region (1987$/Mcf)
PW_CDV = Average supply price by Census Division (1987$/Mcf)

PI_CDV = Industrial natural gas price from the NGA by Census Division 
(1987$/Mcf)

FDIFF = Average (1988, 1991, 1994) difference between the firm industrial 
price and the average industrial price by Census Region (1987$/Mcf)

PIN_FNG = Industrial core natural gas prices by NGTDM region (1987$/Mcf)
PIN_ING = Industrial noncore natural gas prices by NGTDM region (1987$/Mcf)

HPGFINGR = Industrial core natural gas prices by period and NGTDM region 
(1987$/Mcf)

HPGIINGR = Industrial noncore natural gas prices by period and NGTDM region 
(1987$/Mcf)

Regression Diagnostics and Parameter Estimates:

Dependent variable: LNMECS87
Number of observations:  20

Mean of dep. var. = .921802          LM het. test = .021529 [.883]
Std. dev. of dep. var. = .190034         Durbin-Watson = 1.22472 [<.086]

Sum of squared residuals = .067807      Jarque-Bera test = .977466 [.613]
Variance of residuals = .398866E-02   Ramsey's RESET2 = .044807 [.835]
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Std. error of regression = .063156 F (zero slopes) = 77.5121 [.000]
R-squared = .901177        Schwarz B.I.C. = -23.9958

Adjusted R-squared = .889550        Log likelihood = 28.4894

Estimated    Standard
Variable     Coefficient     Error       t-statistic   P-value Symbol
C            .039682       .072242       .549291       [.590] 0

LNSUPPLYP87  .231404       .105606       2.19120       [.043] 1

LNNGAP87     .726227       .073700       9.85385       [.000] 2

Form of Forecasting Equation:

726227.0231404.0039682.0 8787*00187.187 NGAPSUPPLYPeMECS

where:

MECS87 = Manufacturer’s Energy Consumption Survey in US$87

SUPPLYP87 = supply price in US$87

NGAP87 = natural gas annual price in US$87

The term 1.00187 is an adjustment factor that is applied in cases where the value of “y” is predicted 
from an estimated equation where the dependent variable is the natural log of y. The adjustment is 
due to the fact that generally predictions of “y” using the first equation only tend to be biased 
downward. It is calculated by estimating the historical values of the dependent variable as a function 
of the estimated values for the same.
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Table F6

Data: Equations for residential distribution tariffs

Author: Ernest Zampelli, SAIC, with summer intern Ben Laughlin, 2010.

Source: The source for the peak and off-peak data used in this estimation was the Natural Gas 

Monthly, DOE/EIA-0130.  State level city gate and residential prices by month were 
averaged using quantity-weights to arrive at seasonal (peak and off-peak), regional 
level (12 NGTDM regions) prices.  The quantity-weights for the city gate prices 
consisted of residential consumption plus commercial consumption that is represented 
by on-system sales plus industrial consumption that is represented by on-system sales.   
The source for the number of residential customers was the Natural Gas Annual, 
DOE/EIA-0131.

Variables:

TRSr,n,t = residential distributor tariff in the period n for region r (1987 dollars 
per Mcf) [DTAR_SF1]

REGr = 1, if observation is in region r, =0 otherwise
QRS_NUMRr,n,t = residential gas consumption per customer in the period for region r in 

year t (Bcf per thousand customers) 
[(BASQTY_SF1+BASQTY_SI1)/NUMRS]

NUMRSr,t = number of residential customers (thousands)
r = NGTDM region
n = network (1=peak, 2=off-peak)
t = year

r,n = estimated parameters for regional dummy variables [PRSREGPK19]

1,n, 2,n = estimated parameters

n = autocorrelation coefficient
[Note:  Variables in brackets correspond to comparable variables used in the main 
body of the documentation and in the model code.]

Derivation: Residential distributor tariff equations for the peak and off-peak periods were
estimated using panel data for the 12 NGTDM regions over the 1990 to 2009 time 
period.  The equations were estimated in log-linear form with corrections for cross 
sectional heteroscedasticity and first order serial correlation using EViews.  The 
general form for both estimating equations follows:

lnNUMRS*lnQRS_NUMR*+)REG*((*-lnTRS*

lnNUMRS*lnQRS_NUMR*+)REG*(=lnTRS

-tr,n2,1-tn,r,n1,rnr,

r

n1-tn,r,n

tr,n2,tn,r,n1,rnr,

r

tn,r,
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Regression Diagnostics and Parameter Estimates for the Peak Period:

Dependent Variable: LNTRS87

Method: Least Squares

Date: 07/22/10   Time: 16:32

Sample (adjusted): 2 240

Included observations: 239 after adjustments

Convergence achieved after 7 iterations

Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

LNQRS_NUMR -0.607267 0.094552 -6.422580 0.0000

LN_NUMRS 0.162972 0.090462 1.801551 0.0730

REGION=1 -6.947036 1.103041 -6.298074 0.0000

REGION=2 -7.422527 1.201445 -6.178001 0.0000

REGION=3 -8.021596 1.217912 -6.586353 0.0000

REGION=4 -7.864109 1.156385 -6.800599 0.0000

REGION=5 -7.473760 1.153979 -6.476514 0.0000

REGION=6 -7.664540 1.121958 -6.831398 0.0000

REGION=7 -8.052452 1.177230 -6.840170 0.0000

REGION=8 -7.987073 1.121141 -7.124058 0.0000

REGION=9 -7.308704 1.060240 -6.893446 0.0000

REGION=10 -7.283411 1.060717 -6.866500 0.0000

REGION=11 -7.523595 1.085943 -6.928169 0.0000

REGION=12 -7.954022 1.209662 -6.575410 0.0000

0.231296 0.068422 3.380459 0.0009

R-squared 0.911539 Mean dependent var 0.940050

Adjusted R-squared 0.906010 S.D. dependent var 0.384204

S.E. of regression 0.117789 Akaike info criterion -1.379145

Sum squared resid 3.107810 Schwarz criterion -1.160957

Log likelihood 179.8078 Hannan-Quinn criter. -1.291221

Durbin-Watson stat 1.994101

Regression Diagnostics and Parameter Estimates for the Off-peak Period:

Dependent Variable: LNTRS87

Method: Least Squares

Date: 07/22/10   Time: 16:31

Sample: 241 480

Included observations: 240

Convergence achieved after 6 iterations

Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

LNQRS_NUMR -0.814968 0.085444 -9.538040 0.0000

LN_NUMRS 0.282301 0.111488 2.532127 0.0120

REGION=1 -11.06556 1.189130 -9.305589 0.0000

REGION=2 -11.46569 1.331512 -8.611025 0.0000

REGION=3 -11.99084 1.365602 -8.780628 0.0000

REGION=4 -11.81121 1.265735 -9.331497 0.0000

REGION=5 -11.52214 1.266859 -9.095045 0.0000

REGION=6 -11.67063 1.209285 -9.650856 0.0000
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REGION=7 -11.86662 1.278193 -9.283902 0.0000

REGION=8 -11.80703 1.229651 -9.601944 0.0000

REGION=9 -11.19628 1.140432 -9.817580 0.0000

REGION=10 -10.93813 1.060071 -10.31830 0.0000

REGION=11 -11.32604 1.134872 -9.980016 0.0000

REGION=12 -12.06455 1.327790 -9.086182 0.0000

0.202612 0.083183 2.435748 0.0156

R-squared 0.905922 Mean dependent var 1.272962

Adjusted R-squared 0.900069 S.D. dependent var 0.368928

S.E. of regression 0.116625 Akaike info criterion -1.399238

Sum squared resid 3.060333 Schwarz criterion -1.181698

Log likelihood 182.9086 Hannan-Quinn criter. -1.311585

Durbin-Watson stat 2.010275

Data used for peak period estimation in log form

Year Variable 1 2 3 4 5 6 7 8 9 10 11 12

New 

Engl

Mid 

Atl

E.N. 

Cntrl

W.N. 

Cntrl

S.Atl-

FL

E.S. 

Cntrl

W.S. 

Cntrl

Mtn-

AZNM WA/OR Florida AZ/NM CA/HI

1990 TRS87 1.3013 1.0730 0.4048 0.3961 1.0185 0.6054 0.6114 0.4041 1.0087 1.4535 1.0112 0.9513

1990 NUMRS 14.4242 15.9210 16.2206 15.2533 15.2427 14.6570 15.5148 14.5549 13.5724 13.0339 13.7708 15.9587

1990 QRS_NUMR -9.8137 -9.8268 -9.5457 -9.6821 -9.9747 -9.9839 -10.1121 -9.8411 -9.9340 -11.0881 -10.1387 -10.2906

1991 TRS87 1.3496 1.1217 0.4383 0.4061 0.9869 0.7178 0.6539 0.4200 0.8813 1.5632 1.0210 1.0692

1991 NUMRS 14.4330 15.9914 16.2352 15.2651 15.2648 14.6832 15.5257 14.5850 13.6744 13.0546 13.8374 15.9747

1991 QRS_NUMR -9.8481 -9.8694 -9.4866 -9.5907 -9.9350 -9.9281 -10.0510 -9.7635 -9.9330 -11.1596 -10.1994 -10.4037

1992 TRS87 1.3843 1.1746 0.4187 0.4769 1.0595 0.7357 0.6413 0.4536 0.9455 1.5313 0.9832 1.0246

1992 NUMRS 14.4423 16.0036 16.2475 15.2807 15.3133 14.7090 15.5316 14.6128 13.6913 13.0644 13.8095 15.9800

1992 QRS_NUMR -9.7463 -9.7981 -9.4989 -9.6974 -9.8973 -9.9207 -10.0994 -9.8291 -9.9947 -11.0110 -10.1482 -10.4125

1993 TRS87 1.3820 1.1496 0.4725 0.4174 1.0268 0.6689 0.5867 0.4285 0.9412 1.6365 0.9866 1.0188

1993 NUMRS 14.4511 15.9482 16.2628 15.3088 15.3177 14.7384 15.5461 14.6431 13.7500 13.0915 13.8235 15.9853

1993 QRS_NUMR -9.7174 -9.6990 -9.4326 -9.5707 -9.8014 -9.8673 -10.0340 -9.7353 -9.8164 -11.1386 -10.1938 -10.3689

1994 TRS87 1.4626 1.2113 0.5602 0.5377 1.0417 0.7789 0.6270 0.3148 1.0047 1.5705 1.0989 1.0644

1994 NUMRS 14.4669 15.9546 16.2793 15.3186 15.3552 14.7660 15.5493 14.6859 13.8117 13.1179 13.8590 15.9927

1994 QRS_NUMR -9.6833 -9.6305 -9.4214 -9.5819 -9.8242 -9.8557 -10.0686 -9.8535 -9.9180 -11.0983 -10.2387 -10.3976

1995 TRS87 1.4777 1.2395 0.4181 0.5394 1.0357 0.7752 0.6719 0.4867 1.0564 1.5497 1.1641 1.2479

1995 NUMRS 14.4722 15.9635 16.2956 15.3296 15.3786 14.7928 15.5719 14.7298 13.8644 13.1468 13.8953 16.0011

1995 QRS_NUMR -9.8144 -9.7202 -9.4542 -9.6281 -9.8344 -9.8930 -10.1371 -9.9560 -10.0186 -11.0584 -10.4061 -10.5225

1996 TRS87 1.3476 1.0818 0.1781 0.5158 0.8316 0.3859 0.5277 0.3350 0.9486 1.4764 0.8042 1.0371

1996 NUMRS 14.4787 15.9705 16.3101 15.3458 15.4097 14.8172 15.5827 14.7820 13.9172 13.1648 13.9272 16.0128

1996 QRS_NUMR -9.7463 -9.6610 -9.3922 -9.5186 -9.7506 -9.8066 -10.0178 -9.8489 -9.8830 -10.9631 -10.3015 -10.5316

1997 TRS87 1.4246 1.2644 0.5200 0.5224 1.0685 0.7789 0.5464 0.2708 0.8759 1.5913 0.8229 0.9658

1997 NUMRS 14.4942 15.9815 16.3246 15.3617 15.4343 14.8403 15.5943 14.8138 13.9636 13.1859 13.9709 16.0228

1997 QRS_NUMR -9.8196 -9.7484 -9.4966 -9.6504 -9.9177 -9.9457 -10.0575 -9.8098 -9.9762 -11.2669 -10.1617 -10.4781

1998 TRS87 1.4327 1.2917 0.4904 0.6157 0.9988 0.8608 0.7975 0.5630 0.9999 1.6068 0.9482 1.2250

1998 NUMRS 14.4989 15.9974 16.3359 15.3965 15.4742 14.8582 15.6056 14.8560 14.0103 13.2044 14.0129 16.0361

1998 QRS_NUMR -9.9191 -9.8890 -9.6541 -9.7858 -10.0032 -10.0339 -10.1671 -9.8718 -9.9315 -11.2087 -10.1565 -10.3678

1999 TRS87 1.5129 1.2759 0.4744 0.6043 0.7784 0.8467 0.7095 0.7222 0.9247 1.6374 1.0753 1.1647

1999 NUMRS 14.5139 15.9997 16.3533 15.3897 15.5150 14.8715 15.6069 14.8947 14.0632 13.2297 14.0591 16.0522

1999 QRS_NUMR -9.9349 -9.7629 -9.5478 -9.7411 -10.0050 -10.0386 -10.3070 -9.9509 -9.9094 -11.3010 -10.3344 -10.3496

2000 TRS87 1.2459 0.9658 0.2874 0.5682 1.0392 0.6611 0.4867 0.4600 0.8809 1.5769 0.8454 1.0239

2000 NUMRS 14.5479 16.0179 16.3707 15.4080 15.5191 14.8989 15.6219 14.9377 14.1061 13.2568 14.0976 16.0564

2000 QRS_NUMR -9.8027 -9.7135 -9.5247 -9.7105 -9.8176 -9.9435 -10.2082 -9.9300 -9.9268 -11.1472 -10.3574 -10.4820

2001 TRS87 1.1669 0.8359 0.4220 0.5104 0.9910 0.7410 0.6233 0.5086 0.9195 1.6954 0.7993 0.7641

2001 NUMRS 14.5525 16.0404 16.3786 15.4165 15.5482 14.9102 15.6258 14.9727 14.1408 13.2883 14.1309 16.0808

2001 QRS_NUMR -9.8536 -9.7796 -9.5948 -9.6984 -9.9725 -9.9584 -10.1280 -9.8815 -9.8992 -11.1316 -10.2740 -10.4422

2002 TRS87 1.3252 1.0061 0.1798 0.5499 1.1709 0.9131 0.7894 0.6021 1.3468 1.7721 1.2823 1.0116

2002 NUMRS 14.5638 16.0403 16.3942 15.4318 15.5633 14.9165 15.6392 15.0026 14.1702 13.3108 14.1679 16.0935

2002 QRS_NUMR -9.9004 -9.8433 -9.6303 -9.9500 -9.9503 -9.9813 -10.1525 -9.8950 -10.0019 -11.2021 -10.3534 -10.5047

2003 TRS87 1.0640 0.9727 0.2343 0.3112 0.9532 0.7328 0.4904 0.2461 0.8771 1.7006 0.9723 0.9677

2003 NUMRS 14.5811 16.0513 16.3998 15.4423 15.5781 14.9256 15.6478 15.0353 14.2350 13.3332 14.1914 16.1013

2003 QRS_NUMR -9.7270 -9.6751 -9.5145 -9.7046 -9.8285 -9.9254 -10.1285 -9.9871 -10.1089 -11.1387 -10.4292 -10.5824

2004 TRS87 1.4448 1.1049 0.4562 0.5844 1.1471 0.9384 0.7348 0.4769 0.9936 1.8242 1.0512 0.9869

2004 NUMRS 14.5756 16.0534 16.4051 15.4520 15.5898 14.9327 15.6576 15.0708 14.2355 13.3677 14.2230 16.1165
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Year Variable 1 2 3 4 5 6 7 8 9 10 11 12

2004 QRS_NUMR -9.8007 -9.7289 -9.5665 -9.7569 -9.8660 -10.0182 -10.2595 -9.9870 -10.0385 -11.2037 -10.3556 -10.5074

2005 TRS87 1.3379 1.0112 0.5253 0.5977 1.1991 1.1059 0.8346 0.6471 1.0996 1.8538 1.0791 1.0613

2005 NUMRS 14.5778 16.0534 16.4355 15.4628 15.6158 14.9387 15.6603 15.1071 14.2811 13.3940 14.2685 16.1330

2005 QRS_NUMR -9.7550 -9.7055 -9.5980 -9.7940 -9.9176 -10.0749 -10.2975 -10.0114 -10.0741 -11.2697 -10.4966 -10.6082

2006 TRS87 1.4382 1.0702 0.5922 0.7802 1.3712 1.1594 0.9223 0.6719 1.1872 1.9608 1.2392 1.0536

2006 NUMRS 14.6041 16.0667 16.4213 15.4743 15.6183 14.9404 15.6673 15.1360 14.3135 13.4197 14.2995 16.1530

2006 QRS_NUMR -9.9612 -9.9080 -9.7920 -9.9646 -10.1252 -10.2239 -10.4576 -10.0484 -10.0769 -11.3045 -10.5704 -10.6089

2007 TRS87 1.4864 1.0909 0.4472 0.6683 1.2977 0.9723 0.6249 0.3350 1.3113 1.8413 1.2638 0.9427

2007 NUMRS 14.6116 16.0784 16.4269 15.4747 15.6430 14.9418 15.6896 15.1576 14.3400 13.4342 14.3264 16.1636

2007 QRS_NUMR -9.8358 -9.7697 -9.6440 -9.8083 -10.0464 -10.1692 -10.2719 -9.9694 -10.0544 -11.4291 -10.4542 -10.5827

2008 TRS87 1.3928 1.1184 0.4855 0.5188 1.2655 0.9639 0.6981 0.2994 1.1499 1.7733 1.1499 0.9547

2008 NUMRS 14.6286 16.0706 16.4277 15.4811 15.6491 14.9374 15.6981 15.1769 14.3588 13.4288 14.3374 16.1708

2008 QRS_NUMR -9.8906 -9.7897 -9.5915 -9.7199 -10.0515 -10.0780 -10.2801 -9.9503 -10.0494 -11.3525 -10.4683 -10.5638

2009 TRS87 1.6335 1.2695 0.7903 0.8171 1.2355 1.1304 0.9066 0.5545 1.2369 1.9854 1.2550 1.0463

2009 NUMRS 14.5832 16.0687 16.4454 15.4815 15.6506 14.9563 15.6793 15.1583 14.3126 13.4289 14.3197 16.1646

2009 QRS_NUMR -9.9948 -9.7392 -9.6625 -9.7911 -9.9657 -10.1392 -10.3138 -10.0136 -9.9490 -11.4385 -10.5687 -10.6136

Data used for off-peak period estimation in log form

Year Variable 1 2 3 4 5 6 7 8 9 10 11 12

New 

Engl

Mid 

Atl

E.N. 

Cntrl

W.N. 

Cntrl

S.Atl-

FL

E.S. 

Cntrl

W.S. 

Cntrl

Mtn-

AZNM WA/OR Florida AZ/NM CA/HI

1990 TRS87 1.4572 1.3623 0.7696 0.7120 1.2790 1.0152 1.1575 0.5134 1.2202 1.8083 1.4110 0.9509

1990 NUMRS 14.4242 15.9210 16.2206 15.2533 15.2427 14.6570 15.5148 14.5549 13.5724 13.0339 13.7708 15.9587

1990 QRS_NUMR -10.1737 -10.1963 -9.9287 -10.1549 -10.4345 -10.4700 -10.5254 -10.1992 -10.3260 -11.2459 -10.7420 -10.5401

1991 TRS87 1.4697 1.3661 0.7622 0.7571 1.2565 1.0811 1.1499 0.5218 1.1378 1.8672 1.3903 1.1285

1991 NUMRS 14.4330 15.9914 16.2352 15.2651 15.2648 14.6832 15.5257 14.5850 13.6744 13.0546 13.8374 15.9747

1991 QRS_NUMR -10.2129 -10.2794 -9.9370 -10.1508 -10.4257 -10.5158 -10.5282 -10.1586 -10.2602 -11.2210 -10.6974 -10.4672

1992 TRS87 1.3002 1.2934 0.6785 0.7367 1.1210 0.9490 1.1311 0.3660 1.1894 1.8746 1.3697 1.0112

1992 NUMRS 14.4423 16.0036 16.2475 15.2807 15.3133 14.7090 15.5316 14.6128 13.6913 13.0644 13.8095 15.9800

1992 QRS_NUMR -10.0309 -10.1508 -9.8551 -10.1300 -10.3308 -10.4581 -10.5444 -10.2928 -10.4391 -11.1796 -10.7692 -10.5941

1993 TRS87 1.2436 1.3337 0.8002 0.7756 1.2006 0.9381 1.0325 0.5110 1.0770 1.9327 1.3486 1.0533

1993 NUMRS 14.4511 15.9482 16.2628 15.3088 15.3177 14.7384 15.5461 14.6431 13.7500 13.0915 13.8235 15.9853

1993 QRS_NUMR -10.0770 -10.1454 -9.8863 -10.0785 -10.3702 -10.4200 -10.4423 -10.1556 -10.2861 -11.1613 -10.7189 -10.5619

1994 TRS87 1.3990 1.5250 0.9030 0.7509 1.3126 1.1703 1.2499 0.5446 1.1378 1.9370 1.3880 1.1716

1994 NUMRS 14.4669 15.9546 16.2793 15.3186 15.3552 14.7660 15.5493 14.6859 13.8117 13.1179 13.8590 15.9927

1994 QRS_NUMR -10.2330 -10.2089 -10.0332 -10.2796 -10.5232 -10.6547 -10.6284 -10.2230 -10.3182 -11.2742 -10.7146 -10.4615

1995 TRS87 1.3676 1.5059 0.6355 0.7971 1.2447 1.0378 1.2093 0.6871 1.2250 1.9244 1.4344 1.2686

1995 NUMRS 14.4722 15.9635 16.2956 15.3296 15.3786 14.7928 15.5719 14.7298 13.8644 13.1468 13.8953 16.0011

1995 QRS_NUMR -10.2486 -10.2046 -9.8990 -10.1283 -10.4491 -10.5672 -10.6332 -10.1208 -10.3370 -11.2799 -10.7640 -10.5265

1996 TRS87 1.2179 1.4156 0.7251 0.8011 1.2945 1.0420 1.1490 0.5939 1.0515 1.9081 1.2404 1.1641

1996 NUMRS 14.4787 15.9705 16.3101 15.3458 15.4097 14.8172 15.5827 14.7820 13.9172 13.1648 13.9272 16.0128

1996 QRS_NUMR -10.1759 -10.0992 -9.8632 -10.1027 -10.3690 -10.4690 -10.5870 -10.1797 -10.2427 -11.1834 -10.7557 -10.5586

1997 TRS87 1.3737 1.2977 0.6896 0.7006 1.3048 1.1594 1.1628 0.7333 0.9636 1.9840 1.4978 1.1817

1997 NUMRS 14.4942 15.9815 16.3246 15.3617 15.4343 14.8403 15.5943 14.8138 13.9636 13.1859 13.9709 16.0228

1997 QRS_NUMR -10.1844 -10.1359 -9.9058 -10.1853 -10.3817 -10.5536 -10.5969 -10.2171 -10.2644 -11.3449 -10.8543 -10.6133

1998 TRS87 1.3538 1.4852 0.8912 0.9517 1.4389 1.2096 1.3172 0.9817 1.0821 1.9462 1.6148 1.2596

1998 NUMRS 14.4989 15.9974 16.3359 15.3965 15.4742 14.8582 15.6056 14.8560 14.0103 13.2044 14.0129 16.0361

1998 QRS_NUMR -10.3094 -10.2789 -10.1529 -10.3891 -10.6234 -10.7340 -10.8047 -10.2558 -10.3918 -11.2958 -10.8069 -10.4719

1999 TRS87 1.0889 1.3689 0.7701 0.9219 1.3943 1.1805 1.2698 0.9010 1.0445 1.9481 1.4173 1.0852

1999 NUMRS 14.5139 15.9997 16.3533 15.3897 15.5150 14.8715 15.6069 14.8947 14.0632 13.2297 14.0591 16.0522

1999 QRS_NUMR -10.2181 -10.2620 -10.1580 -10.3818 -10.6582 -10.7539 -10.8316 -10.2372 -10.2219 -11.2957 -10.7622 -10.4560

2000 TRS87 1.2021 1.1666 0.7641 0.9369 1.2873 1.2075 1.2439 0.7683 1.0360 1.9498 1.0543 1.1401

2000 NUMRS 14.5479 16.0179 16.3707 15.4080 15.5191 14.8989 15.6219 14.9377 14.1061 13.2568 14.0976 16.0564

2000 QRS_NUMR -10.2939 -10.2010 -10.0886 -10.3475 -10.4772 -10.7147 -10.7695 -10.2952 -10.2961 -11.3271 -10.7458 -10.5203

2001 TRS87 1.5986 1.5336 0.8858 1.1518 1.4931 1.4535 1.3543 1.2768 1.4339 2.1949 1.5484 1.1171

2001 NUMRS 14.5525 16.0404 16.3786 15.4165 15.5482 14.9102 15.6258 14.9727 14.1408 13.2883 14.1309 16.0808

2001 QRS_NUMR -10.3591 -10.3157 -10.2289 -10.4221 -10.6404 -10.8037 -10.8797 -10.3798 -10.1673 -11.3560 -10.9661 -10.6333

2002 TRS87 1.1783 1.3180 0.4898 0.9135 1.4253 1.3279 1.2407 0.9776 1.3118 2.0916 1.6413 1.0325

2002 NUMRS 14.5638 16.0403 16.3942 15.4318 15.5633 14.9165 15.6392 15.0026 14.1702 13.3108 14.1679 16.0935

2002 QRS_NUMR -10.2894 -10.2494 -10.0372 -10.4213 -10.5565 -10.7848 -10.8196 -10.2990 -10.3072 -11.3809 -11.0132 -10.5959

2003 TRS87 1.6186 1.5151 0.9115 1.0726 1.5988 1.4413 1.5072 0.9738 1.0335 2.2077 1.6160 1.0526

2003 NUMRS 14.5811 16.0513 16.3998 15.4423 15.5781 14.9256 15.6478 15.0353 14.2350 13.3332 14.1914 16.1013

2003 QRS_NUMR -10.2544 -10.2498 -10.1390 -10.4069 -10.6046 -10.8938 -10.9634 -10.3580 -10.3962 -11.4032 -10.9974 -10.5834

2004 TRS87 1.4646 1.4598 0.8796 1.1230 1.6372 1.4839 1.5330 0.9555 1.1681 2.1940 1.6409 0.9058

2004 NUMRS 14.5756 16.0534 16.4051 15.4520 15.5898 14.9327 15.6576 15.0708 14.2355 13.3677 14.2230 16.1165

2004 QRS_NUMR -10.3369 -10.3011 -10.2379 -10.5061 -10.6721 -10.9527 -10.9803 -10.3803 -10.4749 -11.3955 -11.0150 -10.6372

2005 TRS87 1.2565 1.3067 0.8920 1.0574 1.5239 1.4063 1.5061 0.9768 1.1534 2.0852 1.4960 0.9310
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Year Variable 1 2 3 4 5 6 7 8 9 10 11 12

2005 NUMRS 14.5778 16.0534 16.4355 15.4628 15.6158 14.9387 15.6603 15.1071 14.2811 13.3940 14.2685 16.1330

2005 QRS_NUMR -10.3301 -10.3133 -10.2901 -10.5292 -10.6477 -10.8541 -10.9974 -10.4205 -10.4464 -11.3454 -11.0278 -10.6804

2006 TRS87 1.5839 1.4591 0.9431 1.1597 1.7837 1.5063 1.6380 0.8924 1.4159 2.2101 1.8361 1.1429

2006 NUMRS 14.6041 16.0667 16.4213 15.4743 15.6183 14.9404 15.6673 15.1360 14.3135 13.4197 14.2995 16.1530

2006 QRS_NUMR -10.4060 -10.4084 -10.2527 -10.5223 -10.6889 -10.9109 -11.0536 -10.4466 -10.4555 -11.4250 -11.0867 -10.6868

2007 TRS87 1.5611 1.4748 1.0919 1.3310 1.7778 1.4913 1.5573 0.9662 1.4900 2.1891 1.8070 1.1891

2007 NUMRS 14.6116 16.0784 16.4269 15.4747 15.6430 14.9418 15.6896 15.1576 14.3400 13.4342 14.3264 16.1636

2007 QRS_NUMR -10.3719 -10.3408 -10.3127 -10.5771 -10.6998 -10.9956 -11.0435 -10.4942 -10.4203 -11.4010 -11.1591 -10.7360

2008 TRS87 1.4298 1.4639 1.2161 1.2273 1.6152 1.4734 1.4704 0.7659 0.9869 2.0844 1.8111 1.2459

2008 NUMRS 14.6286 16.0706 16.4277 15.4811 15.6491 14.9374 15.6981 15.1769 14.3588 13.4288 14.3374 16.1708

2008 QRS_NUMR -10.3753 -10.3351 -10.2613 -10.4774 -10.6242 -10.8958 -11.0306 -10.4334 -10.3485 -11.3981 -11.1367 -10.7886

2009 TRS87 1.7502 1.6044 1.1547 1.2444 1.8710 1.6198 1.6156 0.9761 1.5667 2.3046 1.8086 1.1597

2009 NUMRS 14.5832 16.0687 16.4454 15.4815 15.6506 14.9563 15.6793 15.1583 14.3126 13.4289 14.3197 16.1646

2009 QRS_NUMR -10.4626 -10.3705 -10.2891 -10.5011 -10.7517 -10.9740 -10.9774 -10.3727 -10.3909 -11.4718 -11.0855 -10.7547
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Table F7

Data: Equation for commercial distribution tariffs

Author: Ernest Zampelli, SAIC, with Ben Laughlin, EIA Intern, 2010.

Source: The source for the peak and off-peak data used in this estimation was the Natural Gas 

Monthly, DOE/EIA-0130.  State level city gate and commercial prices by month were 
averaged using quantity-weights to arrive at seasonal (peak and off-peak), regional 
level (12 NGTDM regions) prices.  The quantity-weights for the city gate prices 
consisted of residential consumption plus commercial consumption that is represented 
by on-system sales plus industrial consumption that is represented by on-system sales.   
Historical commercial floorspace data by census division were extracted from the 
NEMS model and allocated to NGTDM region using Census population figures.

Variables:

TCMr,n,t = commercial distributor tariff in region r, network n (1987 dollars per 
Mcf) [DTAR_SF2]

REGr = 1, if observation is in region r, =0 otherwise
QCM_FLRrr,n,t = commercial gas consumption per floorspace for region r in year t (Bcf) 

[(BASQTY_SF2+BASQTY_SI2)/FLRSPC12]
FLRr,t = commercial floorspace for region r in year t (estimated in thousand 

square feet) [FLRSPC12]
r = NGTDM region
n = network (1=peak, 2=off-peak)
t = year

r,n = estimated parameters for regional dummy variables [PCMREGPK13]

1,n 2,n = estimated parameters

n = autocorrelation coefficient
[Note:  Variables in brackets correspond to comparable variables used in 

the main body of the documentation and in the model code.]

Derivation: The commercial distributor tariff equation was estimated using panel data for the 12 
NGTDM regions over the 1990 to 2009 time period.  The equation was estimated in 
log-linear form with corrections for cross sectional heteroscedasticity and first order 
serial correlation using EViews.  The form of the estimated equation follows:

)lnNUMCM*lnQCM_FLR*+)REG*((*-lnTCM*

lnFLR*lnQCM_FLR*+)REG*(=lnTCM

1-tr,n2,1-tn,r,n1,rnr,

r

n1-tn,r,n

tr,n2,tn,r,n1,rnr,

r

tn,r,
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Regression Diagnostics and Parameter Estimates for the Peak Period

Dependent Variable: LNTCM87

Method: Least Squares

Date: 07/23/10   Time: 08:03

Sample (adjusted): 2 240

Included observations: 239 after adjustments

Convergence achieved after 9 iterations

Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

LNQCM_FLR -0.217322 0.129951 -1.672341 0.0959

LNFLR 0.218189 0.121009 1.803081 0.0727

REGION=1 -4.498378 1.340720 -3.355196 0.0009

REGION=2 -4.852790 1.408476 -3.445420 0.0007

REGION=3 -5.471895 1.435476 -3.811903 0.0002

REGION=4 -5.266668 1.364229 -3.860545 0.0001

REGION=5 -5.054427 1.410819 -3.582619 0.0004

REGION=6 -4.975067 1.349163 -3.687521 0.0003

REGION=7 -5.517942 1.406269 -3.923816 0.0001

REGION=8 -5.253175 1.305366 -4.024293 0.0001

REGION=9 -4.795673 1.307829 -3.666896 0.0003

REGION=10 -5.051970 1.397162 -3.615881 0.0004

REGION=11 -4.899262 1.299003 -3.771555 0.0002

REGION=12 -4.817270 1.405236 -3.428085 0.0007

AR(1) 0.284608 0.083893 3.392527 0.0008

R-squared 0.809134 Mean dependent var 0.594811

Adjusted R-squared 0.797204 S.D. dependent var 0.347177

S.E. of regression 0.156344 Akaike info criterion -0.812814

Sum squared resid 5.475313 Schwarz criterion -0.594626

Log likelihood 112.1313 Hannan-Quinn criter. -0.724890

Durbin-Watson stat 1.979180

Regression Diagnostics and Parameter Estimates for the Off-Peak Period

Dependent Variable: LNTCM87

Method: Least Squares

Date: 07/23/10 Time: 08:04

Sample: 241 480

Included observations: 240

Convergence achieved after 6 iterations

Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

LNQCM_FLRSPC -0.613588 0.209576 -2.927752 0.0038

LNFLRSPC 0.530831 0.213552 2.485719 0.0137

REGION=1 -13.87098 1.869814 -7.418373 0.0000

REGION=2 -14.12193 2.052895 -6.879033 0.0000

REGION=3 -14.49560 2.085660 -6.950127 0.0000

REGION=4 -14.29389 1.944700 -7.350175 0.0000

REGION=5 -14.37939 2.005218 -7.170990 0.0000

REGION=6 -13.98336 1.889625 -7.400073 0.0000
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REGION=7 -14.50539 2.000913 -7.249384 0.0000

REGION=8 -13.81237 1.894236 -7.291790 0.0000

REGION=9 -13.71773 1.813711 -7.563346 0.0000

REGION=10 -14.29647 1.877570 -7.614347 0.0000

REGION=11 -13.50724 1.778116 -7.596376 0.0000

REGION=12 -14.05762 2.001953 -7.021954 0.0000

AR(1) 0.166956 0.091737 1.819954 0.0701

R-squared 0.603286 Mean dependent var 0.577749

Adjusted R-squared 0.578601 S.D. dependent var 0.335016

S.E. of regression 0.217477 Akaike info criterion -0.152989

Sum squared resid 10.64162 Schwarz criterion 0.064551

Log likelihood 33.35864 Hannan-Quinn criter. -0.065336

Durbin-Watson stat 1.997625

Data used for peak period estimation in log form

Year Variable 1 2 3 4 5 6 7 8 9 10 11 12

New 

Engl Mid Atl

E.N. 

Cntrl

W.N. 

Cntrl

S.Atl-

FL

E.S. 

Cntrl

W.S. 

Cntrl

Mtn-

AZNM WA/OR Florida AZ/NM CA/HI
1990 TCM87 1.03354 0.782073 0.14842 0.042101 0.696143 0.430483 0.206201 0.028587 0.679555 0.735248 0.541161 0.904218

1990 QCM_FLR -10.80819 -10.27518 -10.02571 -10.0121 -10.87259 -10.66464 -10.6939 -10.05054 -10.88697 -12.19567 -10.64772 -10.65706

1990 FLR 14.73416 15.69451 15.92281 15.07962 15.5246 14.82673 15.50667 14.31229 14.34193 14.8613 13.94832 15.48136

1991 TCM87 1.008688 0.80245 0.200489 0.090754 0.643432 0.518198 0.224742 0.058269 0.615186 0.76314 0.578297 1.0654

1991 QCM_FLR -10.78194 -10.22102 -9.971767 -9.929256 -10.76971 -10.60622 -10.60989 -9.986422 -10.86598 -12.15423 -10.671 -10.80858

1991 FLR 14.74157 15.70491 15.93733 15.09204 15.55072 14.84239 15.51601 14.33424 14.36901 14.88742 13.97028 15.50845

1992 TCM87 1.074661 0.861201 0.193921 0.170586 0.711478 0.563608 0.322083 0.08526 0.658556 0.709021 0.549277 1.072268

1992 QCM_FLR -10.67296 -10.15695 -9.984192 -10.02488 -10.69684 -10.61159 -10.66214 -10.05214 -10.96197 -12.10189 -10.66952 -10.77438

1992 FLR 14.74724 15.71275 15.94971 15.10304 15.57115 14.85401 15.52609 14.35083 14.38809 14.90785 13.98686 15.52753

1993 TCM87 1.017041 0.82242 0.265436 0.131905 0.680062 0.514618 0.288931 0.130151 0.625404 0.920283 0.581657 1.135587

1993 QCM_FLR -10.61099 -10.14154 -9.926096 -9.900956 -10.64854 -10.54903 -10.68735 -9.946373 -10.76914 -12.1597 -10.7212 -10.84729

1993 FLR 14.75353 15.71675 15.96006 15.1135 15.58787 14.86603 15.53845 14.36863 14.40303 14.92458 14.00466 15.54246

1994 TCM87 1.17619 0.949339 0.377751 0.309688 0.710004 0.648673 0.266969 -0.037702 0.720762 0.729961 0.702602 1.439124

1994 QCM_FLR -10.35558 -10.09798 -9.894967 -9.90904 -10.65618 -10.51963 -10.67386 -10.01784 -10.85795 -12.16941 -10.77524 -10.88982

1994 FLR 14.75796 15.72214 15.97161 15.12337 15.60436 14.88037 15.55029 14.39101 14.41575 14.94106 14.02705 15.55519

1995 TCM87 1.130434 0.950885 0.228728 0.249201 0.708036 0.628075 0.276115 0.18648 0.783445 0.727065 0.781616 1.382788

1995 QCM_FLR -10.43041 -10.10463 -9.908138 -9.943346 -10.64013 -10.52523 -10.63409 -10.10654 -10.91288 -12.16089 -10.87959 -10.88643

1995 FLR 14.76406 15.72657 15.98518 15.1362 15.6225 14.89741 15.56682 14.41638 14.42795 14.9592 14.05242 15.56738

1996 TCM87 0.984697 0.874218 -0.04919 0.27079 0.548121 0.135405 0.138892 -0.019183 0.64815 0.639219 0.322808 1.107572

1996 QCM_FLR -10.34278 -9.983987 -9.842353 -9.848968 -10.62702 -10.44972 -10.65972 -10.0069 -10.77339 -12.14789 -10.81071 -11.03641

1996 FLR 14.77156 15.73278 15.99937 15.15122 15.6444 14.91814 15.58439 14.44409 14.44094 14.98111 14.08013 15.58038

1997 TCM87 1.108893 0.927428 0.336472 0.222343 0.738598 0.559616 0.195567 -0.139262 0.475613 0.667316 0.360468 1.096276

1997 QCM_FLR -10.30902 -10.00031 -9.948278 -9.98826 -10.68835 -10.55067 -10.5866 -9.999211 -10.86226 -12.31262 -10.71917 -10.94718

1997 FLR 14.78041 15.73888 16.01425 15.16549 15.6683 14.9417 15.60114 14.47542 14.45301 15.00501 14.11146 15.59244

1998 TCM87 1.06264 0.691646 0.300845 0.277632 0.718327 0.675492 0.447247 0.275356 0.617345 0.823298 0.609222 1.234308

1998 QCM_FLR -10.39582 -9.992437 -10.09763 -10.06498 -10.71608 -10.66425 -10.75371 -10.09564 -10.80522 -12.32806 -10.73728 -10.96726

1998 FLR 14.79058 15.74669 16.03036 15.1816 15.69627 14.96628 15.62199 14.50829 14.46986 15.03297 14.14433 15.60929

1999 TCM87 1.021371 0.608678 0.291176 0.29565 0.561899 0.642906 0.280657 0.464363 0.58389 0.822859 0.687632 1.094604

1999 QCM_FLR -10.59798 -9.933422 -10.01313 -10.06831 -10.72396 -10.66884 -10.76822 -10.20156 -10.74532 -12.35381 -10.84215 -10.95635

1999 FLR 14.80814 15.7567 16.04907 15.20068 15.72808 14.99202 15.64769 14.55063 14.49341 15.06479 14.18667 15.63284

2000 TCM87 0.813593 1.010509 0.002996 0.24686 0.687129 0.403463 -0.115411 0.111541 0.594431 0.690143 0.144966 0.967744

2000 QCM_FLR -10.52122 -9.982545 -9.976626 -10.04653 -10.673 -10.60803 -10.71636 -10.16844 -10.7873 -12.1577 -10.87075 -11.04346

2000 FLR 14.82306 15.76907 16.06954 15.22189 15.76349 15.01802 15.67919 14.59011 14.51777 15.10019 14.22614 15.65721

2001 TCM87 0.740985 0.905432 0.128393 0.191446 0.771034 0.570414 -0.071496 0.242946 0.535908 1.127524 0.222343 0.726582

2001 QCM_FLR -10.5722 -10.07162 -10.03531 -10.04857 -10.79009 -10.65373 -10.74992 -10.12952 -10.76708 -12.16264 -10.87023 -11.06204

2001 FLR 14.84233 15.78239 16.08961 15.2449 15.79681 15.04719 15.70677 14.6275 14.54296 15.13352 14.26353 15.6824

2002 TCM87 0.995102 0.442118 0.1415 0.203757 0.764072 0.731887 0.350657 0.360468 1.055705 1.118742 0.911479 0.885419

2002 QCM_FLR -10.63463 -10.05163 -10.1255 -10.27543 -10.77561 -10.70046 -10.66041 -10.1548 -10.89604 -12.07748 -10.91055 -11.1448

2002 FLR 14.86432 15.79755 16.10825 15.26372 15.82963 15.0726 15.73421 14.66104 14.56744 15.16634 14.29707 15.70687

2003 TCM87 0.735728 0.82154 -0.043952 -0.009041 0.517006 0.508623 0.024693 -0.149661 0.515813 1.028547 0.442761 0.789366

2003 QCM_FLR -10.60418 -9.934664 -9.984421 -10.07127 -10.73325 -10.63397 -10.67996 -10.25794 -10.94268 -12.1272 -10.99802 -11.08346

2003 FLR 14.87915 15.81076 16.124 15.28423 15.8558 15.09277 15.75895 14.68954 14.58792 15.1925 14.32557 15.72736

2004 TCM87 1.160334 0.913487 0.180653 0.280657 0.752359 0.666803 0.349952 0.094401 0.834213 1.166582 0.519984 0.799757

2004 QCM_FLR -10.65883 -9.927092 -10.04934 -10.10882 -10.72775 -10.70777 -10.79844 -10.24872 -10.90133 -12.10691 -10.9337 -11.14323

2004 FLR 14.8915 15.82207 16.13839 15.30039 15.88185 15.11195 15.78199 14.71552 14.60498 15.21855 14.35156 15.74441

2005 TCM87 1.066433 0.756122 0.198031 0.318454 0.733329 0.942738 0.486738 0.366724 0.740985 1.011964 0.555608 0.914689

2005 QCM_FLR -10.65271 -10.03913 -10.07135 -10.17298 -10.75486 -10.78261 -10.93415 -10.27977 -10.90604 -12.12498 -11.03518 -11.20321

2005 FLR 14.90435 15.83166 16.15338 15.31553 15.90631 15.13114 15.80292 14.74137 14.62178 15.24301 14.37741 15.76122

2006 TCM87 1.111199 0.781158 0.364643 0.509224 0.94585 0.92267 0.485508 0.423305 0.945461 1.307792 0.771034 0.947789

2006 QCM_FLR -10.80154 -10.20122 -10.25512 -10.32185 -10.91544 -10.88917 -11.06584 -10.31421 -10.89834 -12.28774 -11.06119 -11.18639

2006 FLR 14.92068 15.84244 16.17045 15.33077 15.93231 15.15151 15.82449 14.7725 14.63929 15.26902 14.40853 15.77872

2007 TCM87 1.20627 0.597737 0.206201 0.408128 0.905028 0.699626 0.105261 0.038259 1.04486 1.032116 0.782988 0.732368

2007 QCM_FLR -10.64449 -10.08287 -10.14895 -10.20875 -10.86095 -10.87075 -10.94939 -10.26239 -10.87505 -12.31859 -11.02282 -11.12961

2007 FLR 14.93262 15.85366 16.18633 15.34587 15.95991 15.1722 15.84616 14.80524 14.65694 15.29661 14.44127 15.79638

2008 TCM87 1.045212 0.580538 0.099845 0.245296 0.81978 0.683602 0.142367 -0.042908 0.821101 1.002101 0.560758 0.797958

2008 QCM_FLR -10.70065 -10.08087 -10.08169 -10.10907 -10.88544 -10.82181 -10.96436 -10.25204 -10.86054 -12.33066 -11.05978 -11.13563
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Year Variable 1 2 3 4 5 6 7 8 9 10 11 12

2008 FLR 14.946 15.86429 16.20345 15.36096 15.98527 15.19212 15.87062 14.83697 14.67404 15.32198 14.473 15.81347

2009 TCM87 1.185096 0.609222 0.404798 0.444686 0.78527 0.897719 0.447886 0.214305 0.950499 1.03176 0.65752 0.783445

2009 QCM_FLR -10.72952 -10.06608 -10.12776 -10.18844 -10.85652 -10.88899 -10.99863 -10.33785 -10.83499 -12.34896 -11.17492 -11.19006

2009 FLR 14.95814 15.87473 16.21753 15.37525 16.00654 15.20937 15.88914 14.86197 14.68849 15.34324 14.49801 15.82793

Data used for off-peak period estimation in log form

Year Variable 1 2 3 4 5 6 7 8 9 10 11 12

New 

Engl Mid Atl

E.N. 

Cntrl

W.N. 

Cntrl

S.Atl-

FL

E.S. 

Cntrl

W.S. 

Cntrl

Mtn-

AZNM WA/OR Florida AZ/NM CA/HI
1990 TCM87 0.81978 0.711969 0.379805 -0.177931 0.630207 0.528862 0.183155 -0.185125 0.738121 0.738121 0.564177 0.534151

1990 QCM_FLR -10.90124 -10.34489 -10.31414 -10.18253 -10.96697 -10.85666 -10.5901 -10.29073 -11.02909 -11.77349 -10.73081 -10.38875

1990 FLR 14.73416 15.69451 15.92281 15.07962 15.5246 14.82673 15.50667 14.31229 14.34193 14.8613 13.94832 15.48136

1991 TCM87 0.818016 0.702602 0.413433 -0.080126 0.578858 0.560758 0.221542 -0.176737 0.702602 0.730443 0.666803 0.728514

1991 QCM_FLR -10.9393 -10.37896 -10.37715 -10.1497 -10.89713 -10.89184 -10.59688 -10.25007 -10.93988 -11.7143 -10.73172 -10.31648

1991 FLR 14.74157 15.70491 15.93733 15.09204 15.55072 14.84239 15.51601 14.33424 14.36901 14.88742 13.97028 15.50845

1992 TCM87 0.513422 0.700123 0.262364 -0.125563 0.429832 0.430483 0.087095 -0.55687 0.782073 0.693147 0.491031 0.436318

1992 QCM_FLR -10.7426 -10.30278 -10.2948 -10.18815 -10.82841 -10.83675 -10.55567 -10.36185 -11.10669 -11.68164 -10.67683 -10.38468

1992 FLR 14.74724 15.71275 15.94971 15.10304 15.57115 14.85401 15.52609 14.35083 14.38809 14.90785 13.98686 15.52753

1993 TCM87 0.14842 0.671924 0.438255 0.059212 0.506215 0.442761 0.132781 -0.125563 0.677526 0.946238 0.567584 0.850151

1993 QCM_FLR -10.76579 -10.33389 -10.30689 -10.20689 -10.84683 -10.79649 -10.57541 -10.22038 -11.00829 -11.6948 -10.64436 -10.5797

1993 FLR 14.75353 15.71675 15.96006 15.1135 15.58787 14.86603 15.53845 14.36863 14.40303 14.92458 14.00466 15.54246

1994 TCM87 0.365337 0.90987 0.555608 -0.142716 0.559044 0.620576 0.367417 -0.015114 0.703098 0.845439 0.733329 1.214022

1994 QCM_FLR -10.57619 -10.34363 -10.38704 -10.28376 -10.88405 -10.89237 -10.6291 -10.23104 -10.98642 -11.76509 -10.68369 -10.49269

1994 FLR 14.75796 15.72214 15.97161 15.12337 15.60436 14.88037 15.55029 14.39101 14.41575 14.94106 14.02705 15.55519

1995 TCM87 0.436318 0.880456 0.265436 0.051643 0.555034 0.525911 0.170586 0.276115 0.815365 0.727065 0.758935 1.09293

1995 QCM_FLR -10.55041 -10.25587 -10.26514 -10.18332 -10.83986 -10.85856 -10.48104 -10.1478 -10.98213 -11.78257 -10.71065 -10.41359

1995 FLR 14.76406 15.72657 15.98518 15.1362 15.6225 14.89741 15.56682 14.41638 14.42795 14.9592 14.05242 15.56738

1996 TCM87 0.249201 0.760338 0.35977 0.07139 0.596085 0.65024 0.157858 0.025668 0.590561 0.832474 0.407463 0.910675

1996 QCM_FLR -10.42864 -10.23423 -10.23524 -10.16125 -10.79765 -10.7675 -10.6159 -10.19003 -10.89767 -11.76986 -10.70743 -10.61657

1996 FLR 14.77156 15.73278 15.99937 15.15122 15.6444 14.91814 15.58439 14.44409 14.44094 14.98111 14.08013 15.58038

1997 TCM87 0.528273 0.00995 0.335043 -0.191161 0.695644 0.690143 0.358374 0.178146 0.483043 0.875885 0.522359 0.909468

1997 QCM_FLR -10.32009 -9.960956 -10.25067 -10.28505 -10.78882 -10.73029 -10.48983 -10.22183 -10.87255 -11.91702 -10.78638 -10.5713

1997 FLR 14.78041 15.73888 16.01425 15.16549 15.6683 14.9417 15.60114 14.47542 14.45301 15.00501 14.11146 15.59244

1998 TCM87 0.385262 0.413433 0.524729 0.175633 0.744315 0.607044 0.510426 0.574364 0.617885 0.809151 0.828115 1.053615

1998 QCM_FLR -10.47149 -10.05141 -10.4248 -10.4753 -10.83441 -10.90459 -10.71362 -10.26044 -10.98847 -11.91034 -10.78333 -10.41553

1998 FLR 14.79058 15.74669 16.03036 15.1816 15.69627 14.96628 15.62199 14.50829 14.46986 15.03297 14.14433 15.60929

1999 TCM87 -0.357674 0.32573 -0.375693 -0.036332 -0.640274 -0.603769 -0.41871 -0.502592 -0.576051 -0.82022 -0.599386 -0.945073

1999 QCM_FLR 10.5712 9.960255 10.44113 10.47538 10.90767 10.88557 10.76356 10.30853 10.88778 12.00961 10.78357 10.69796

1999 FLR -14.80814 -15.7567 -16.04907 -15.20068 -15.72808 -14.99202 -15.64769 -14.55063 -14.49341 -15.06479 -14.18667 -15.63284

2000 TCM87 -0.209487 -0.500875 0.370183 0.173953 0.585005 0.626473 0.235072 0.237441 0.323532 0.661657 0.157004 0.856116

2000 QCM_FLR -10.64719 -9.928819 -10.38156 -10.45832 -10.87819 -10.97466 -10.67225 -10.32453 -10.89739 -11.73493 -10.80875 -10.6644

2000 FLR 14.82306 15.76907 16.06954 15.22189 15.76349 15.01802 15.67919 14.59011 14.51777 15.10019 14.22614 15.65721

2001 TCM87 0.731406 0.951272 0.576051 0.491031 0.907855 0.963937 0.452985 1.003202 1.0936 1.363026 0.74479 0.817133

2001 QCM_FLR -10.75139 -10.03607 -10.51336 -10.54833 -10.92828 -11.03404 -10.86342 -10.44685 -10.81949 -11.73978 -10.91398 -10.69869

2001 FLR 14.84233 15.78239 16.08961 15.2449 15.79681 15.04719 15.70677 14.6275 14.54296 15.13352 14.26353 15.6824

2002 TCM87 0.274597 0.290428 0.260825 0.303063 0.662688 0.824175 0.306749 0.540579 0.836381 1.101608 0.853564 0.605408

2002 QCM_FLR -10.69804 -9.993283 -10.3539 -10.51929 -10.95871 -11.03534 -10.62712 -10.39477 -11.01604 -11.64437 -10.9786 -10.73535

2002 FLR 14.86432 15.79755 16.10825 15.26372 15.82963 15.0726 15.73421 14.66104 14.56744 15.16634 14.29707 15.70687

2003 TCM87 1.125579 0.783445 0.50742 0.407463 0.793897 0.764537 0.682592 0.541161 0.463734 1.20147 0.724646 0.72222

2003 QCM_FLR -10.81744 -10.1338 -10.46123 -10.54033 -10.94377 -11.05512 -10.73289 -10.43014 -11.01381 -11.70079 -10.98742 -10.85435

2003 FLR 14.87915 15.81076 16.124 15.28423 15.8558 15.09277 15.75895 14.68954 14.58792 15.1925 14.32557 15.72736

2004 TCM87 0.826366 0.740508 0.386622 0.363948 0.710004 0.814479 0.650761 0.490419 0.78982 1.18142 0.762207 0.394067

2004 QCM_FLR -10.95466 -10.09444 -10.51966 -10.58474 -10.97447 -11.05178 -10.85089 -10.47832 -11.07644 -11.69623 -11.01532 -10.84808

2004 FLR 14.8915 15.82207 16.13839 15.30039 15.88185 15.11195 15.78199 14.71552 14.60498 15.21855 14.35156 15.74441

2005 TCM87 0.592774 0.527093 0.255417 0.180653 0.463734 0.789366 0.541161 0.444045 0.519984 0.941569 0.456792 0.432432

2005 QCM_FLR -10.98257 -10.26062 -10.56394 -10.64246 -10.98874 -11.04146 -10.96842 -10.46439 -11.03032 -11.68515 -11.05266 -10.82296

2005 FLR 14.90435 15.83166 16.15338 15.31553 15.90631 15.13114 15.80292 14.74137 14.62178 15.24301 14.37741 15.76122

2006 TCM87 0.993622 0.35347 0.404131 0.408128 1.02029 0.916291 0.787548 0.463734 1.059178 1.178039 1.137512 0.795704

2006 QCM_FLR -11.02975 -10.27795 -10.52172 -10.61187 -11.00399 -11.10895 -11.03871 -10.49775 -11.02842 -11.83787 -11.08461 -10.78475

2006 FLR 14.92068 15.84244 16.17045 15.33077 15.93231 15.15151 15.82449 14.7725 14.63929 15.26902 14.40853 15.77872

2007 TCM87 0.947789 0.405465 0.552159 0.579418 0.841998 0.852712 0.614104 0.594983 1.112186 1.178963 1.042042 0.792993

2007 QCM_FLR -10.95062 -10.22291 -10.57512 -10.66478 -11.02575 -11.14991 -11.02351 -10.57283 -10.9986 -11.84828 -11.14366 -10.8093

2007 FLR 14.93262 15.85366 16.18633 15.34587 15.95991 15.1722 15.84616 14.80524 14.65694 15.29661 14.44127 15.79638

2008 TCM87 0.863312 0.539413 0.779325 0.496524 0.636577 0.909065 0.30822 0.239017 0.279146 1.082483 1.0431 0.923068

2008 QCM_FLR -10.97875 -10.23502 -10.54087 -10.56937 -10.98552 -11.13943 -10.98381 -10.51688 -10.95221 -11.88835 -11.1648 -10.83484

2008 FLR 14.946 15.86429 16.20345 15.36096 15.98527 15.19212 15.87062 14.83697 14.67404 15.32198 14.473 15.81347

2009 TCM87 1.102272 0.518198 0.387301 0.436318 1.070213 1.057443 0.848012 0.623261 1.21075 1.154047 1.091588 0.718815

2009 QCM_FLR -11.06186 -10.26981 -10.53377 -10.60598 -11.07528 -11.17901 -10.98755 -10.53441 -11.04401 -11.92348 -11.15915 -10.84407

2009 FLR 14.95814 15.87473 16.21753 15.37525 16.00654 15.20937 15.88914 14.86197 14.68849 15.34324 14.49801 15.82793
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Table F8

Data: Equation for electric generator distribution tariffs or markups.

Author: Ernest Zampelli, SAIC, 2008.

Source: The original source for the natural gas prices to electric generators used with city gate 
prices to calculate markups was the Electric Power Monthly, DOE/EIA-0226. The 
original source for the rest of the data used was the Natural Gas Monthly, DOE/EIA-
0130.  State level city gate and electric generator prices by month were averaged 
using quantity-weights to arrive at seasonal (peak and off-peak), regional level (12 
NGTDM and 16 NGTDM/EMM regions, respectively) prices.  The quantity-weights 
for the city gate prices consisted of residential consumption plus commercial 
consumption that is represented by on-system sales plus industrial consumption that is 
represented by on-system sales.  The consumption data were generated within the 
historical routines in the NEMS system based on state level data from the original 
source and therefore may differ from the original source.  

Variables:

MARKUPr,t = electric generator distributor tariff (or markup) in region r, year t (1987 
dollars per Mcf) [UDTAR_SF]

QELECr,t = electric generator consumption of natural gas [sum of BASUQTY_SF 
and BASUQTY_SI] 

REGr = 1, if observation is in region r, =0 otherwise

0.r = coefficient on REGr [PELREG20 or PELREG25 equivalent to the 
product of REGr 0r]

0 1 = Estimated parameters
= autocorrelation coefficient

r = NGTDM/EMM region
t = year
n = season (1=peak, 2=off-peak)

[Note:  Variables in brackets correspond to comparable variables used in the main 
body of the documentation and/or in the model code.]

Derivation: The equation used for the peak and off-peak electric markups was estimated using 
panel data for the 16 EMM regions over the 1990 to 2009 time period and two 
periods. The equations were estimated in linear form allowing for region and period-
specific intercepts and with corrections for cross sectional heteroscedasticity and first 
order serial correlation using EViews. Because the reported point estimates of the 
parameters yielded projections of the electric generator distributor tariffs that were 
considered inconsistent with analyst’s expectations (i.e., that did not align well with 
more recent historical levels), the constant term in each equation was increased by one 
half of a standard deviation of the error, well within the 95% confidence interval 
limits for the parameters.  
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Regression Diagnostics and Parameter Estimates

This table reports the results of the estimation of the electric generator tariff equation allowing for 
different intercepts for each region/peak and off-peak period pairing.

Dependent Variable: TEU87

Method: Least Squares

Date: 08/03/10   Time: 08:58

Sample (adjusted): 2 640

Included observations: 639 after adjustments

Convergence achieved after 6 iterations

Newey-West HAC Standard Errors & Covariance (lag truncation=6)

Variable Coefficient Std. Error t-Statistic Prob.

C -0.153777 0.059859 -2.569001 0.0104

R1N1 -0.569051 0.187530 -3.034454 0.0025

R1N2 -1.377838 0.165891 -8.305701 0.0000

R2N2 -0.836857 0.142380 -5.877619 0.0000

R4N1 -0.993607 0.123113 -8.070659 0.0000

R4N2 -0.966333 0.122853 -7.865788 0.0000

R5N2 -0.553732 0.118913 -4.656614 0.0000

R6N2 -0.549285 0.066117 -8.307780 0.0000

R7N2 -0.495265 0.150436 -3.292203 0.0011

R9N2 -0.349100 0.143640 -2.430379 0.0154

R10N1 -0.453206 0.099193 -4.568931 0.0000

R10N2 -0.625117 0.089210 -7.007262 0.0000

R11N1 -0.553142 0.115808 -4.776368 0.0000

R11N2 -1.148493 0.338392 -3.393968 0.0007

QELEC 7.04E-07 2.61E-07 2.703306 0.0071

AR(1), 0.281378 0.048877 5.756867 0.0000

R-squared 0.337021 Mean dependent var -0.341534

Adjusted R-squared 0.321059 S.D. dependent var 0.704578

S.E. of regression 0.580558 Akaike info criterion 1.775065

Sum squared resid 209.9805 Schwarz criterion 1.886738

Log likelihood -551.1334 Hannan-Quinn criter. 1.818414

F-statistic 21.11324 Durbin-Watson stat 2.010879

Prob(F-statistic) 0.000000

Data used for estimation

YEAR REG TEU87 QELEC TEU87 QELEC REG TEU87 QELEC TEU87 QELEC

peak peak off-peak off-peak peak peak off-peak off-peak

1990 1 -0.373 5477.792 -0.689 78029.21 9 0.202 112.733 -0.07 733.267

1991 1 -0.285 10403.05 -0.948 90079.95 9 -0.07 88 -1.004 350

1992 1 -0.431 4216.713 -0.879 124801.3 9 -0.031 85 -0.434 474

1993 1 -0.595 16036.8 -1.384 109778.2 9 -0.079 54 -1.686 1745

1994 1 -0.626 11368.83 -1.836 146989.2 9 0.061 118.826 -1.354 1249.174
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YEAR REG TEU87 QELEC TEU87 QELEC REG TEU87 QELEC TEU87 QELEC

1995 1 -0.898 30834.64 -1.78 164613.4 9 0.142 380.87 -0.344 2539.13

1996 1 -0.544 30441.67 -1.507 152519.3 9 -0.009 471.804 -0.227 1934.196

1997 1 -0.647 51998.01 -0.985 152213 9 -0.044 478.75 -0.447 3349.25

1998 1 -0.527 58556.68 -1.476 124108.3 9 0.343 644.785 -0.557 11348.22

1999 1 -2.145 26046.15 -2.22 154448.8 9 -0.129 904 -0.324 10655

2000 1 -2.864 48405.54 -2.915 151491.4 9 -0.248 2628.278 0.356 6823.722

2001 1 -0.25 75437.73 -1.985 192119.3 9 -0.921 655.664 -0.514 6254.336

2002 1 -0.665 106724.8 -1.482 233054.2 9 -0.82 4669.191 -0.453 11638.81

2003 1 -0.218 93391.41 -0.622 249761.6 9 0.321 2993.909 -0.332 6293.09

2004 1 0.075 104596.4 -1.357 248623.6 9 -0.117 1886.401 -0.005 5208.599

2005 1 0.103 96665.48 -0.938 258176.5 9 0.616 5315.032 -0.031 17492.97

2006 1 -1.356 101914.5 -1.654 267822.5 9 -0.905 3080.886 -0.662 15897.11

2007 1 -0.079 103940.7 -1.287 277224.3 9 -0.312 6110.758 -0.597 20556.24

2008 1 0.252 101929.7 -0.739 250712.3 9 -0.071 4028.149 0.085 9966.851

2009 1 -0.906 113848.8 -1.615 238725.2 9 -1.09 3550.858 -0.92 8518.142

1990 2 -0.091 56008.69 -0.827 254571.3 10 -0.78 11836.17 -0.971 58827.83

1991 2 -0.157 64743.73 -0.898 267021.3 10 -0.812 15655.99 -1.021 51891.01

1992 2 -0.277 86805.72 -0.846 297436.3 10 -0.931 16384.83 -0.943 42633.17

1993 2 -0.302 83314.7 -0.87 308035.3 10 -0.715 8031.323 -0.744 38079.68

1994 2 -0.503 70013.87 -0.815 393282.2 10 -0.56 16516.63 -0.983 71653.38

1995 2 -0.444 134962.2 -0.675 487430.7 10 -0.607 30614.88 -0.86 89503.12

1996 2 0.171 62217.58 -0.622 411604.4 10 0.692 14569.8 -0.618 76325.2

1997 2 -0.502 111473 -1.339 456865 10 -0.684 14076 -0.592 70928

1998 2 -0.397 108447 -0.742 433440 10 -0.615 15754.85 -0.793 88350.15

1999 2 -0.284 108384.3 -0.864 496415.8 10 -0.541 28160.57 -0.566 103466.4

2000 2 0.037 120397.1 -0.692 408934.9 10 -0.559 34598.51 -0.28 108258.5

2001 2 0.566 114874.5 -0.896 393543.5 10 -1.737 40322.03 -1.047 177977

2002 2 -0.56 140725.3 -0.283 435593.6 10 -0.807 79041.83 -0.438 197026.2

2003 2 0.591 111812 -0.135 320290 10 0.211 58740.21 -0.426 123469.8

2004 2 0.17 121153.9 -0.097 354346.2 10 -0.434 59686.33 -0.333 164801.7

2005 2 0.356 116582 0.151 393216 10 0.674 56009.41 0.03 184339.6

2006 2 -0.916 137123.6 -1.023 482526.4 10 -1.223 46339.27 -0.933 239106.8

2007 2 -0.366 171300.2 -0.902 538288.8 10 -0.589 82203.64 -0.851 276528.3

2008 2 0.118 189873.8 -0.029 520375.2 10 -0.307 95446.84 -0.201 236164.2

2009 2 -1.209 212035.5 -1.426 544876.5 10 -1.263 121736.6 -1.046 292033.4

1990 3 0.477 150 -0.356 1103 11 -0.5 383955.5 -0.588 1244416

1991 3 -0.539 453 -0.68 2784 11 -0.471 381862.6 -0.474 1224830

1992 3 -0.597 933 -0.9 2023 11 -0.4 396487 -0.439 1151983

1993 3 -0.491 1267 0.237 1469 11 -0.39 381623.1 -0.41 1254746

1994 3 1.015 845.443 0.864 2122.557 11 -0.384 386224 -0.37 1266091

1995 3 -0.197 851.772 -0.584 6606.229 11 -0.555 426659.9 -0.507 1298862

1996 3 0.336 446.384 -0.27 2455.616 11 -0.183 387316.8 -0.302 1250172

1997 3 0.397 390 -0.063 3100 11 -0.628 378754.8 -0.27 1292336

1998 3 0.447 904.887 0.156 7075.113 11 -0.241 393644.6 -0.113 1588856

1999 3 0.282 2043.821 -0.556 9343.18 11 -0.407 449100.1 -0.214 1535106

2000 3 -0.057 2424.521 0.069 7697.479 11 -0.173 505656.9 -0.106 1587056

2001 3 1.586 1313.623 2.199 9230.377 11 -0.469 473726.6 -0.291 1475389

2002 3 -0.291 5156.494 -0.457 17565.51 11 -0.5 527764.5 -0.314 1583531

2003 3 -0.134 5862.449 0.086 12911.55 11 0.169 520349.9 0.035 1422995

2004 3 -0.037 5929.066 -0.26 12328.93 11 -0.229 496203.2 -0.024 1383611

2005 3 0.204 6165.703 -0.088 21775.3 11 0.066 497927.9 -0.046 1544522

2006 3 -0.931 4535.418 -0.126 18648.58 11 -0.645 474470.1 -0.286 1534773

2007 3 -0.287 9500.535 -0.174 27791.47 11 -0.524 541641.6 -0.532 1506612

2008 3 0.267 8165.851 1.186 15327.15 11 -0.454 571748.9 -0.527 1451966
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YEAR REG TEU87 QELEC TEU87 QELEC REG TEU87 QELEC TEU87 QELEC

2009 3 -0.925 12502.88 -1.185 25454.13 11 -1.02 550137.3 -0.832 1434106

1990 4 -1.817 31429.56 -1.347 72129.44 12 -0.595 108.33 -0.957 376.67

1991 4 -1.348 31578.48 -1.253 77733.52 12 0.711 74.782 1.56 268.218

1992 4 -1.418 44851.64 -1.497 68893.36 12 1.405 51.828 -0.004 250.172

1993 4 -1.241 35502.96 -1.283 87438.03 12 0.845 112.683 0.455 242.317

1994 4 -0.907 45192.25 -1.022 104732.8 12 -0.713 189.751 -0.878 571.249

1995 4 -1.128 47723.8 -1.258 132765.2 12 5.098 93.277 1.118 422.723

1996 4 -1.342 41181.18 -1.264 136386.8 12 3.806 267.156 1.572 471.844

1997 4 -1.893 58116.89 -1.709 149975.1 12 -1.3 713.689 -0.673 1580.311

1998 4 -1.426 57722.75 -1.106 185009.2 12 -0.003 834 -1.099 1726

1999 4 -1.017 56206.06 -1.275 181599.9 12 -1.421 661.7 -1.291 1543.3

2000 4 -0.795 62974.71 -0.843 154818.3 12 -1.468 858 -1.035 2886

2001 4 -1.38 55546.81 -0.777 164441.2 12 -0.705 2966.774 -0.578 10398.23

2002 4 -0.447 64369.93 -0.624 219275 12 0.762 1841.396 0.58 4757.604

2003 4 -0.951 58171.08 -0.766 128116.9 12 -0.093 3115.147 -0.2 9223.853

2004 4 -1.009 67560.77 -1.245 140486.2 12 -0.73 3432.394 -0.513 9186.606

2005 4 -1.006 62452.09 -1.464 220560.9 12 -0.394 3310.012 -0.31 8903.987

2006 4 -1.683 43653.99 -0.841 179495 12 -0.645 2908.668 -0.985 8073.332

2007 4 -0.72 70883.59 -0.594 207352.4 12 -0.109 4028.414 -0.17 11499.59

2008 4 -0.447 70728.65 0.307 132756.4 12 0.074 4134.663 0.213 9996.337

2009 4 -0.718 63267.38 -1.036 128803.6 12 -0.835 3748.62 -0.598 9380.38

1990 5 -0.591 6513.661 -0.868 37663.33 13 -0.406 7475.622 -1.168 30674.38

1991 5 -0.577 8386.246 -0.945 54605.75 13 -0.725 8442.727 -1.35 32877.27

1992 5 -0.477 6564.392 -0.855 19551.61 13 -0.779 11631.35 -1.39 41860.65

1993 5 -0.404 5430.949 -0.708 31682.05 13 -0.202 16816.29 -0.642 41179.71

1994 5 -0.379 6607.164 -1.018 37455.84 13 -0.624 16133.88 -1.112 66494.13

1995 5 -0.49 9284.483 -0.854 48442.52 13 -0.717 25685.17 -0.801 67311.83

1996 5 -0.145 6701.926 -0.869 33308.07 13 -0.188 22187.69 -0.468 78930.31

1997 5 -0.485 7062.148 -1.058 40882.85 13 -0.467 22608.37 -0.311 83926.64

1998 5 -0.275 6673.499 -0.839 73116.5 13 -0.385 28588.31 0.006 94087.7

1999 5 -0.392 11064.86 -0.741 67943.15 13 -0.072 35234.71 -0.007 102074.3

2000 5 -0.33 14452.84 -0.533 73293.16 13 1.265 53316.27 0.455 141533.7

2001 5 -0.658 12855.91 -0.609 68365.09 13 1.211 71984.5 1.291 137618.5

2002 5 -0.502 14525.6 -0.627 61418.4 13 0.473 56705.46 0.332 146509.5

2003 5 0.365 12441.34 -0.24 51685.66 13 0.415 52597.99 0.28 155741

2004 5 0.111 15715.84 -0.398 45414.16 13 -0.132 62488.94 0.094 167248.1

2005 5 0.574 22234.67 -0.68 82644.33 13 0.01 68457.95 0.123 184153

2006 5 -0.07 16733.13 -0.368 93896.87 13 -0.452 76476.9 -0.827 212270.1

2007 5 0.162 36287.14 -0.307 106214.9 13 -0.652 91240.94 -0.624 260458.1

2008 5 0.254 40233.62 -0.079 81822.38 13 -0.092 100212.7 0.03 242283.3

2009 5 -0.488 30968.19 -0.602 68794.81 13 -0.614 101870 -0.415 254915

1990 6 0.123 5736.463 -0.57 45691.54 14 -0.12 12451.51 -0.552 37300.48

1991 6 -0.259 9603.718 -0.824 55953.28 14 -0.39 10503.82 -0.595 40932.18

1992 6 -0.1 13896.39 -0.568 40156.62 14 -0.093 11060.75 -0.151 42418.25

1993 6 -0.168 18359.31 -0.714 46145.68 14 0.047 11955.11 -0.095 36309.89

1994 6 -0.247 18000.7 -0.969 60320.31 14 -0.143 13658.88 -0.164 44792.13

1995 6 -0.142 25663.08 -0.677 78174.92 14 -0.125 13662.47 -0.176 40548.53

1996 6 -0.021 14490.55 -0.611 57460.45 14 0.394 11768.99 0.121 45934.01

1997 6 -0.455 11760.21 -0.704 48107.79 14 0.084 12934.19 -0.122 54012.81

1998 6 -0.031 10607.77 -0.703 82748.23 14 0.076 18095.38 -0.132 69705.62

1999 6 -0.088 18558 -0.702 88756 14 -0.042 22906.24 -0.124 74796.77

2000 6 -0.661 18429.81 -0.196 77524.2 14 0.368 33129.53 0.148 109635.5

2001 6 1.04 11727.8 -0.54 83846.2 14 0.489 49709.35 -0.107 128357.6

2002 6 -0.542 31719.6 -1.034 113421.4 14 0.286 50972.55 -0.266 131697.5
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YEAR REG TEU87 QELEC TEU87 QELEC REG TEU87 QELEC TEU87 QELEC

2003 6 0.025 22153.38 -0.48 65724.62 14 0.355 52509.88 0.372 155480.1

2004 6 -0.342 31824.06 -0.621 96166.94 14 0.239 73750.1 0.265 197387.9

2005 6 -0.163 42401.81 -0.379 132210.2 14 0.716 70105.91 0.66 188586.1

2006 6 -1.163 38068.46 -0.523 135358.5 14 -0.245 80424.6 -0.312 223227.4

2007 6 -0.056 50933.98 -0.522 170925 14 -0.019 88519 -0.567 252688

2008 6 0.475 47926.71 -0.042 144152.3 14 -0.166 103157.1 0.523 249401.9

2009 6 -1.173 60839.04 -0.951 177359 14 -0.482 95551.13 -0.231 239102.9

1990 7 0.373 94 -0.127 1838 15 -0.398 2163.144 -0.413 5411.857

1991 7 0.18 86 -0.214 752 15 -0.111 2385.528 -0.415 10360.47

1992 7 0.599 40 -0.404 1122 15 -0.184 6807.541 0.497 19222.46

1993 7 0.601 112.963 -0.408 2913.037 15 0.499 26265.15 -0.027 18996.85

1994 7 0.485 268.321 -0.153 1070.679 15 -0.333 26457.18 -0.207 42886.82

1995 7 1.584 368.214 -0.26 10727.79 15 -0.285 17894.08 -0.113 41866.93

1996 7 1.371 208.809 -0.706 5566.191 15 0.58 1662.173 -0.161 66420.83

1997 7 0.181 323.943 -0.941 16729.06 15 0.104 7462.426 0.902 44431.57

1998 7 -1.064 845 -0.463 32505 15 -0.372 16440.47 -0.323 76776.53

1999 7 -0.867 683 -1.1 31822 15 -0.098 12471.85 -0.158 69827.15

2000 7 0.814 676 -0.777 41357 15 0.166 30435.15 0.56 113414.9

2001 7 -0.394 1813.314 -1.357 32851.69 15 0.213 55816.64 0.531 112908.4

2002 7 -0.472 12366.93 -0.961 44221.07 15 -0.439 30135.98 -0.949 65269.01

2003 7 -0.114 8131.998 -0.605 24126 15 -0.518 41637.16 -1.075 90642.84

2004 7 -0.437 11419.18 -0.718 34506.82 15 -0.675 46265.81 -0.82 108536.2

2005 7 0.062 17548.92 -0.107 54718.08 15 -0.387 48284.78 -0.701 105522.2

2006 7 -1.522 20942.52 -0.854 74464.48 15 -1.054 36728.14 -1.325 97256.86

2007 7 -0.527 27945.63 -0.963 93780.37 15 -0.7 45077.4 -0.962 113719.6

2008 7 0.218 24032.35 -0.327 72283.65 15 -0.536 62191.23 -0.708 129025.8

2009 7 -1.494 36520.59 -1.208 106465.4 15 -1.093 61018.65 -1.443 133252.4

1990 8 -0.111 53532.49 -0.081 135631.5 16 0.519 154426.4 0.106 474358.6

1991 8 -0.347 57488.14 -0.233 143844.9 16 0.314 200566.8 0.049 427968.1

1992 8 -0.559 54243.96 -0.149 149075 16 0.129 227147.9 0.029 535783.1

1993 8 -0.41 47776.24 -0.304 140451.8 16 0.261 244498.6 0.09 428566.4

1994 8 -0.538 53104.2 -0.412 158386.8 16 -0.027 238089.7 0.013 572584.3

1995 8 -0.384 80269.09 -0.369 289028.9 16 0.403 181126.9 0.103 421776.1

1996 8 -0.203 70158.84 -0.441 267108.2 16 0.446 116542 0.08 408493

1997 8 -1.335 88892.73 -0.917 249964.3 16 0.344 129870 0.036 465952

1998 8 -0.996 80991.75 -0.831 242778.3 16 0.378 206154 0.294 442932

1999 8 -0.436 83337 -0.25 282249 16 0.305 279871.4 0.035 443299.6

2000 8 -0.699 109654.3 -0.233 254590.7 16 3.086 234992 0.621 658384

2001 8 -0.608 88541.95 -0.013 285769.1 16 1.745 313453.9 1.712 659873.1

2002 8 0.223 114050.8 0.133 407817.2 16 0.606 229522.8 0.335 497104.2

2003 8 0.241 134894.4 0.056 400204.6 16 0.438 222017.6 0.166 483325.4

2004 8 -0.203 145665.3 0.002 440175.8 16 0.003 230285.1 -0.041 540231.9

2005 8 -0.598 153085.3 -0.367 477324.7 16 0.559 216351.5 -0.172 472817.5

2006 8 -0.21 162821.4 0.462 578937.6 16 -0.409 211302.6 0.249 559533.4

2007 8 0.835 177456.6 0.931 595511.4 16 0.046 236827.2 -0.076 597458.9

2008 8 0.396 198930.3 0.309 598335.6 16 0.092 279011.8 0.08 578855.2

2009 8 1.253 232426 1.368 677572 16 0.123 255257.8 0.146 557431.3
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Table F9

Data: Equation for natural gas price at the Henry Hub

Author: Eddie Thomas, EI-83, 2008

Source: Annual natural gas wellhead prices and chain-type GDP price deflators data from 
EIA’s Annual Energy Review 2007, DOE/EIA-0384(2007), published June 2008.  
Henry Hub spot price data from EIA’s Short-Term Energy Outlook database series 
NGHHUUS; the annual Henry Hub prices equal the arithmetic average of the monthly 
data.  

Variables:

HHPRICE = Henry Hub spot natural gas price (1987 dollars per MMBtu)
EIAPRICE = Average U.S. natural gas wellhead price (1987 dollars per Mcf)

HHPRICE_HAT = estimated values for Henry Hub price (1987 dollars per MMBtu)
= estimated parameter

0 = constant term
const2 = constant term

Derivation: Using TSP version 5.0 and annual price data from 1995 through 2007, the first 
equation was estimated in log-linear form using ordinary least squares.  The second 
equation estimates an adjustment factor that is applied in cases where the value of “y” 
is predicted from an estimated equation where the dependent variable is the natural 
log of y. The adjustment is due to the fact that generally predictions of “y” using the 
first equation only tend to be biased downward.

1) lnHHPRICE = 0 * lnEIAPRICE)
2) HHPRICE = * HHPRICE_HAT

Regression Diagnostics and Parameter Estimates

First Equation

Dependent variable: lnHHPRICE
Current sample: 1 to 13
Number of observations: 13

Mean of dep. var. = 1.00473 LM het. test = .317007 [.573]
Std. dev. of dep. var. = .447616 Durbin-Watson = 2.74129 [<.934]

Sum of squared residuals = .048856 Jarque-Bera test = .475878 [.788]
Variance of residuals = .444143E-02 Ramsey's RESET2 = .103879 [.754]

Std. error of regression = .066644 F (zero slopes) = 530.339 [.000]
R-squared = .979680 Schwarz B.I.C. = -15.2838

Adjusted R-squared = .977833 Log likelihood = 17.8487
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Estimated Standard
Variable Coefficient Error t-statistic P-value Symbol
CONST .090246 .043801 2.06036 [.064] 0

lnEIAPRICE 1.00119 .043475 23.0291 [.000]

Second Equation

Dependent variable: HHPRICE
Current sample: 1 to 13
Number of observations: 13

Mean of dep. var. = 2.98879 LM het. test = 2.14305 [.143]
Std. dev. of dep. var. = 1.29996 Durbin-Watson = 2.97238 [<1.00]

Sum of squared residuals = .420043 Jarque-Bera test = .138664 [.933]
Variance of residuals = .035004 Ramsey's RESET2 = .655186 [.435]

Std. error of regression = .187092 Schwarz B.I.C. = -2.58158
R-squared = .979456 Log likelihood = 3.86405

Adjusted R-squared = .979456

Estimated Standard
Variable Coefficient Error t-statistic P-value Symbol
HHPRICE_HAT 1.00439 .016114 62.3290 [.000]

Data used for Estimation:

Year

Henry Hub Spot 

Natural Gas Price 

($/MMBtu, in 1987 

dollars)

Average U.S. 

Wellhead Natural 

Gas Price ($/Mcf, in 

1987 dollars)

1995 1.34 1.23
1996 2.14 1.70
1997 1.91 1.79
1998 1.58 1.50
1999 1.70 1.65
2000 3.16 2.73
2001 2.83 2.89
2002 2.36 2.09
2003 3.77 3.40
2004 3.95 3.68
2005 5.62 4.79
2006 4.23 4.03
2007 4.26 3.90
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Table F10

Data: Lease and plant fuel consumption in Alaska

Author: Margaret Leddy, EIA summer intern

Source: EIA’s Petroleum Supply Annual and Natural Gas Annual.

Variables:

LSE_PLT = Lease and plant fuel consumption in Alaska [QALK_LAP_N]
OIL_PROD = Oil production in Alaska (thousand barrels) [OGPRCOAK]

[Note:  Variables in brackets correspond to comparable variables used in the main 
body of the documentation and in the model code.]

Derivation: Using EViews and annual price data from 1981 through 2007, the following equation 
was estimated using ordinary least squares without a constant term:

LSE_PLTt -1*LSE_PLTt-1 1 * OIL_PRODt

The intent was to find an equation that demonstrated similar characteristics to the 
projection by the Alaska Department of Natural Resources in their “Alaska Oil and 
Gas Report.”

Regression Diagnostics and Parameter Estimates

Dependent Variable: LSE_PLT

Method: Least Squares

Date: 07/24/09   Time: 17:34

Sample (adjusted): 1981 2007

Included observations: 27 after adjustments

Coefficient Std. Error t-Statistic Prob. Symbol

OIL_PROD 0.038873 0.015357 2.531280 0.0180 1

LSE_PLT_PREV 0.943884 0.037324 25.28876 0.0000 -1

R-squared 0.911327 Mean dependent var 210731.2

Adjusted R-squared 0.907780 S.D. dependent var 86703.97

S.E. of regression 26329.98 Akaike info criterion 23.26599

Sum squared resid 1.73E+10 Schwarz criterion 23.36198

Log likelihood -312.0909 Hannan-Quinn criter. 23.29453

Durbin-Watson stat 2.407017
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Data used for Estimation:

Year oil_prod lse_plt Year oil_prod lse_plt Year oil_prod lse_plt

1981 587337 15249 1990 647309 193875 1999 383199 265504.375

1982 618910 94232 1991 656349 223194.366 2000 355199 269177.988

1983 625527 97828 1992 627322 234716.225 2001 351411 271448.841

1984 630401 111069 1993 577495 237701.556 2002 359335 285476.659

1985 666233 64148 1994 568951 238156.064 2003 355582 300463.487

1986 681310 72686 1995 541654 292810.594 2004 332465 281546.298

1987 715955 116682 1996 509999 295833.863 2005 315420 303215.128

1988 738143 153670 1997 472949 271284.345 2006 270486 257091.267

1989 683979 192239 1998 428850 281871.556 2007 263595 268571.098
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Table F11

Data: Western Canada successful conventional gas wells

Author: Ernie Zampelli, SAIC, 2009

Source: Canadian Association of Petroleum Producers, Statistical Handbook. Undiscovered 
remaining resource estimates from National Energy Board of Canada.

Variables:

GWELLS = Number of successful new natural gas wells drilled in Western Canada
[SUCWELL]

PGAS2000 = Average natural gas wellhead price in Alberta (2000 U.S. dollars per 
Mcf) [CN_PRC00]

REMAIN = Remaining natural gas undiscovered resources in Western Canada 
(Bcf) [URRCAN]

DRILLCOSTPERGASWELL2000 = U.S. based proxy for drilling cost per gas well (2000 U.S. 
dollars) [CST_PRXYLAG]

PR_LAG = Production to reserve ratio last forecast year [CURPRRCAN]
[Note:  Variables in brackets correspond to comparable variables used in the main 
body of the documentation and in the model code.]

Derivation: Using TSP version 5.0 and annual price data from 1978 through 2005, the following
equation was estimated after taking natural logs of all of the variables and by 
instrumental variables:

lnGWELLS = 0 1 2*lnREMAIN 

3 4*PR_LAG

Regression Diagnostics and Parameter Estimates

TSP Program File:  canada10_wells_v1.tsp
TSP Output File:  canada10_wells_v1.out
Data File: canada10.xls

Method of estimation = Instrumental Variable

Dependent variable: LNGWELLS
Endogenous variables: LNPGAS2000
Included exogenous variables: C LNREMAIN PR_LAG LNDRILLCOSTPERGASWELL2000LAG
Excluded exogenous variables: LNRIGS_AVAIL LNRIGS_ACT LNWOP2000

LNWOP2000(-1)
Current sample:  32 to 59
Number of observations:  28

Mean of dep. var. = 8.22053  Adjusted R-squared = .868002
Std. dev. of dep. var. = .770092       Durbin-Watson = 1.47006 [<.460]

Sum of squared residuals = 1.81489     F (zero slopes) = 44.8913 [.000]
Variance of residuals = .078908  F (over-id. rest.) = 3.04299 [.049]

Std. error of regression = .280906              E'PZ*E = .720351
R-squared = .887557
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Estimated Standard
Variable                      Coefficient     Error       t-statistic  P-value Symbol
C -1.85639      10.8399 -.171256 [.864] 0

LNPGAS2000                    1.09939       .275848       3.98551 [.000] 1

LNREMAIN                      1.57373       .767550       2.05033 [.040] 2

PR_LAG                        33.6237       5.95568       5.64564 [.000] 3

LNDRILLCOSTPERGASWELL2000LAG -.860630      .413101 -2.08334 [.037] 4

where LNGWELLS is the natural log of the number of successful gas wells drilled, 
C is the constant term, LNPGAS2000 is the natural log of the natural gas 
wellhead price in US$2000, LNREMAIN is the natural log of remaining natural gas 
resources, PR_LAG is the one-year lag of the natural gas production to reserves 
ratio, and LNDRILLCOSTPERGASWELL2000LAG is the one-year lag of the natural log drilling 

costs per gas well in US$2000.

Data used for Estimation:

OBS Year gwells pgas2000 Remain drillcostpergaswell2000

3 1949 0.048973961

4 1950 0.326113924

5 1951 0.332526561

6 1952 0.53466758

7 1953 0.520772302

8 1954 0.518522266

9 1955 168 0.508917468

10 1956 180 0.506220324

11 1957 194 0.521861883

12 1958 200 0.481073325

13 1959 302 0.452683617

14 1960 292 0.474693506 487885.5568

15 1961 392 0.533594173 445149.9201

16 1962 331 0.529535218 450150.6792

17 1963 338 0.569702785 423745.2977

18 1964 308 0.58367073 247614.5688 473327.0074

19 1965 320 0.567907929 238537.3503 452030.1753

20 1966 342 0.576547139 236436.2237 577347.2558

21 1967 372 0.562604404 232547.9993 590110.0741

22 1968 478 0.537960863 229480.2528 596222.8555

23 1969 524 0.505967348 224686.5834 590148.7629

24 1970 731 0.518371638 219742.8184 583504.0314

25 1971 838 0.506420538 215141.3928 576188.9938

26 1972 1164 0.514557299 211401.9226 522986.1433

27 1973 1656 0.532790308 210506.5381 487525.511

28 1974 1902 0.791608407 207750.6318 544786.1771

29 1975 2080 1.411738215 207326.7494 689458.4496

30 1976 3304 2.237940881 203831.3434 672641.5564

31 1977 3192 2.599391226 201592.1585 733387.9117

32 1978 3319 2.626329384 196792.3469 817752.475

33 1979 3450 2.710346999 191501.0181 894243.9654

34 1980 4241 3.384567857 185756.1549 992546.6758

35 1981 3206 3.221572826 182757.9141 1181643.803

36 1982 2555 3.213342789 177773.8365 1377862.449

37 1983 1374 3.284911566 175254.2284 932534.8506

38 1984 1866 3.129580432 172207.6619 723979.0112

39 1985 2528 2.783743697 164103.9115 729665.916

40 1986 1298 2.102135277 163082.6472 733903.1579

41 1987 1599 1.70904727 162025.2004 519637.6851

42 1988 2300 1.605152553 161045.0253 608099.7173

43 1989 2313 1.6374231 159296.4045 582756.2503

44 1990 2226 1.616410647 154195.8722 577621.032

45 1991 1645 1.413315563 150493.0434 599894.6047

46 1992 908 1.302240063 147472.6695 493273.1377

47 1993 3327 1.450352061 144605.8153 589678.7771

48 1994 5333 1.51784337 141039.5975 592881.5963

49 1995 3325 1.094686059 137038.8014 683668.8164

50 1996 3664 1.255799796 130554.9327 656352.5551

51 1997 4820 1.46778215 128082.3795 763619.5946

52 1998 4955 1.340424158 126038.0859 845430.7986

53 1999 7005 1.702885108 122364.2737 815784.5261

54 2000 9034 3.139760843 117371.83 756939

55 2001 10693 3.517434005 112428.7004 875486.0887

56 2002 9011 2.374637309 105719.0529 951999.7696

57 2003 12911 4.216469412 100440.0085 1039434.608

58 2004 15041 4.506654918 95800 1568071.111

59 2005 15895 6.175733625 89650.7047 1324919.051

60 2006 13850 3.555109614 82089.6695 1161087.791

61 2007 9626 5.155666777 75854.5886 3260771.516

62 2008 8104 6.102395678 69930.7064
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Table F12

Data: Western Canada conventional natural gas finding rate

Author: Ernie Zampelli, SAIC, 2009

Source: Canadian Association of Petroleum Producers, Statistical Handbook.  Undiscovered 
remaining resource estimates from National Energy Board of Canada.

Variables:

FR = Natural gas proved reserves added per successful natural gas well in 
Western Canada (Bcf/well) [FRCAN]

REMAIN = Remaining natural gas undiscovered resources in Western Canada 
(Bcf) [URRCAN]

[Note:  Variables in brackets correspond to comparable variables used in the main 
body of the documentation and in the model code.]

Derivation: The equation to project the average natural gas finding rate in Western Canada was 
estimated for the time period 1965-2007 using TSP version 5.0 and aggregated 
reserves and production data for the provinces in Western Canada. Natural logs were 
taken of all data before the estimation was performed.  The following equation was 
estimated with correction for first-order serial correlation:

lnFRt = 0 1*lnREMAINt t-1 – 0 1*lnREMAINt-1)

Regression Diagnostics and Parameter Estimates

TSP Program File:  canada10_findrate_v1.tsp
TSP Output File:  canada10_findrate_v1.out
Data File:  canada10.xls

FIRST-ORDER SERIAL CORRELATION OF THE ERROR

Objective function:  Exact ML (keep first obs.)

CONVERGENCE ACHIEVED AFTER   6 ITERATIONS

Dependent variable: LNFR
Current sample:  19 to 61
Number of observations:  43

Mean of dep. var. = .258333           R-squared = .523925
Std. dev. of dep. var. = 1.01511  Adjusted R-squared = .500121

Sum of squared residuals = 20.6112       Durbin-Watson = 2.19910
Variance of residuals = .515280      Schwarz B.I.C. = 50.8486

Std. error of regression = .717830      Log likelihood = -45.2068

Standard
Parameter  Estimate        Error       t-statistic   P-value Symbol
C -25.3204      6.81740 -3.71409      [.000] 0

LNREMAIN   2.13897       .569561       3.75547       [.000] 1

RHO ( ) .428588 .139084       3.08150       [.002]
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Data used for Estimation:

OBS Year fr remain

17 1963 9.28880858

18 1964 29.47148864 247614.5688

19 1965 6.566020625 238537.3503

20 1966 11.36907719 236436.2237

21 1967 8.246630376 232547.9993

22 1968 10.02859707 229480.2528

23 1969 9.434666031 224686.5834

24 1970 6.294699863 219742.8184

25 1971 4.46237494 215141.3928

26 1972 0.76923067 211401.9226

27 1973 1.664194626 210506.5381

28 1974 0.222861409 207750.6318

29 1975 1.680483654 207326.7494

30 1976 0.677719401 203831.3434

31 1977 1.503700376 201592.1585

32 1978 1.594253932 196792.3469

33 1979 1.665177739 191501.0181

34 1980 0.706965527 185756.1549

35 1981 1.554609357 182757.9141

36 1982 0.986147984 177773.8365

37 1983 2.217297307 175254.2284

38 1984 4.342845874 172207.6619

39 1985 0.403981131 164103.9115

40 1986 0.81467396 163082.6472

41 1987 0.612992558 162025.2004

42 1988 0.760269913 161045.0253

43 1989 2.205158798 159296.4045

44 1990 1.663445103 154195.8722

45 1991 1.836093556 150493.0434

46 1992 3.157328414 147472.6695

47 1993 1.071901954 144605.8153

48 1994 0.750196156 141039.5975

49 1995 1.950035699 137038.8014

50 1996 0.674823472 130554.9327

51 1997 0.424127303 128082.3795

52 1998 0.741435358 126038.0859

53 1999 0.712697173 122364.2737

54 2000 0.547169537 117371.83

55 2001 0.627480361 112428.7004

56 2002 0.585844457 105719.0529

57 2003 0.35938413 100440.0085

58 2004 0.408835536 95800

59 2005 0.475686392 89650.7047

60 2006 0.450186347 82089.6695

61 2007 0.615404342 75854.5886

62 2008 69930.7064
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Table F13

Data: Western Canada production-to-reserves ratio

Author: Ernie Zampelli, SAIC, 2009

Source: Canadian Association of Petroleum Producers, Statistical Handbook.  

Variables:

PR = Natural gas production-to-reserve ratio in Western Canada
[PRRATCAN]

GWELLS = Number of successful new natural gas wells drilled in Western Canada
[SUCWELL}

RES_ADD_PER_WELL =  Proved natural gas reserves added per successful natural gas well in 
Western Canada (Bcf/well) [FRCAN]

YEAR = Calendar year [RLYR]
[Note:  Variables in brackets correspond to comparable variables used in the main 
body of the documentation and in the model code.]

Derivation: The equation was estimated using TSP version 5.0 for the period from 1978 to 2007 
using aggregated data in natural log form (with the exception of YEAR) for the 
provinces of Western Canada.  Because the PR ratio is bounded between zero and 
one, the dependent variable was measured in logistic form, as follows:

YEAR)*R_WELLRES_ADD_PEln*lnGWELLS*(*

PR-1

PR
ln*

YEAR*R_WELLRES_ADD_PEln*lnGWELLS*
PR-1

PR
ln

3t2t10

1-t

1-t

3t2t10

t

t

Regression Diagnostics and Parameter Estimates

TSP Program File:  canada10_pr_v1.tsp
TSP Output File:  canada10_pr_v1.out
Data File:  canada10.xls

FIRST-ORDER SERIAL CORRELATION OF THE ERROR

Objective function:  Exact ML (keep first obs.)

CONVERGENCE ACHIEVED AFTER   7 ITERATIONS

Dependent variable: LOGISTIC
Current sample:  32 to 61
Number of observations:  30
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Mean of dep. var. = -2.68213              R-squared = .986473
Std. dev. of dep. var. = .479351      Adjusted R-squared = .984308

Sum of squared residuals = .090398           Durbin-Watson = 1.29483
Variance of residuals = .361591E-02      Schwarz B.I.C. = -35.3745

Std. error of regression = .060132          Log likelihood = 43.8775

Standard
Parameter           Estimate        Error       t-statistic   P-value Symbol
C -72.1364      13.7385 -5.25069      [.000] 0

LNGWELLS            .117911       .032053       3.67858       [.000] 1

LNRES_ADD_PER_WELL  .041469       .017819       2.32723       [.020] 2

YEAR                .034370       .690795E-02   4.97536       [.000] 3

RHO ( ) .916835       .061397       14.9329       [.000]

Data used for Estimation:

OBS Year pr gwells res_add_per_well

9 1955 168

10 1956 180

11 1957 194

12 1958 200

13 1959 302

14 1960 292

15 1961 392

16 1962 331

17 1963 0.023779341 338 9.28880858

18 1964 0.024979017 308 29.47148864

19 1965 0.022612325 320 6.566020625

20 1966 0.02372014 342 11.36907719

21 1967 0.024985242 372 8.246630376

22 1968 0.027431524 478 10.02859707

23 1969 0.030312333 524 9.434666031

24 1970 0.032625343 731 6.294699863

25 1971 0.034308623 838 4.46237494

26 1972 0.037697554 1164 0.76923067

27 1973 0.041418124 1656 1.664194626

28 1974 0.040851176 1902 0.222861409

29 1975 0.042823468 2080 1.680483654

30 1976 0.042727689 3304 0.677719401

31 1977 0.04464118 3192 1.503700376

32 1978 0.04178307 3319 1.594253932

33 1979 0.042644059 3450 1.665177739

34 1980 0.037495598 4241 0.706965527

35 1981 0.036757207 3206 1.554609357

36 1982 0.036329357 2555 0.986147984

37 1983 0.034484267 1374 2.217297307

38 1984 0.03717602 1866 4.342845874

39 1985 0.038172848 2528 0.403981131

40 1986 0.035340517 1298 0.81467396

41 1987 0.039250307 1599 0.612992558

42 1988 0.046730172 2300 0.760269913

43 1989 0.051076089 2313 2.205158798

44 1990 0.050410254 2226 1.663445103

45 1991 0.054586093 1645 1.836093556

46 1992 0.060679876 908 3.157328414

47 1993 0.068904777 3327 1.071901954

48 1994 0.075709817 5333 0.750196156

49 1995 0.080323276 3325 1.950035699

50 1996 0.082543421 3664 0.674823472

51 1997 0.087979875 4820 0.424127303

52 1998 0.095582952 4955 0.741435358

53 1999 0.102052842 7005 0.712697173

54 2000 0.105232537 9034 0.547169537

55 2001 0.108329697 10693 0.627480361

56 2002 0.107044449 9011 0.585844457

57 2003 0.105846562 12911 0.35938413

58 2004 0.109676418 15041 0.408835536

59 2005 0.110235118 15895 0.475686392

60 2006 0.107756259 13850 0.450186347

61 2007 0.105636132 9626 0.615404342

62 2008 0.101395754 8104
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Appendix G. Variable Cross Reference Table

With the exception of the Pipeline Tariff Submodule (PTS) all of the equations in this 
model documentation report are the same as those used in the model FORTRAN code. 
Table G-1 presents cross references between model equation variables defined in this 
document and in the FORTRAN code for the PTS.

Table G-1.  Cross Reference of PTM Variables Between Documentation and Code

Documentation Code Variable Equation #

Ri,f Not represented 157

Ri,v Not represented 158

ALLf AFX_ i, where  i = PFEN, CMEN, LTDN, 
DDA, FSIT, DIT, OTTAX, TOM 

157

ALLv AVA_ i, where  i = PFEN, CMEN, LTDN, 
DDA, FSIT, DIT, OTTAX, TOM  

158

Ri PFEN, CMEN, LTDN, DDA, FSIT, DIT, 
OTTAX, TOM 

157, 158

FCa Not represented 159

VCa Not represented 160

Ri,f,r RFC_ i, where  i = PFEN, CMEN, LTDN, 
DDA, FSIT, DIT, OTTAX, TOM 

161

Ri,f,u UFC_i, where i = PFEN, CMEN, LTDN, DDA, 
FSIT, DIT, OTTAX, TOM

162

Ri,v,r RVC_ i, where i = PFEN, CMEN, LTDN, 
DDA, FSIT, DIT, OTTAX, TOM 

163

Ri,v,u UVC_ i, where i = PFEN, CMEN, LTDN, 
DDA, FSIT, DIT, OTTAX, TOM 

164

ALLf,r AFR_ i, where i = PFEN, CMEN, LTDN, 
DDA, FSIT, DIT, OTTAX, TOM 

161

ALLf,u AFU_ i, where i = PFEN, CMEN, LTDN, 
DDA, FSIT, DIT, OTTAX, TOM 

162

ALLv,r AVR_ i, where i = PFEN, CMEN, LTDN, 
DDA, FSIT, DIT, OTTAX, TOM 

163

ALLv,u AVU_ i, where i = PFEN, CMEN, LTDN, 
DDA, FSIT, DIT, OTTAX, TOM 

164
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Documentation Code Variable Equation #

i
AFX_ i, where i = PFEN, CMEN, LTDN, 
DDA, FSIT, DIT, OTTAX, TOM 

222, 223, 225-
228

Itemi,a,t PFEN, CMEN, LTDN, DDA, FSIT, DIT, 
OTTAX, TOM 

222, 223, 225-
228

FCa,t Not represented 222

VCa,t Not represented 223

TCOSa,t Not represented 224, 229

RFCa,t RFC_i, where i = PFEN, CMEN, LTDN, DDA, 
FSIT, DIT, OTTAX, TOM 

225

UFCa,t UFC_i, where i = PFEN, CMEN, LTDN, DDA, 
FSIT, DIT, OTTAX, TOM 

225

RVCa,t RVC_i, where i = PFEN, CMEN, LTDN, DDA, 
FSIT, DIT, OTTAX, TOM 

227

UVCa,t UVC_i, where i = PFEN, CMEN, LTDN, DDA, 
FSIT, DIT, OTTAX, TOM 

228

i AFR_i, where i = PFEN, CMEN, LTDN, DDA, 
FSIT, DIT, OTTAX, TOM 

225, 226

i AVR_i, where i = PFEN, CMEN, LTDN, DDA, 
FSIT, DIT, OTTAX, TOM 

227, 228

a - arc, t - year, i - cost-of-service component index
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Appendix H. Coal-to-Gas Submodule

A Coal-to-Gas (CTG) algorithm has been incorporated into the NGTDM to project potential 
new CTG plants at the census division level and the associated pipeline quality gas 
production.  The Coal-to-Gas process with no carbon sequestration is adopted as the generic 
facility for the CTG.  The CTG_INVEST subroutine calculates the annualized capital costs, 
operating costs, and other variable costs for a generic coal-to-gas plant producing 100
MMcf/day (Appendix E, CTG_PUCAP) of pipeline quality synthetic gas from coal. The 
capital costs are converted into a per unit basis by dividing by the plant’s assumed output of 
gas. Capital and operating costs are assumed to decline over the forecast due to 
technological improvements. To determine whether it is profitable to build a CTG plant, the 
per unit capital and operating costs plus the coal costs are compared to the average market 
price of natural gas and electricity. If a CTG plant is profitable, the actual number of plants 
to be built is set using the Mansfield-Blackman market penetration algorithm. Any new 
generic plant is assumed to be built in the regions with the greatest level of profitability and 
to produce pipeline quality natural gas and cogenerated electricity (cogen) for sale to the 
grid.

Electricity generated by a CTG facility is partially consumed in the facility, while the 
remainder is assumed to be sold to the grid at wholesale market prices (EWSPRCN, 
87$/MWh, from the EMM). Cogeneration for each use is set for a generic facility using 
assumed ratios of electricity produced to coal consumed (Appendix E, own—
CTG_BASECGS, grid—CTG_BASCGG).  The revenue from cogen sales is treated as a 
credit (CGNCRED) by the model to offset the costs (feedstock, fixed, and operation costs) of 
producing CTG syngas.  The annualized transmission cost (CGNTRNS) for cogen sent to the 
grid is accounted for in the operating cost of the CTG facility.

The primary inputs to the CTG model include a mine-mouth coal price (PCLGAS, 
87$/MMBtu, from the Coal Market Module (CMM)) and a regional wholesale equivalent 
natural gas price (NODE_ENDPR, 87$/Mcf).  A carbon tax (JCLIN, 87$/MMBtu from the 
Integration Module) is added to the coal price as well as a penalty for SO2 and HG.  If the 
CTG plant is deemed to be economic, the final quantity of coal demanded (QCLGAS, Quad 
Btu/yr) is sent back to the CMM for feedback. The final outputs from the model are coal 
consumed, gas produced, electricity consumed, and electricity sold to the grid.

Investment decisions for building new CTG facilities are based on the total investment cost 
of a CTG plant (CTG_INVCST).  Actual cash flows associated with the operation of the 
individual plants are considered, as well as cash flows associated with capital for the 
construction of new plants. Terms for capital-related financial charges (CAPREC) and fixed 
operating costs (FXOC) are included.

FXOCCAPRECCTG_INVCST (306)

Once a build decision is made, a Mansfield-Blackman algorithm for market penetration is 
used to determine the limit on the number of plants allowed to build in a given year.  The 
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investment costs are further adjusted to account for learning and for resource competition. 
The methodologies used to calculate the capital-related financial charges and the fixed 
operating costs, the Mansfield-Blackman model, and investment costs adjustments are 
presented in detail below.

Capital-Related Financial Charges for Coal-to-Gas

A discounted cash flow calculation is used to determine the annual capital charge for a CTG
plant investment. The annual capital recovery charge assumes a discount rate equal to the 
cost of capital, which includes the cost of equity (CTGCOE) and interest payments on any 
loans or other debt instruments used as part of capital project financing (CTGCOD) with an 
assumed interest rate of the Industrial BAA bond rate (MC_RMCORPBAA, from MACRO) 
plus an additional risk premium (Appendix E, BA_PREM). Together, this translates into the
capital recovery factor (CTG_RECRAT) which is calculated on an after-tax basis. 

Some of the steps associated with the capital-related financial charge estimates are conducted 
exogenous to NEMS (Step 0 below), either by the analyst in preparing the input data or 
during input data preprocessing. The individual steps in the plant capital-related cost 
estimation algorithm are:

0) Estimation of the inside battery limit field cost (ISBL)
1) Year-dollar and location adjustments for ISBL Field Costs
2) Estimation of outside battery limit field cost (OSBL) and Total Field Cost
3) Estimation of Total Project Cost
4)  Calculate Annual Capital Recovery
5) Convert capital related financial costs to a “per-unit” basis

Step 0 involves several adjustments which must be made prior to input into the NGTDM;
steps 1-4 are performed within the NGTDM.

Step 0 - Estimation of ISBL Field Cost

The inside battery limits (CTG_ISBL) field costs include direct costs such as major 
equipment, bulk materials, direct labor costs for installation, construction subcontracts, and 
indirect costs such as distributables.  The ISBL investment and labor costs were provided for 
plants sited at a generic U.S. Gulf Coast (PADD III) location, and are in 2004 dollars.

Step 1 - Year-Dollar and Location Adjustments to ISBL Field Costs

Before utilizing the ISBL investment cost information, the raw data must be converted 
according to the following steps:

a)  Adjust the ISBL field and labor costs from 2004 dollars, first to the year-dollar reported 
by NEMS, using the Nelson-Farrar refining industry cost-inflation indices.  Then the GDP 
chain-type price indices provided by the NEMS Macroeconomic Activity Model are used to 
convert from report-year dollars to 1987 year dollars used internally by the NEMS.
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b)  Convert the ISBL field costs in 1987 dollars from a PADD III basis (Appendix E, 
XBM_ISBL) to costs in the NGTDM demand regions using location multipliers (Appendix 
E, CTG_INVLOC).  The location multipliers represent differences in material costs between 
the various regions.

1000/ISBL_BM*INVLOC_CTGISBL_TGC (307)

Step 2 - Estimation of OSBL and Total Field Cost

The outside battery-limit (OSBL) costs for CTG are included in the inside battery-limit costs.
The total field cost (CTG_TFCST) is the sum of ISBL and OSBL

ISBL_CTG*)OSBLFAC_CTG1(TFCST_TGC (308)

The OSBL field cost is estimated as a fraction (Appendix E, CTG_OSBLFAC) of the ISBL 
costs.

Step 3 - Estimation of Total Project Cost

The total project investment (CTG_TPI) is the sum of the total field cost (Eq. 3) and other 
one-time costs (CTG_OTC).

OTC_CTGTFCST_CTGTPI_TGC (309)

Other one-time costs include the contractor’s cost (such as home office costs), the 
contractor’s fee and a contractor’s contingency, the owner’s cost (such as pre-startup and 
startup costs), and the owner’s contingency and working capital.  The other one-time costs 
are estimated as a function of total field costs using cost factors (OTCFAC):

TFCST_CTG*OTCFACOTC_TGC (310)

where,

PCTWC_CTGPCTSPECL_CTG

PCTLND_CTGPCTCNTG_CTGPCTENV_CTGOTCFAC
(311)

and,
CTG_PCTENV = Home, office, contractor fee

CTG_CNTG = Contractor & owner contingency
CTG_PCTLND = Land

CTG_PCTSPECL = Prepaid royalties, license, start-up costs
CTG_PCTWC = Working capital

The total project investment given above represents the total project cost for ‘overnight 
construction.’  The total project investment at project completion and startup will be 
discussed below.
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Closely related to the total project investment are the fixed capital investment (CTG_FCI)
and total depreciable investment (CTG_TDI).  The fixed capital investment is equal to the 
total project investment less working capital.  It is used to estimate capital-related fixed 
operating costs.

TFCST_CTG*PCTWC_CTGWRKCAP (312)

Thus,

WKRCAPTPI_CTGFCI_CTG (313)

For the CTG plant, the total depreciable investment (CTG_TDI) is assumed to be equal to the 
total project investment.

Step 4 - Annual Capital Recovery

The annual capital recovery (ACAPRCV) is the difference between the total project 
investment (TPI) and the recoverable investment (RCI), all in terms of present value (e.g., at 
startup). The TPI estimated previously is for overnight construction (ONC). In reality, the 
TPI is spread out through the construction period. Land costs (LC) will occur as a lump-sum 
payment at the beginning of the project, construction expenses (TPI – WC – LC = FCI - LC) 
will be distributed during construction, and working capital (WC) expenses will occur as a 
lump-sum payment at startup. Thus, the TPI at startup (present value) is determined by 
discounting the construction expenses (assumed as discrete annual disbursements) and 
adding working capital (WC):

WRKCAP)LANDFCI_CTG(

*CONSTR_FVLAND*CONSTR_FVISTART_TPI
(314)

where,
FVI_CONSTR = Future-value compounding factor for an instantaneous payment 

made n years before the startup year
FV_CONSTR = Future-value compounding factor for discrete uniform 

payments made at the beginning of each year starting n years 
before the startup year.

The future-value factors are a function of the number of compounding periods (n), and the
interest rate (r) assumed for compounding. In this case, (n) equals the construction time in 
years before startup, and the compounding rate used is the cost of capital (CTG_RECRAT).

The recoverable investment (RCI_START) includes the value of the land and the working 
capital (assumed not to depreciate over the life of the project), as well as the salvage value 
(PRJSDECOM) of the used equipment:

PRJSDECOM)WKRCAP(LAND*PV_PRJRCI_START (315)
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The present value of RCI is subtracted from the TPI at startup to determine the present value 
of the project investment (PVI):

START_RCISTART_TPISTART_PVI (316)

Thus, the annual capital recovery (ACAPRCV) is given by:

START_PVI*LIFE_LCACAPRCV (317)

where,
LC_LIFE = uniform- value leveling factor for a periodic payment (annuity) 

made at the end of each year for (n) years in the future

The depreciation tax credit (DTC) is based on the depreciation schedule for the investment 
and the total depreciable investment (TDI). The simplest method used for depreciation 
calculations is the straight-line method, where the total depreciable investment is depreciated 
by a uniform annual amount over the tax life of the investment. Generic equations
representing the present value and the levelized value of the annual depreciation charge are:

PRJLIFE_CTG/TDI_CTGADEPREC (318)

TAX_FEDST*ADEPRECADEPTAXC (319)

ADEPTAXCACAPRCVACAPCHRGAT (320)

365/ACAPCHRGATDCAPCHRGAT (321)

where,
ADEPREC = annual levelized depreciation

ADEPTAXC = levelized depreciation tax credit, after federal and state taxes
ACAPCHRGAT = annual capital charge, after tax credit
DCAPCHRGAT = daily capital charge, after tax credit

Step 5 - Convert Capital Costs to a ‘per-day’, ‘per-capacity’ Basis

The annualized capital-related financial charge is converted to a daily charge, and then 
converted to a “per-capacity” basis by dividing the result by the operating capacity of the unit 
being evaluated. The result is a fixed operation cost on a per-mcf basis (CAPREC).

CTG Plant Fixed Operating Costs

Fixed operating costs (FXOC), a component of total product cost, are costs incurred at the 
plant that do not vary with plant throughput, and any other costs which cannot be controlled 
at the plant level. These include such items as wages, salaries and benefits; the cost of 
maintenance, supplies and repairs; laboratory charges; insurance, property taxes and rent; and 
other overhead costs. These components can be factored from either the operating labor 
requirement or the capital cost. 

Like capital cost estimations, operating cost estimations, involve a number of distinct steps. 
Some of the steps associated with the FXOC estimate are conducted exogenous to NEMS 
(Step 0 below), either by the analyst in preparing the input data or during input data 
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preprocessing. The individual steps in the plant fixed operating cost estimation algorithm 
are:

0) Estimation of the annual cost of direct operating labor
1) Year-dollar and location adjustment for operating labor costs (OLC)
2) Estimation of total labor-related operating costs (LRC)
3) Estimation of capital-related operating costs (CRC)
4) Convert fixed operating costs to a “per-unit” basis

Step 0 involves several adjustments which must be made prior to input into the NGTDM;
steps 1-4 are performed within the NGTDM.

Step 0 – Estimation of Direct Labor Costs

Direct labor costs are reported based on a given processing unit size. Operation and labor 
costs were provided for plants sited at a generic U.S. Gulf Coast (PADD III) location, and are 
in 2004 dollars.

Step 1 – Year-Dollar and Location Adjustment for Operating Labor Costs

Before the labor cost data can be utilized, it must be converted via the following
steps:

a) Adjust the labor costs from 2004 dollars, first to the year-dollar reported by NEMS using 
the Nelson-Farrar refining-industry cost-inflation indices. Then the GDP chain-type price
indices provided by the NEMS Macroeconomic Activity Model are used to convert from
report-year dollars to 1987 dollars used internally by the NEMS (Appendix E, 
XBM_LABOR).

b) Convert the 1987 operating labor costs from a PADD III (Gulf Coast) basis into regional 
(other U.S. PADDs) costs using regional location factors. The location multiplier (Appendix 
E, LABORLOC) represents differences in labor costs between the various locations and 
includes adjustments for construction labor productivity.

LABOR_BM*LABORLOCLABOR_CTG (322)

Location multipliers are translated to the NGTDM demand regions.

Step 2 - Estimation of Labor-Related Fixed Operating Costs

Fixed operating costs related to the cost of labor include the salaries and wages of 
supervisory and other staffing at the plant, charges for laboratory services, and payroll 
benefits and other plant overhead. These labor-related fixed operating costs 
(FXOC_LABOR) can be factored from the direct operating labor cost. This relationship is 
expressed by:

LCFAC_STAFF_CTG*LABOR_CTGSTAFF_FXOC (323)

LCFAC_OH_CTG*

)STAFF_FXOCLABOR_CTG(OH_FXOC
(324)
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OH_FXOCSTAFF_FXOCLABOR_CTGLABOR_FXOC (325)

where,
FXOC_STAFF = Supervisory and staff salary costs

FXOC_OH = Benefits and overhead

Step 3 - Estimation of Capital-Related Fixed Operating Costs

Capital–related fixed operating costs (FXOC_CAP) include insurance, local taxes, 
maintenance, supplies, non-labor related plant overhead, and environmental operating costs. 
These costs can be factored from the fixed capital investment (CTG_FCI). This relationship 
is expressed by:

FAC_INS*FCI_CTGINS_FXOC (326)

FAC_TAX*FCI_CTGTAX_FXOC (327)

FAC_MAINT*FCI_CTGMAINT_FXOC (328)

FAC_OTH*FCI_CTGOTH_FXOC (329)

OTH_FXOCMAINT_FXOC

TAX_FXOCINS_FXOCCAP_FXOC
(330)

where,
INS_FAC = Yearly Insurance 

TAX_FAC = Local Tax Rate 
MAINT_FAC = Yearly Maintenance 

OTH_FAC = Yearly Supplies, Overhead, Etc. 

Step 4 - Convert Fixed Operating Costs to a “per-capacity” Basis

On a “per-capacity” basis, the FXOC is the sum of capital-related operating costs and labor-
related operating costs, divided by the operating capacity of the unit being evaluated.

Mansfield-Blackman Model for Market Penetration

The Mansfield-Blackman model for market penetration has been incorporated to limit
excessive growth of CTG (on a national level) once they become economically feasible.99

The indices associated with this modeling algorithm are user inputs that define the 
characteristics of the CTG process. They include an innovation index of the industry 
(Appendix E, CTG_IINDX), the relative profitability of the investment within the industry 
(Appendix E, CTG_PINDX), the relative size of the investment (per plant) as a percentage of 
total company value (Appendix E, CTG_SINVST), and a maximum penetration level (total 
number of units, Appendix E, CTG_BLDX).100

99 E. Mansfield, “Technical Change and the Rate of Imitation,” Econometrica, Vol. 29, No. 4 (1961), pp. 741-765.
A.W. Blackman, “The Market Dynamics of Technological Substitution,” Technological Forecasting and Social 

Change, Vol. 6 (1974), pp. 41-63.

100 These have been defined in a memorandum from Andy Kydes (EIA) to Han-Lin Lee (EIA), entitled "Development 
of a model for optimistic growth rates for the coal-to-liquids (CTG) technology in NEMS," dated March 23, 2002.
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)1)NCTGBLT/BLDX_CTG((LOGKFAC (331)

)SINVST_CTG*027.0()PINDX_CTG*533.0(

)IINDX_CTG*23221.0(3165.0PHI
(332)

)))PHI*YR(KFAC(EXP1/(1SHRBLD (333)

SHRBLD*BLDX_CTGCTGBND (334)

where,
CTG_BLDX = maximum number of plants allowed

NCTGBLT = number of plants already built
SHRBLD = the share of the maximum number of plants that can be built in 

a given year
CTGBND = the upper bound on the number of plants to build

Investment Cost Adjustments

To represent cost improvements over time (due to learning), a decline rate 
(CTG_DCLCAPCST) is applied to the original CTG capital costs after builds begin. 

)BASYR_CTGYR()DCLCAPCST_CTG1(*INVBAS_CTGINVADJ_CTG (335)

where,
CTG_INVBAS =  the initial CTG investment cost
CTG_BASYR =  the first year CTG plants are allowed to build

CTG_INVADJ =  the adjusted CTG investment cost

However, once the capacity builds exceed 1.1 bcf/day, a supplemental algorithm is applied to 
increase costs in response to impending resource depletions (such as competition for 
water).101

)))1)1127308/CTGPRODC(,0(MAX(*4.0(TANH*15CSTADD_CTG (336)

where,
CTGPRODC =  current CTG production

CTG_CSTADD =  the additional cost 

101
The basic algorithm is defined in a memorandum from Andy Kydes (EIA) to William Brown (EIA), entitled “CTL 

run-- add to total CTLCST in ADJCTLCST sub,” dated September 29, 2006.


	Ex. 21 - EPA NO2 Health Impacts
	Ex. 22 - UN Black Carbon Report
	Ex. 23- EPA CO Health Impacts
	Ex. 24 - ORG NSPS RIA
	Ex. 25 - EPA Climate Change & Health Report
	Ex. 26 - EPA SO2 Health Impacts
	Ex. 27 - EPA PM Health Impacts
	Ex. 28 - EPA Visibility
	Ex. 29 - EIA Moduling System Overview
	Ex. 30 - Model Documentation

